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ORBITER ENTRY AEROTHERMODYNAMICS

Robert C. Ried
NASA Lyndon B. Johnson Space Center

Houston, Texas 77058

ABSTRACT

The challenge in the definition of the entry aerothermoaynamic environment arising from the chal-
lenge of a reliable and reusable Orbiter is reviewed in light of the existing'technology. A oalanced
use of prior, current, and advanced levels of technological sophistication was employed to achieve
reasonable design requirements, design heating, and preflight confidence, respectively. Select prob-
lems pertinent to the Orbiter development are discussed briefly with referenc_ to more comprehensive

treatments. These problems include boundary-layer transition, leeward-side heating, shock/shock in-
teraction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample
measurements obtained from test flights of the Orbiter are presented with comparison to preflight
expectations. In summary, a reliance on both numerical and wind-tunnel simulations has afforded an
efficient means for defining the entry environment and an adequate level of preflight confidence.
The high-quality flight data provide an opportunity to refine the operational capability of the Or-
biter and serve as a benchmark both for the development of aerothermodynamic technology and for use
in meeting future entry heating challenges.

"INTRODUCTION

The goals of the Space Transportation System (STS) have been to provide routine, cost-effective,
and reliable means for carrying man and cargo to Earth orbit and return. Evaluations of achieving
these goals led to the challenges of designing and developing a reusable Orbiter vehicle which could
both perform atmospheric braking and achieve a land landing. These conflicting configuration require-
ments for the Orbiter were reconciled by altering the flight configuration with a high angle of at-
tack for entry and then a low angle of attack for approach and landing. The high angle-of-attack
entry configuration, the associated entry flight regime, and the relatively large size of the Orbiter
provided some relief for the development of a weight-effective and reusable entry thermal protection
system (TPS).

Guidelines for the Shuttle progra_ (emanating from constraints on funding rate and minimum devel-

opment costs) included limiting technology development, except as required, to meet the program goals.
The development of reusable engines and a reusable TPS, however, required the development of conceptu-
ally new systems and an associated level of technology necessary to provide a level of confidence that

these systems could perform adequately to meet the program goals. The challenge for the definition of
the Orbiter entry heating was to develop reliable predictions on the basis of existing facilities and
state-of-the-art capabilities, supplemented (as required) by advances in technology and understanding
necessary to provide preflight confidence of success. This challenge was significant in light of the
geometric complexity of the Orbiter configuration, the penalties of unnecessary weight in the system,
the reuse requirement, and the basic severity of the entry environment. The Orbiter could not afford
the weight associated with a conservative approach toward defining the entry TPS requirements. This

approach would have mitigated the challenge and maintained the precedent set by previous entry vehicle
designs.

A quantitative understanding of the entry _heattng phenomena for the windward surface of simple

configurations was well established In the 1950's. Analysts and experiment had characterized con-

vective heat transfer in a htghly dissociated gas including the basic effects of finite-rate chemical

and thermodynamic reactions. The flight mechanics leadtng to an optimum entry from the standpoint of

entry heating for simple configurations was also well established in this era. This technology was
used in the design and development of the orbital entry Mercury and Gemini vehicles and extended for

the design and development of 'the more severe lunar return of the Apollo command module. These cap-

sules all employed nOnreusable ablators, but most important, they were designed with a level of con-

servatism which could not be tolerated on the Orbiter. This conservatism stemmed from the compound-

ing of conservatism in the TPS requirements, the TPS performance, and the entry heating. An ad-

ditional level of sophistication required by the Orbiter was the tmposltion of heating-rate and
boundary-layer transition constraints on the entry flight trajectories to acco_nodate the reusable

TPS capabilities and the insulation requirements, respectlvely.
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TRIAD DILEMMA AND APPROACH

