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AIYI{OI_AUTHAZARD0URIN6 FREE-FLIGHT POLAREVA

William N. Hall
Air Force GeophysiCs Laboratory

Hanscom Air Force Base, Massachusetts 01731

Extravehicular Activity (EVA) during Shuttle flights planned for the late

1980's includes several factors which together may constitute an astronaut hazard.

Free-flight EVA is planned whereas prior United States earth orbit EVA has used

umbilical tethers carrying communications, coolant, and oxygen_ EVA associated

: with missions like Landsat Retrieval will be in orbits through the auroral oval

where charging of Spacecraft may occur.

i The astronaut performing free flight EVA constitutes an independent

spacecraft. The astronaut and the Shuttle make up a system of electrically
isolated spacecraft with a wide disparity in size. Unique situations, such as the

astronaut being in the wake of the Shuttle while traversing an auroral disturbance,

could result in significant astronaut and Shuttle charging. Charging and

-' subsequent arc discharge are important because they have been associated with

• operating t_pSets and even satellite failure at geosynchronous orbit. Spacecraft

charging theory and experiments are being examined to evaluate charging for Shuttle

size Spacecraft in the polar ionosphere.

The extensive body of knowledge about auroral phenomena can assist in

evaluating the importance of charging. Images recorded by the Defense

Meteorological Satellite Program (DMSP) satellites in Circular orbits show

snapshots of the spatial extent of the optical aurora. Montages of all sky camera

images from an aircraft flying a path to remain at constant local midnight show

the cyclic behavior and the suddenness of onset of optical aurora. Geophysical

conditions measured at the time can be used to evaluate the EVA conducted from

Skylab in 1973-74. Skylab, with an orbit inclination of 50 degrees, did encounter

the auroral oval when the orbit latitude extremes were at the right longitude and

local time. Study of the geophysical conditions and orbits during the Skylab EVAs

showed that astronauts on EVA were always at least 5 degrees of latitude

equatorward of the auroral oval.

INTRODUCT ION

In the process of evaluating space systems environmental interactions (Pike et

al, ref. I), it became apparent that physical interactiofls between the environment

and the astronaut's extravehicular activity (EVA) equipment could be significant.

Servicing of satellites after launch is an example of how astronaut free-fllght

EVA will be used. The EVA equipment now available for use, developed by the

, National Aeronautics and Space Administration (NASA) at the same time that the

Shuttle was being developed, was designed for Shuttle flights at low inclination

angles (NASA Johnson Sp_ce Center (JSC) Private Communication, 1982). At that

time it was not antic:ipaced that polar orbit EVA would involve additional problems.
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The special a_ea of concern to Air Force Geophysics Laboratory (AFGL) iS with

the physical Inter_ction betwee_ the environment and the a_tronaut'_ EVA aquipment,
as opposed to the biological inter-action between the environment and the astronaut

himself, The effort has focused o_ the Lnteraction of charging and arc discharges

(Garrett and Pi]_e_ ref. 2) on the Extr_vehieula_ Mobility Unit (EMU), the Primary

Life Support System (PLSS)e and the Manned Maneuvering Unit (_MU). This

tnte_actinn is important because of the consequences of EVA equipment failure in

combination with the great uncertainty involved with charging and arc discharge in
the Shuttle environment.

EXTRAVEHICULAR ACTIVITY

The polar orbit EVA to be conducted from Shuttle will encounter conditions

differing from those encountered during the NASA successful EVA history during the

Gemini, Apollo, and Skylab programs (Furniss, ref. 3). The NASA history of EVA

has been one of outstanding success since the first EVA by _ite on the Gemini 4

flight in 1965. The Gemini program included 9 EVAs at low (several hundred _.i

kilometers) altitude and low latitude with the astronauts connected to the

spacecraft by an umbilical tether carrying oxygen, coolant, and communications _

services. Approximately 20 EVAS were conducted during the Apollo program. Most

occurred on the lunar surface with 3 in deep space while returning to earth, i

Although the lunar EVAs were untethered, they were in a deep space environment
quite different from the Earth's ionospheric plasma. The 10 EVAs from Skylab were

again in the ionospheric plasma with the astronauts connected to Skyl_b by an

umbilical tether. Skylab's 50 degree orbit inclination intersected the auroral

oval, the greatest overlap was in the southern hemisphere near Australia. However,

the Skylab ErAs were conducted while the orbital latitudinal extremes were in

other loDgitudinal sectors. The geophysical conditions encountered during the
Skylab EVAs will be discussed later.

