N85-25867

A FOUR-NODE BILINEAR ISOPARAMETRIC ELEMENT
 IN ROCKNELL NASTRAN

C. LIAG and R. E. ALLISON

ROCKWELL INTERNATIONAL
MORTH AMERICAN AIRCRAFT OPERATIONS
EL SEGUNDO, CALIFORNIA

SIMMARY

Development and evaluation of the Rockwell NASTFifin four-node quadrilateral ($\mathcal{U} A D 4$) element is presented. The element derivation utilizes bilinear isoparametric techniques both for membrane and bending characterisíics. The QUAC4 element coordinate system, membrane properties, lumped mass matrix, anc treatment of warping are based upon the COSMIC/NASTRAN QDMEM1 element while the bending characteristics are based upon a paper by T. J. R. Hughes. The effects of warping on the bending stiffness, corisistent mass, and ceometric stiffness are based upon a paper by R. H. MacNeal. Numerical iniegration is accomplished by Gaussian quadrature on a 2×2 grid. Practical user suppor', features includn vai iable element thickness, thermal analysis and layerec composite material definit:ons.

INTRODUCTICN

Rockwell NASTRAN is the NASA/COSMIC released :IASTRAN with Rockwell developed technical and efficiency enhancements incorporated. A total of nine Rockwell divisions fund the NASTRAN Group Service activities which include user consultation, development, maintenance, and validation of the production program. Rockwell NASTRAN is installed on IBM and CDC computing systems at three geograph.cal locations. The program is being used by the participating divisions which are located in California, Oklahoma, Ohio, Michigar and Pennsylvania.

The Rockwell QUAC4 has beer develuped in order to provide our users with a state-of-the-art general quadrilateral element. The improved efficiency and greater accuracy provided by this element eliminate the need of any of the other COSMIC/NASTRAN quadrilateral elements. Practical user support features incorporated in the development include varying element thickness, thermal strains, and laminated composite material inputs. The element derivation utilizes bilinear isoparametric techniques both for membrane and bending characteristics with numerical integration beirg accomplished by Gaussian quadrature on a 2×2 grid.

The QUAD4 element coordinate system, membrane properties, lumped mass matrix and treatment of warping are based upon the COSMIC/NASTRAN QDMEMI element while the bending properties are based upon a recent paper by T. J. R. Hughes (ref. 1). The effects of warping on the bending stiffness, consistent mass, and geometric stiffness are based upon a paper by R. H. MacNeal (ref. 2). The theory adopted from reference 1 appears to minimize or preclude some of the complications aliuded to in reference 2. In particular, no special local Cartesian system or selective integration procedure is required to achieve a reasonably good element bahavior.

General theoretical background of the element stiffness matrix is presented in equations 1 through 35 of the theoretical background section. Derivation of the equivalent thermal applied load veitor is presented in equations 38 through 41.

The evaluation of element test results as proposed by reference 3 are presented $i r_{\text {r }}$ table 1. The test results for static analysis of various structures, mechanical ioadings, and themal analysis are presented in tables 2 through 8. The results for the real eigenvalue test case are presented in table 9. The transverse central deflection computed for the three composite material test cases using the MSC/QUAD4 and the Rockwell/QUAD4 element is presented in table 10 .

THEORETICAL BACKGROUND

The relationship between forces and strains (including thenmal terms) is aescribed by the following matrix where the vectors $\left\{\varepsilon^{t}\right\}$ and $\left\{x^{t}\right\}$ are thermal generated strains and curvatures, respectively.

$$
\left\{\begin{array}{l}
\mathbf{f} \tag{1}\\
\mathbf{q} \\
\mathbf{q}
\end{array}\right\}=\left[\begin{array}{lll}
\Lambda & B & 0 \\
B & D & 0 \\
0 & 0 & C
\end{array}\right]\left|\begin{array}{c}
\epsilon_{m}-\epsilon^{t} \\
x-x^{t} \\
\gamma
\end{array}\right|
$$