The Orbiter system and performance requirements dictated a more accurate, more precise, and more
intricate definition of entry heating than for any previous system. On the other hand, the three-

dimensional geometric complexity and the large scale of the Orbiter (compared to wlnd-tunnel models)
posed a greater challenge to the definition of the entry flowfield and subsequent heating than had
any previous system. To complete the triad, resources were extremely limited, particularly with re-
gard to technology development. This triad dilemma was dealt wlth by a triad approach based heavily

on experience with previous entry heating problems (ref. I). The lowest level was a simplified heat-
inn model (developed at representative locatlons on the vehicle) for early system design and for

entry trajectory design (ref. 2). The second level of the approach, the Oesign methodology_ employed
the current state-of-the-art aerothermodynamlc technology in around testing, data correlation, and
analysis of both ground test and flight (ref. 3). Thls effort provided "nominal" entry heating for
all locations on the vehicle as TPS design requirements (ref. 4). This heating was considered "nom-

inal" since no uncertainties or conservative factors were applied to the correlation of wind-tunnel
data or analysis of the design environment for the design trajectory. To provide adequate preflight
confidence in the use of "nominal" heating for design and to address technology deficiencies, the
third level of the approach involved select advanced state-of-the-art efforts (ref. 5), parametric
studies, and preflight uncertainty evaluations of the entry heating and TPS performance (ref. 6).

SIMPLIFIED HEATING MODEL

The simplified heating model used on the Orbiter was comparable to the design methodology used
on the previous blunt manned entry capsules. At representative locations on the Orbiter, a first-
order scaling of wind-tunnel data to flight conditions was performed for laminar and turbulent con-

vective heating as well as for boundary-layer transition. Local heat transfer at a given angle of at-
tack was correlated with the heat transfer to the stagnation point of a sphere (assuming equilibrium

- air). Boundary-layer transition and turbulent heating were correlated as a function of the Reynolds
number behind a normal shock. Use of thls Reynolds number is a first-order attempt to account for
the equilibrium real air effects between flight and wind tunnel and is particularly applicable to
blunt entry vehicles dominated by hlgh-entropy flow. This approach was sufficiently straightforward

to incorporate into the entry flight mechanics trajectory design (ref. 7). Thus, entry trajectories
which were consistent with reusable TPS material capabilities were obtained as illustrated in figure
1. The reusable TPS requirement was a constraint on the geometric configuration and primarily on the

entry trajectory corridor. Previous manned entry vehicle trajectobies, such as Apollo, were only con-
strained by acceleration (@dynamic pressure) and control.

This simplified model was also used to eliminate the largest contribution to unnecessary conser-
vatism in previous manned entry vehicle TPS design: the difference between design and actual require-
ments. The value of thls activity is illustrated In figure Z by comparison of the Shuttle Orbiter
and the Apollo command module experience. The small difference between the STS-1 environment and the
design environment was within the preflight uncertainty of the environment and TPS performance (ref.
6). Also, comparison of the Apollo orbital test environments wlth the Shuttle Orbiter environment Is
a valid illustration of the heat-load penalty incurred as a result of the reusable TPS requirement.

For a given insulation material, the required thickness Is roughly proportional to the square root of
the heat load.

DESIGN METHODOLOGY

As with previous manned entry vehicles, the foundation for the definition of the entry aero-

thermodynamic environment for the Shuttle Orbiter was based on wind-tunnel data taken on geomet-
rically scaled models of the Orbiter. Extensive parametric testing was not performed; rather,
testing was performed only where the best local flow parameters of significance to the high-heating

flight regime could be approached. Despite the fact that wind-tunnel enthalpies are on the order of
one-fiftieth of flight (a suitable dimensionless enthalpy parameter for this scaling does not exist),
a wind-tunnel free-stream Mach number of about 8 provides the best simulation of the Orbiter entry

heating flight regimes (ref. 1). Early aerothermodynamic model testing was performed with a phase-
change paint test technique, but the bulk of the design test data were obtained with thermocouple-
instrumented models at the Arnold Engineering Development Center, Tunnel B.

The fiight design entry heating data were obtained by analysis and correlatlon normalized by
wind-tunnel data. Correlations of equilibrium boundary-layer solutions (and turbulent correlations)
obtained for simple (two-dimensional) flowfields (refs. 3 and 8) were applied and normalized at
wind-tunnel conditions. These normalized correlations were then applied to flight conditions along

an entry trajectory (ref. 4). This process is 111ustrated schematically In figure 3. It should be
noted that the Orbiter entry configuration is not a true blunt entry vehicle nor is it a slender
flight vehicle. The flow dynamics vary along the vehlcle from the high-entropy blunt-body nose flow
to an asymptotic approach toward low-entropy slender-body flow (ref. g).
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FIGURE 3.- DESIGN HEATING METHODOLOGY.