With this successful EVA history as a baseline, what is there about EVA from

the Shuttle to cause concern? One significant factor is that at times the

astronaut will be untethered and, if simultaneous failures occur, could "float

away". Another factor is the development of Vandenberg Air Force Base as a shuttle .
launch Site. Vandenberg will have the capability of launching the Shuttle into

high inclination orbits intersecting the a,xroral oval 4 times during every orbit.

The environment at auroral oval latitudes is markedly different from that at low

latitudes and is potentially hostil( during 9eophysical disturbances. NASA is now

considering a polar orbit Shuttle flight from Vandenberg to retrieve the Landsat-D

satellite. The mission scenario is expected to include EVA and, possibly0
free-fllght EVA.

Polar Orbit Extravehicular Activity

The polar orbit EVA illustrated in figure I depicts the combination of

circumstances which make polar free-flight EVA different from other EVAs to date.

At the center is a graphical representation of analytical modeling of the Shuttle

and an astronaut on EVA in the ambient ionospherlc plasma (Cooke et al, zero 4).

The shape of the Shuttle is represented by different sized rectangular and

triangular solids. The astronaut is represented as a 2 meter long, I meter

diameter, dielectric cylinder. The Shuttle is large compared to the size of the

astronaut, who will at times be in the wake, where electron and ion densities are

decreased. The Shuttle is shown with the negative Z axis in the direction of
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motion and the payload-b_y in tho wake. The co_Urs, more distinct in the

original color illustr_tion_ show the decreased electron and-lon density. The

innermost contour represents 5% of ambient_ Experlme_tal plasma density

meas_ements i_ the Shuttle payload bay o_ early flights have shown great

_i differences between the payloa_ bay in the ram direction, where the ionosphere has

access to the payload bay, and the payload bay in the wake orientation (Shawhan et

al, ref ....5). For some geometrical arrangement.'_ during flight-through the auroral

Oval, such as depicted here, the Shuttle and the free-flying astronaut will both

be exposed to the incident auroral electron flux. Condition_ which support

spacecraft charging will occur because of the auroral electron flux combined with

the decreased electron density and, more importantly, the reduced thermal positive

ion density in the shuttle wake.

Existing Extravehicular Activity Equipment

! Figure 2 identifies some of the surface materials used on the astronaut's

-i EVA equipment (NASA JSC Private Communication, 1982), Many of these materials are
=_q, similar, or even identical, to materials which were adversely affected on the _I

! SCATHA (Spacecraft Charging At High AltitudeS) satellite and in laboratory studies _'ii

_i of the charging of materials in space. Most of the space suit (EMU) is covered by I

-i Orthofabric which has a white surface consisting of exp_nded teflon. The i!

:i_ astronaut's finger tips and shoe soles are silicon rubber, Much of the MMU is

_i covered with the type of Chemglaze paint which has been found to exhibit charging "
_ on SCATHA and in other Spacecraft charging studies_ Some areas have silverized

! teflon and others have gloss white paint over glass/epoxy or kevlar/epoxy. The

astronaut's helmet and the MMU locator light domes are Lexan. A similar material,
Plexiglas, which has previously been used for transparent spacecraft components,

i is known to have been associated with charging_ The metal foil decals used for a

_! number of identifying labels, particularly on the MMU, may become involved with

charging. PreViously, isolated conductive patterns on printed circuit boards have
suffered charging and deleterious arc discharges (Leung et al, ref. 6). The

: decals are an example of a seemingly innocuous item which becomes significant when

conditions conducive to charging occur.