where

$$
\begin{align*}
& \left.\{f\}=\left\lvert\, \begin{array}{l}
\mathbf{f}_{x} \\
\mathbf{f}_{y} \\
\mathbf{f}_{x y}
\end{array}\right.\right\} \text {, meubrane forces per unit lergth } \tag{2}\\
& \{\mathbf{I}\}=\left|\begin{array}{l}
\mathbf{m}_{x} \\
\mathbf{m}_{y} \\
\mathbf{m}_{x y}
\end{array}\right|, \quad \text { bending moments per unit length } \tag{3}\\
& \{q\}=\left\{\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right\} \text {, transverse shear forces per unit length } \\
& \{\epsilon\}=\left|\begin{array}{l}
\epsilon_{x} \\
\epsilon_{y} \\
\epsilon_{x y}
\end{array}\right| \text {, membrane strains in means planeh } \tag{5}\\
& \{x\}=\left|\begin{array}{l}
x_{x} \\
x_{y} \\
x_{x y}
\end{array}\right|, \quad \text { curvatures } \tag{6}\\
& \{\gamma\}=\left|\begin{array}{l}
\gamma_{x} \\
\gamma_{y}
\end{array}\right|, \quad \text { transverse shear strains } \tag{7}
\end{align*}
$$

The terms A, B and D are defined ty the following integrals:

$$
\begin{align*}
& A=\int G_{e} d z \tag{8}\\
& B=\int(-z) G_{e} d z \tag{9}
\end{align*}
$$

$$
\begin{align*}
& \tag{10}\\
\text { and } & =\int z^{?} \text { Ge dz } \\
\text { and } & =H_{S} G_{3} \tag{11}
\end{align*}
$$

The limits on the integration are from the bottom surface to the top surface of the plate. The matrix of material moduli, [Ge], has the following forn for orthotropic materials:

$$
\left[G_{e}\right]=\left[\begin{array}{ccc}
E_{1} \ldots \ldots & v_{1} E_{2} & 0 \tag{12}\\
1-v_{1} v_{2} & 1-v_{1} v_{2} & 0 \\
\ldots v_{2} E_{1} & E_{2} & 0 \\
\ldots \ldots v_{1} v_{2} & 1-v_{1} v_{2} & \\
0 & 0 & G_{12}
\end{array}\right]
$$

Here, $v_{1} E_{2}=v_{2} E_{1}$, is required that the matrix of elastic moduli be symmetric. The $\left[\mathrm{G}_{3}\right]$ is a 2×2 matrix of elastic coefficients for transverse shear. H_{s}, the effective thickness for transverse shear, has a default value of $H_{s} / H=5 / 6$, which is the correct value for a homogeneous plate with an actual membrane thickness of H.

Figure 1 depicts a plate composed of the eight laminas. For this case, A, B and D are defined as follows:

$$
\begin{align*}
& \left.A=\sum_{k=1}^{n} G_{e}^{k}!h_{k}-h_{k-1}\right) \tag{13}\\
& B=-\frac{1}{2} \sum_{k=1}^{n} G_{e}^{k}\left(h_{k}^{2}-h_{k-1}^{\vdots}\right) \tag{14}\\
& D=-\frac{1}{3}-\sum_{k=1}^{n} G_{e}^{k}\left(h_{k}^{3}-h_{k-1}^{3}\right) \tag{15}
\end{align*}
$$

Lot A^{C} and N_{a} denote the area and shape functions, respectively, of an element, where n is the number of element nodes. For the case of a homogeneous, isotropic, linearly elastic plate of thickness H , the element stiffness matrix, K^{e}, may be defined as follows.

$$
\begin{array}{llll}
K^{e} & =K_{b}^{e}+K_{S}^{e} \\
K_{b}^{e} & =\int_{A}^{e^{R}}{ }^{R^{T}} D & R^{b} d A & \text { bending stiffness } \tag{17}\\
K_{s}^{e} & =\int_{A}^{e^{s}} e^{s} C \quad R^{s} d A \quad \text { shear stiffness }
\end{array}
$$

where

$$
\begin{align*}
& \mathbf{R}^{\mathrm{b}}=\left[\mathbf{R}_{1}^{\mathrm{b}}, \mathrm{R}_{2}^{\mathrm{b}} \ldots \mathrm{R}_{n}^{\mathrm{b}}\right] \tag{19}\\
& \mathbf{R}^{\mathrm{s}}=\left[\mathbf{R}_{1}^{\mathrm{s}}, \mathbf{R}_{2}^{\mathrm{s}} \ldots \mathrm{R}_{n}^{\mathrm{S}}\right] \tag{20}
\end{align*}
$$