Smooth-body boundary-layer transition at any loca[ion on the vehicle was found to correlate at
wind-tunnel conditions by momentum-thickness _eynolds number divided by local Mach number (ref. 4).

This correlation was then applied to flight in terms of the same parameter. The results were not
drastically different from those for the simplified model. It should be noted, however, that the
Orbiter shape had to be "smoothed" to obtain a laminar entry heating vehicle. It had been observed
experimentally that configurations without a continuously differentiable windward surface geometry
gave rise to premature boundary-layer transition (refs. I and 10). This is an overall configuration
effect as opposed to a local surface-roughness tripping effect.

TECHNOLOGY ADVANCEMENT

Although there can sometimes be a subtle distinction between state-of-the-art and advanced tech-

nology, aerothermodynamlcs is in the midst of a revolutionary change from a predominantly experimen-

tal simulation base to a heavy reliance on numerical slmulation. In the case of the Orbiter, entry

heating numerical simulations (fig. 4) provided benchmark information for incorporation into the dE-

signmethodology(refs.g and 11to 18). Thls informationincludedthe scalingof three-dimensional
flows and heating from wlnd tunnel to flight as well as addressing the influences of finite-rate chem-

istry on the flow and heating. Although nu_w_rlcal flowfield computations have not yet encompassed

the entire Orbiter, if the Shuttle program were initiated today, thls capability would be the founda-

tion of the designmethodology.
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Parametric analyses, tests, and data correlations were performed to obtain a better understand-
ing of critical flow phenomena and the sensitivity of the environment and system. Off-nominal test-

ing and analysis were discouraged as a meln-line activity (to reduce development cost), but in-house
and university studies (refs. 19 to 21) accomplished the required activity. The numerical flowfield
simulations were extremely valuable for craantifying the sensitivities to given uncertainty parameters
(ref. 6).

Early in the Shuttle program, arc:Jet testing of candidate Orbiter TPS materials pointed to the
significance of atom recombination surface catalysis to the Orbiter entry heating. Resource limita-
tions prohibited completion of the necessary test data and analyses for the design. However, surface
catalysis was characterized before flight (ref. 22). The process for obtaining flight predictions of
this phenomenon is illustrated sche_natically in figure 5. In previous entry vehicle design, this phe-
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FIGURE 5.- SURFACE CATALYSIS FLIGHT PREDICTION PROCESS.
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non_non had always been masked by the complex processes associatedwith ablation.

A number of technologyquestions and issues have arisen as a result of the developmentof the
Orbiter entry heating model. Several of these are addressed under the particular problem area.

SELECT PROBLEMS

BOUNDARY-LAYERTRANSITION

The phenomena of turbulentflow and boundary-layertransition have been under intense investiga-
tion for more than a century with somewhat limited success. This limitation is possibly measured by
the anxiety which develops when engineers are required to predict boundary-layer transitionoutside
the range of experimentaldata. The approach to predictingsmooth-body transition has already been
discussed. Early assessmentsof the influenceof roughness on boundary-layertransition on the Or-
biter did not indicate a problem; however, concern arose based on slender-bodyexperience, the large
differencebetween wind-tunnel and flight wall/gas temperatureratio, and the significanceof early
boundary-layertransition to the TPS. The ensuing activity pushed geometric similitude in wind-
tunnel models of entry vehicles to new limits and incorporatedpretest chilling of the model to cryo-
genic temperatures(refs. 23 to 25). Specializedtesting, correlation,analysis, and debate finally
ed to an acceptable level of confidence that roughness associated with the Orbiter TPS tiles would
not significantlyalter boundary-layertransitlon from the smooth-bodydesign methodology predic-
tions. The approach used to establish the influence ef distributed tile roughness Is illustrated in
figure 6.
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LEEWARD HEATING

Previous experience with entry vehicle leeward TPS design had generally resulted in a very con-
servative approach because of the large uncertainty in the h_q)ersonic near-wake flowfield. This un-
certainty was of particular importance to the Orbiter because of its large size and the fact that

more than half the exterior surface is in a separated-flow regime during significant entry heating.
The uncertainty with regard to the leeward environment still exists. However, the conservatism in

the leeward lIDS was minimized by a reliance on experience with previous manned entry vehlcles. This
experience is tantamount to assuming a blunt-body controlled flow in that the leeward wind-tunnel

data were normalized by heat transfer to the stagnation point of a sphere and applied directly to
flight. This problem remains en_oirical and awaits advances in numerical fluid mechanics simulation
capability and efficiency.