Figure 3 shows an astronaut equipped for free-flight EVA. The major equipment

systems are the EMU and the PLSS used for all EVAs, along with the MMU used for

untethered free-flight EVA. Some problems with EVA equipment can be direct

life-threatening hazards to the astronauts. The failure of the PLSS circulating

fan motor during the STS-5 flight is an example (Aviation Week, ref. 7). MMU

failures are also potentially life threatening. A failure causing an MMU thruster

to remain on w_uld cause attitude control problems similar to those encountered by

Gemini 8 where a spacecraft control system short circuit caused one thruster to

fire continuously. The Gemini astronauts used 75% of their reaction control

system fuel before recovering from the malfunction. This forced them to cancel

the rest of their mission and return as soon as possible. Operational planning

for EVA provides for the Shuttle going after the astronaut if there are multiple

failures in the MMU redundant control systems. A MMU thruster malfm,ctlon leaving

the astronaut spinning rapidly could c_mplicate retrieval by the Shuttle, as well

as be a direct danger to the astronaut.

Other EVA equipment problems which would limit EVA operations have just as

much significance as life-threatening hazards, from the standpoint of failure to

achieve the Shuttle mission objectives. Failure of an EMU astronaut communications
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'_ link, while not _ threat to the. a_tronaut's life_ would cat short a mission such

as repair of the Solar Maximum Mission space, raft.- Pailu_es in the helmet

'"! television or PLSS Caution and Warning systems a/so limit operations. EVAs(,

would not be carried out without one of these SyStems unless, for example, it

wa_-necessary, for the astronaut to close the payload doors for entry. The

_ presently a_vailable EVA equipment uses advanced microelectronics for monitoring

. status, communications, etc.-, but not for direct control of life sup]x)rt

subsystems. A change to direct microprocessor control of life support functi0_s,

='I,_I proposed for future systems, could make failure even more significant.

Extravehicular Activity Near Solar Array Systems

__ Figure 4 illustrates another new aspect of _.VA in the future, operation near

_:il high-power-generating solar array systems, where charging is known to occur and

- arc discharges have been observed. An example is the 50 KW system NASA is planning

for the Space Station. Solar array segments have differences in electrical

•:!:i potential due to the series-parallel interconnection of individual cells. Point

_ to point arc discharges occur when the difference in potential between the mosti '

-i!_! positive and most negative sola_ cells, or from the Solar cells to the ambient
-_ plasma, is too large (Stevens, ref. 8). The net effect of the solar array surfaces :

/i is to modify the nearby plasma such that a haZard may be created for a free-flying
-- -_ l" _

.... astronaut A solar array hazard would have a major impact on ErAs ant_clpate_

-__:! during assembly and operations of a Space Station dependent on solar arrays.

-_ : AURORAL OVAL ENVIRONMENT i!

The concept of the auroral oval wa_ developed by Feldstein and Starkov _

_ (ref. 9) but has been most strikingly illustrated by the recordi-.gs of auroras

..i_. made by satellite imaging systems. Originally, the oval was used to deScribe the [
_= location where optical auroras were observed. Later, it has also been found useful

in describing other phenomena, including the precipitation of energetic electrons [
_, . ."

which produce auroras. The oval extends completely around the earth although, in

Some orientations, observation of optical auroras is masked by sunlight. The

_ auroras are found in a band, somewhat circular in form, with its center displaced .i
towards the night side of the earth. It has a greater latitudinal extent on the

dark, or midnight, side. The oval forms a fixed pattern, relative to the sun,

_ which changes in geographical location as the earth rotates beneat_ (Whalen,

L-,, ref_ 10).

_ The satellite auroral photos in figure 5 demonstrate how the aurora can have

spatial variationS, particularly in north-south extent (Pike, ref. 11). Local

i'- midnight is at the center of each of the 2 auroral photos. On the right, when
the aurora would be described as quiet, the aurora has a narrow latitudinal extent.