The formulation of the element stiffness matrix follows the procedure defined in reference 4 and 5 . Then $R^{b^{\prime}} s$ can be written in the following form:

$$
R_{a}^{b}=\left[\begin{array}{lll}
0 & 0 & N_{a^{\prime}} \tag{21}\\
0 & N_{a^{\prime} 1} & 0 \\
0 & N_{a^{\prime} 2} & N_{a^{\prime}}!
\end{array}\right] \quad 1 \leq a \leq n
$$

The shear stiffness is obtained by the technique mentioned in reference 1. The detailed procedures are discussed next.

Geometric and kinematic data are defined in figure 2 , and the direction vectors have unit length (e.g. $\left\|e_{11}\right\|=1$, etc.). Let W_{a} and θ_{a} denote the transverse displacement and rotation vector, respectively, asseciated with node a. Throughout, a subscript b will equal a+1 modulo 4 .

The definition of the element shear strains may be described in the followir steps.
(1) Fcr each element side, define a shear strain compor,ent at the midpoint, in a direction parallel to the side.

$$
\begin{equation*}
\overline{\mathrm{g}}_{\mathrm{a}}=\left(w_{\mathrm{b}}-w_{\mathrm{a}}\right) / \mathrm{l}_{\mathrm{a}}-\overline{\mathrm{e}}_{\mathrm{al}} \cdot\left(\overline{\boldsymbol{\theta}}_{\mathrm{b}} \overline{\boldsymbol{\theta}}_{\mathrm{a}}\right) / 2 \tag{22}
\end{equation*}
$$

(2) For each node, define a shear strain vector. (See figure 3 geometric interpretation of this process.)

$$
\begin{align*}
& \bar{\gamma}_{b}=\gamma_{b_{1}} \bar{e}_{b 1}+\gamma_{b_{2}} \bar{e}_{b} \tag{23}\\
& \gamma_{b_{1}}=\left(1-\alpha_{b}^{2}\right)^{-1}\left(g_{b_{1}}-g_{b_{2}} \alpha b\right) \tag{24}\\
& \gamma_{b_{2}}=\left(1-\alpha_{b}^{2}\right)^{-1}\left(g_{b_{2}} g_{b_{1}} \alpha_{b}\right) \tag{25}\\
& \alpha_{b}=\bar{e}_{b_{1}} \cdot \bar{e}_{b_{2}} \tag{26}\\
& g_{b_{1}}=g_{b} \tag{27}\\
& g_{b_{2}}=-g_{a} \tag{28}
\end{align*}
$$

(3) Interpolate the nodal values by way of the bilinear shape functions (N_{a} 's)

$$
\begin{equation*}
\boldsymbol{\gamma}=\sum_{a=1}^{\frac{1}{2}} \aleph_{a} \gamma_{a} \tag{29}
\end{equation*}
$$

For the transverse shear strain interpolaticrs derived in the previous section, R^{S} takes on the following form:

$$
\begin{array}{ll}
R_{b}^{S}=R_{b 1}^{S} R_{b_{2}}^{S} R_{b}^{S} & 1 \leq b \leq 4 \\
R_{b 1}^{S}=1{ }_{a}^{1} \bar{G}_{a}-I_{b}^{1} \bar{G}_{b} \\
R_{b_{2}}^{S}=\left(e_{b_{2}}^{1} \bar{G}_{a}-e_{b_{1}}^{1} G_{b}\right) / 2 \\
R_{b_{3}}^{S}=\left(e_{b}^{-} \bar{G}_{2} \bar{G}_{a}-e_{b 1}^{2} \bar{G}_{b}\right) / 2 \\
\bar{G}_{a}=\left(1-\alpha_{a}^{2}\right)^{-1} N_{a}\left(\bar{e}_{a_{1}}^{-}-\alpha_{a} \bar{e}_{a_{2}}\right)-\left(1-\alpha_{b}^{2}\right)^{-1} N_{b}\left(\bar{e}_{b_{2}}-\alpha_{b} \bar{e}_{b_{1}}\right) \tag{34}
\end{array}
$$

$$
\bar{e}_{b l}=\left|\begin{array}{c}
e^{1} b_{1} \tag{35}\\
e^{2} b_{1}
\end{array}\right|, \text { etc. }
$$

The element stress resultants may be obtained from the following relations:

$$
\begin{align*}
& \left\{\begin{array}{l}
m_{x} \\
m_{y} \\
m_{x y}
\end{array}\right\}=-D R^{b} d^{e} \tag{36}\\
& \left\{\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right\}=C R^{s} d^{e} \quad \text { bending moments }
\end{align*}
$$

where

$$
d^{e}=\text { element displacement vector }
$$

Finally, thermal expansion is represented by a vector of thermal strains

$$
\left\{\varepsilon^{t}\right\}=\left\{\begin{array}{l}
\varepsilon_{x}^{t} \tag{38}\\
\varepsilon_{y}^{t} \\
\gamma
\end{array}\right\}=\left\{\begin{array}{c}
- \\
x y
\end{array}\right\}\left(T-T_{0}\right)=\{t\}\left(T-T_{0}\right)
$$

where $\quad \alpha^{t}=$ thermal expansion coefficients $T=$ Temperature at any point in the element $T_{0}=$ reference temperature of the material

An equivalent elastic state of stress that will produce the same thermal stress is

$$
\begin{equation*}
\left\{\sigma_{\mathrm{t}}\right\}=[\mathrm{G}]\left\{\varepsilon^{\mathrm{t}}\right\} \tag{39}
\end{equation*}
$$

An equivalent set of generalized loads P applied to grid points of the element is obtained by

$$
\begin{equation*}
\mathrm{P}=\int \mathrm{A}\{\boldsymbol{\epsilon}\}^{\mathrm{T}}\left\{\sigma_{\mathrm{t}}\right\} \mathrm{hdA} \tag{40}
\end{equation*}
$$

The equivalent thermal moment vector is defined as

$$
\begin{equation*}
M_{t}=-\int_{z}[\mathrm{G}]\left\{a^{\mathrm{t}}\right\} \mathrm{T}^{\prime} z \mathrm{~d} z \tag{41}
\end{equation*}
$$

where T^{\prime} is the thermal gradient at a cross-section of the plate.

NUMERICAL EXAMPLES

The test problems have been selected from reference 3 . The elements tested included the COSMIC/QUAD2, the MSC/QUAD4 and the Rockwell/QUAD4. The test runs for QUAD2 and QUAC4 were performed on an IBM 3081 computer at the Rockwell Western Computing Center while the MSC/C'PD4 result were obtained by utilizing version 63 of MSC/NASTRAN on the Rockwell Scientific Computing Center CDC/CYBER equipment.

The grading system for finite elements proposed by reference 3 is:

Grade	Range
	2%
A Error	
B	$10 \% \geqq$ Error $>2 \%$
C	$20 \% \geqq$ Error $>10 \%$
D	$50 \% \geqq$ Error $>20 \%$
F	Error $>50 \%$

ihe structures analyzed to evaluate the test elements included a patch test place (figure 4), a straight cantilever beam (figure 5), a curved cantilever beam (figure 6), a rectangular plate with different aspect ratios (figure 7), a Scordelis-Lo roof (figure 8), and a simply supported plate (figure 9) for normal modes and layered composite analysis.

Table 1 procerts ine summary of grading results for the tested elements. The resuit for each of the individual test cases are reported in tables 2 through 10. The patch test results presented in Table 2 are reported in the form of percentage error of the computed stresses. The results reported in tables 3 through 7 are shown in normalized form where the computed displacement data has been divided by the theoretical value. The most disturbing failure of the QUAD? element is its inability to get a passing grade for the straight beam in-plane shear and twist cases. QUAD2 also failed in the curved beam and Scordelis-Lo roof problems. Neither of the QUAD4's or the QUAD2 could achieve a passing grade for the straight beam in-plane shear with trapezoidal shaped elements. In general, our published results agree, but there are some differences from those reported in reference 3. In particular, the results of the twist case for all element configurations of the straight cantilevered beam problem do not agree with the results presented in reference 3 . We believe that this was due to a problem with version 63 of MSC/NASTRAN as installed on our CDC equipment at the time we were making our test case runs.