A spacecraft crossing it at right angles would be exposed to energetic aUroral

electrons for only a few seconds• As the angle between the orbit and the narrow

auroral arc decreases, the time of exposure increases. An orbit tangent to a

relatively narrow auroral arc could result in exposure to energetic auroral

electrons for tens of seconds, even when the aurora is not disturbed. The left

half, from a different orbit of the same satellite, shows that the aurora has a

wider latitudinal extent during a geophysical disturbance and, depending on the

exact orbit, the spacecraft would encounter the energetic auroral electrons for

__ tens or even hundreds of secondS. A lengthy exposure to energetic electrons is

not required in order to have a spacecraft charge to dangerous voltage levels.



A DMSP satellit_ has been measured to charge to hundreds of volts within seconds

(Burke and llardVj ref. 12). The effect of extended expQsure time Is to incr_eaSe

tile likelihood that the auroral oval would he diRturbed during the pass_g_ of tile

spacecraft.

'the temporal va._iation of auroras in the oval is also of interest in

evaluating the likelihood of interaction effects on EVA equipment. Auroras axe

the most variable and the most intense during _orldwide magnetic storms following

solar flares. Auroral temi_r_l variations are important even at other times. To

see this_ All Sky Camera (ASCA) pictures taken with a 160 degree field of view

fiSheye lens _.rom the AFGL Airborne Ionospheric Observatory will be useS. The

aircraft flew a path with a ground track in geographic coordinates as shown on

the left in figure 6 (Krukonis and Whalen, ref_ 13). Because the earth rotated as

the aircraft flew west, the aircraft remained near local magnetic midnight. The

same flight path in the corrected geomagnetic local time and latitude Coordinate

system is shown on the right. The aircraft flew short north and south tracks,

approaching and departing from the magnetic pole. The ASCA field of view covered

4 degrees of magnetic latitude to the north and to the south; therefore, 70 degrees

north _orrected geomagnetic latitude was always within vieW.

Each strip of the ASCA montage for thiS flight, figure 7, shows 30 pictures

taken once per -tinute with a 15 second time exposure. The complete montage

represents a continuous 9 hour time history of the temporal variations of the

aurora near local magnetic midnight. Each circular image has been rotated during

reproduction so that North is to the left and East is at the top. This improves

interpretation of the images by removing effects from changes in the heading of

the aircraft. At times, the sky was 81_ost clear of auroras with only faint forms

not easily seen in these reproductions. At other times, optical auroras covered

the field Of view from the northern to the southern limits, about 900 kilometers.

The energetic electron deposition region producing the optical auroras corresponds

closely with the optical aurora. Spacecraft, including a free-flying astronaut,

would have been in the area of precipitating particles likely to cause charging

for over 100 seconds. It is also important to realize how quickly the upper

atmosphere can change from showing only faint traces of aurora to bright auroras

covering the ASCA field of view. This can be seen near 0310 UT when the aurora

expanded from a narrow feature near the southern horizon to completely fill the i

field of view within 2 to 3 minutes. This is much too fast for the astronaut to i

take any action towards protecting himself. Operational planning must consider

that the astronaut will find himself immersed in the energetic auroral electron

stream. The EVA equipment must not be susceptible _:o adverse environmental

interactions due to energetic auroral electrons.

The values of the Q, AE, and Kp magnetic indices (Mayaud, ref. 14) measured

by magnetic observatories during the flight are shown on the right. It is

inappropriate to attempt extensive conclusions about the correlation of magnetic

index variations with the ASCA montage for this small quantity of data. The

magnetic index Q represents the disturbance from quiet day values in a 15 minute

period for 4n auroral oval magnetic observatory, in this case Sodankyla in Sweden.