In this paper, we have examined the behavior of the new four-node quadrilateral element implemented in Rockwell NASTRAN. The element has been shown to behave well for a variety of pla e problems and has retained simplicity in the formulation. The formulation enabled straightforward generation of a linear triangular bending element, which has also been successfully implemented in Rockwell/NASTRAN.

REFERENCES

1. Hughes, T. J. R. and Tezduyar, T. E.: Finite Element: Based on Mindin Plate Theory with Particular Reference to the Four-Nodes Bilinear Isoparametric Elements. J. Appl. Mech., Sept. 1981, pp. 587-596.
2. MacNeal, R. H.: A Simple Quadrilateral Shell Element. Comp. \& Struct., Vol. 8, 1978, pp. 175-183.
3. MacNeal, R. H. and Harder, R. L.: A Proposed Standard Set of Problems to Test Finite Element hccuracy. Proc. AIAA/ASME Struct. Dyn. Conf., Palm Springs, May, 1984.
4. Rockwell NASTRAN Theoretical Manual Level 17.500, NA-79-323, June 29, 1979, pp. 8.19-1-8.19-18.
5. Rockwell NASTRAN Programmer's Manual Level 17.500, NA-79-325, Sept. 10 , 1979, pp. 5.8-33-5.8-44.
6. Rockwell NASTRAN Demonstration Manual Level 17.500, NA-79-324, June 29, 1979.

Table 1 Summary of Test Results

| Test | Table | Element
 Shape | RI/
 QUAD4 | QUAD2 | MSC/ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | QUAD4 | | |

Failed Test Grade (D's and F's)

Table 2 Patch Test Results (Figure 4)
 Max. Errors (\%) of Stress

(a) Membrane Plate

	RI/QUAD4	QUAD2	MSC/QUAD4
$\sigma_{\mathrm{X}}=\sigma_{\mathrm{y}}$	4.2	4.2	0.0
T_{Xy}	1.0	1.0	0.0

(b) Bending Plate

$m_{x}=m_{y}$	4.2	4.2	0.0
$m_{x y}$	0.9	0.9	0.0
$y=\sigma_{y}$	4.2	4.2	0.0
$T_{x y}$	1.0	1.0	0.0

Table 3. Results for Straight Cantilever Beam (Fig. 5)
Normalized Tip Displacement in Direction of Load

Tip Loading Direction	RI/QUAD4	QUAD?	MSC/QUAD
(a) Rectangular Elements			
Extension	0.996	0.992	0.996
In-Plane Shear	0.904	0.032	0.904
Out-of-Plane Shear	0.980	0.971	0.986
Twist	0.941	0.567	0.702
(b) Trapezoidal Flements			
Extension	0.996	0.993	0.995
In-Plane Shear	0.071	0.015	0.071
Out-of-Plane Shear	0.964	0.963	0.958
Twist	0.884	0.605	0.705
(c) Parallelogram Elements			
Extension	0.996	0.992	0.996
In-Plane Shear	0.808	0.144	0.795
Out-of-Plane Shear	0.978	0.961	0.977
Twist	0.849	0.615	0.705

Table 4 Results for Curved Beam (Fig. 6) Normalized Tip Displacement in Direction of Load

Tin Loading Direction	RI/QUAD4	QUAD2	MSC/QUAD4
In-Plane Vertical	0.835	0.025	0.835
Out-of-Plane	0.956	0.597	0.868

Table 5 Results for Rectangular Plate Siniple Supports (Fig. 7) with Ccicentrated Load

Normalized Transverse Deflection at Center
(a) Aspect Ratio $=1.0$

Mesh Size(N)*	RI/QUAD4	QUAD2	MSC/QUAD4
2	0.992	1.035	0.960
4	0.995	1.011	1.017
8	1.033	1.083	1.045
(b) Aspect Ratio $=5.0$			
2	0.844	0.493	0.870
4	0.928	0.685	0.962
8	0.986	0.845	1.005

* only one quadrant is discretized

Table 6 Results for kectangular Plate Clamped Supports (Figure 7) With a Uniform Load

Nomalized Lateral Deflection at Center
(a) Aspect Ratio $=1.0$

Tabie 7 Results For Scordelis-Lo Roof (Figure 8)
Normalized Vertical Deflection at Midpoint of Free Edge

Mesh Size (N)	RI/QUAD4		QUAD2	
				MSC/QUADA
2	1.309		0.881	1.313
4	1.017	0.690	1.021	

Table : Comparison of Analytical, QUAD4, and QUAD1 NASTRAN DEMO :-11-1 (Reference 6)

Max.
Category Analytical

Displacement	-1	-1	-1
	6.2898×10	6.2895×10	6.317195×10
	2	2	2
Moment my	$1.4770 \times 1 \hat{v}$	1.4888×10	1.4832200×10
	3	3	3
Stress T_{y}	7.764618×10	7.792977×10	7.779586×10

Table 9 Natural Frequer:y Comparison, Cps on NaSTRAN/DEMO 3-1-2 (4×4)

Mode No.	Theoretical	RI/QUAD4	QUAD1
1	0.9069	0.8823	0.9021
2	2.2672	2.3376	2.2837
3	4.5345	4.3515	4.7179

Table 10 Transverse Central Deflection of Simply Supported Composite Square Plate Under a Uniform Pressire (Figure 9)

No. of Plies	Type of Laminate	RI/QuAD) ${ }^{\text {(IBM) }}$	MSC/QUAD4 (CDC)
		-3	-3
2	90\% 0°	5.63410×10	J. 589612×10
3	$0^{\circ} 900^{\circ}$	5.55896×10^{-3}	5.423785×10^{-3}
3		5.5880×10	5.423785×10
4	90\% 0% \% ${ }^{\circ} / 0^{\text {c }}$	5.58961×10	5.666982×10

cacian for
OF POOR Qughiiy

Figure 1. Laminated Plate

Figure 2. Geometric and Kine.atic Data for the FourNode Quadriliateral Eleme..

a	b
1	2
2	3
3	4
4	1

Figure 3. Definition of Nodal Transverse Shear Strain Vector

$$
\begin{aligned}
& \mathrm{a}=.12 ; \quad \mathrm{b}=.2 ; \quad \mathrm{t}=.001 \\
& \mathrm{E}=1.0 \times 10^{6} ; \quad \nu=0.25
\end{aligned}
$$

Location of Inner Vodes:

	x	y
1	$.0 \vdots$.02
2	.18	.03
3	.16	.08
4	.08	.08

Boundary Conditions:
(a) Membrane

$$
\begin{aligned}
& u=10^{-3}(x+y / 2) \\
& v=10^{-5}(y+x / 2)
\end{aligned}
$$

(b) Bendiny,

$$
\begin{aligned}
& w=10^{-3}\left(x^{2}+x y+y^{2}\right) / 2 \\
& \theta_{x}=10^{-3}(y+x / 2) \\
& \theta_{y}=10^{-3}(-x-y / 2)
\end{aligned}
$$

Figure 4. Patch Test for Plates

(b) Trapezoidal Shape Elements

(c) Parallelogram. Shape Elements

Length $=6.0$; Heig. $1 \mathrm{t}=0.2$; Thickness $=0.1$
$E=1.0 \times 10^{7} ; \nu=0.3 ;$ Mesh $=6 \times 1$
Loading: Unit forces at free end

Extension

Out-of-plane shear

In-plane shear
Twist

Figure 5. Straight Cantilever Beam

Figure 6. ūurved Beam

$\mathrm{a}=2.0 ; \mathrm{b}=2.0$ or $10.0 ; \nu=0.3$
Thickness $=0.001 ; \mathrm{E}=1.7472 \times 10^{7}$
Boundaries = simply supported or clamped
Mest. $=\mathrm{N} \div \mathrm{N}$ (on $1 / 4$ of plate)
Loading: Uniform pressure $0=10^{-4}$ or
Central luad $p=4.0 \times 10^{-4}$
Central luad $p=4.0 \times 10^{-4}$

Figure :. Rectangular Plate

Radius $=25.0$; Length $=50.0 ;$ Thickness $=0.25$
$\nu=0.0$; Loading $=90.0$ per unit area in -2 direction
$E={ }^{1} .32 \times 10^{8} ; U_{x}=U_{2}=0$ on curved edges
Mesh $=\mathrm{N} \times \mathrm{N}$ on shaxded area

Figure 8. Scordelis-LO Roof

Figure 9. Simply Supported Square Plate for a Layered Structire