The 2 values are for the first and second half of each row of images. The index Q

has been found to be correlated with the location of optical auroras (Feldstein

and Starkov, r_f. 9). For this data sample, it increased generally as the auroras

became brighter and filled more of the ASCA image.
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The value for AE represents the hourly average of the AE Inde_ determined for

_loba[ network of auroral oval observatories. AE represents the sos of--the

eastern mad western auroral electroJets and i_eaSeS as-the magnitudes o£ optical

auroras increase (All_n et al, re_. 15), In addition to the hourly AE averages,

the AE-graphlcal p_ot showed maxima of 400 gammas at 0330 UT,. 425 gamm_ at 04-10

UT, 550 .g_mm_s _t 0-730 UT, and 640 gammas at '1050 UT, _ese maxima can be.

associated with brighter imago sequences in the figure. _n addition, the. times

which show smaller, fainter auroral.lmages,_05 to 06_T and og to I0 UT, have low_r

average AE values.

This data sample provides a good example fo_ ccmparlng optical auroral images

with the Kp index. The Kp index represents the variation of ma_etic activity for

low latitude observatories during a 3 hour period. The bright sequence from

0310 WE to 0400 UT and the faint sequence from 0450 UT to 0555 UT are both

associated with the. 03 to 06 UT value of Kp of 4. This example demonstrates the

. limitations of using a 3 hour index Like Kp to characterize a phenomenon_ such as

the optical aurora, which can vary greatly within the 3 hours..

7_ GEOPHYSICAL CONDITIONS ENCOUNTERED DURING SKYLAB EXTRAVEHICULAR ACTIVITY

• As mentioned previously, Skylab had a 50 degree inclination. Its orbit

i" _ntersected the auroral oval When. the orbital latitude extremes occurred: at

_-_ longitudes where the magnetic poles are closest to the equator_ and, near corrected

geomagnetic local midnight when the auroral oval reached its most equatorward

--_i extent. The geophysical conditions at the time of the 10 Skylab EVAs have been

= examined. The closest approach was in the southern hemisphere during the EVA of

'; Garriott and Bean on 22 September 1973, during the SEyiab l_I mission. Partial

-_ Skylab groun_ tracks are shown in figure 8 in the corrected geomagnetic local time

- and latitude coordinate _ystem. The auroral oval for a Q value of 2 (the value

measured at Sodankyla at the same time) is shown. The closest approach was on ...........

_.-' orbit 2022, where the minimum separation was about 5 degrees of latitude. A

5 degree latitude separation usually means complete absence of the precipitating

energetic electrons which are present in the auroral oval_ The end of EVA _t |400

-- UT on orbit 2023 is actually repressurization,, meaning that the astronauts were "'

- already inside the airlock. This analysis shows that EVA within the aurora is

something that the United States has yet to.e_counter ..........................

SUMMARY

Our preliminary analysis of the special situation of free-flight EVA from the

Shuttle while passing through the auroral oval has identified it as a space system

•_ environmental interaction deserving of further study, Further investigations by

the Air Force and NASA have not resolved this concern. AFGL is continuing to work

with NASA scientists to determine if a hazard does exist, how serious it iS, and

whether it is life-threatening. Discussions have been held with the NASA JSC Crew

Equipment Division responsible for developing the astronaut equipment, to bring to

their attention that charging and arc discharges may occur on the equipment

: surfaces. Once the charging hazard has been defined, then the susceptibility of

' the existing and future systems can be determined by engineering tests. AFGL

_ believes it is prudent and necessary to establish what will happen so that, as

shown in figure 9, EVA will continue to be successful as the Shuttle flight

envelope expands to orbits through the auroral oval.
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ORIGINAL PAC_ [_ _,:
OF POOR QUALITY
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ACtlvity Indi_es AE(I-I-) for 1974, Re_rt UAG-'39. Nation_l OceaniQ and
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Figure1. - Polar orbit EVA.

Figure 2. - Astronautequipmentmaterials.
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- Astronaut equipment systems.

Figure 4. - Astronaut and solar power systems.
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_ Figure 6. - AFGL Airborne Ionospheric Observatory flight tracks.
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Figure 8. - Skylabsubsateliiteqround tracks.

Figure 9. - Futurepolar orbit extraw,hicularactivity.
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