SHOCK/SHOCK INTERACTION

Although the Shuttle Orbiter at angle of attack is a relatively clean configuration, there are
areas of complex flows which cause concern as to local entCy heating and in partlcular the scaling of
wind-tunnel data to flight. One of these areas is the intersection of the fuselage shock and the
wing shock. After rather sophisticated wind-tunnel testing, data correlation, and first-order anal-
ysis, it was judged that the angle of attack and thejwing sweep of the Orbiter did not indicate an

overly severe local heating problem for the wing leading edge (ref. 2G). However, it was discovered
in the pursuit of this problem that scaling of wind-tunnel data to flight when the flow has encoun-
tered two shocks (inboard of the shock/shock interaction) resulted in an amplification relative to

single-shock scaling (ref. 27). The entropy change obtained by a dual-shock process can be less than

that obtained for a single shock. This dual-shock scaling was incorporated in the preflight certifi-
cation heating environment.

TILE GAP HEATING

Much to the chagrin of the aerothermod)mamicist, the Orbiter entry TPS has thin gaps between the
6-inch-square surface insulation tiles. The resulting heat leak afforded by these gaps is a complex
coupling of convective heating, radiation exchange, and predominantly conduction down the sidewall of

the tile. On the basis primarily of arc-jet test_s (which attempt to simulate this coupled environment/
system interaction) and analysis, this heat leak can generally be accommodated by an increase in the
average insulation thickness. The exception occurs when a pressure gradient causes a hot breeze into ,
the gap (refs. 28 to 30). In this case, it became necessary to stuff the gaps to prevent flow intru-
sion along with the associated heating. It should be noted that since the nonadiabatic flow of air

through a gap is driven by the pressure distribution and the pressure level, the importance of gap
convective heating is greatest late in the trajectory after peak surface heating. This behavior
was first realized when calculations were performed to ascertain the elevon/wing seal requirements
(ref. 21). A postflight assessment is that the late turbulent flow regime is of greater significance
to gap convective heating.

NONEQUILIBRIUM EFFECTS

Although significant entry heating occurs_n the continuum gas dynamic regime, manned entry vehi-
cles fly at sufficiently low pressure levels that chemical and thermodynamic nonequilibrium air phe-
nomena are a concern (refs. 31 and 32). This concern was particularly significant for the Orbiter

since it was constrained to lower pressures by the heating rates required for a reusable TPS (fig.
i). A considerable effort was required to confirm that the finite-rate air chemistry does not sig-
nificantly alter the Orbiter windward flow dynamics (ref. 14). This same question has not yet been
answered for the leeward region, where the potential influence of finite-rate chemistry on the gas dy-
namics is much greater. The finite-rate air chemistry and thermodynamics do, however, significantly
alter the entry heating depending on the catalysis characteristics of the particular surface coating.
This aspect is discussed in the Orbital Flight Test (OFT) Program results.

FLIGHT TEST RESULTS

The success of the Space Shuttle Program is very evident from the flight experience to date. An
assessment of the Job done in defining the entry heating and the flight capability of the Orbiter re-

quires rather extensive analysis of the OFT data. The predominant source of entry heating data con-
sisted of surface thermocouples mounted all over the Orbiter (ref. 33). These thermocouples were in-
stalled in the same fashion as in ground arc-jet and radiant tests of the TPS. The OFT Program has
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provided a large amount of high-quality data for ascertaining the entry heating on the Orbiter config-
uration. In turn, these data have given rise to a large number of publications comparing predictions

and data with a definite trend toward convergence. However, the most important achievement in entry
heating has been the contribution toward an adequately designed system (refs. 5 and 34) and well-
designed entry trajectories (ref. 7).

Figure 7 is a comparison of selected flight measurements with preflight predictions (refs. 5
and 35). All predictions of boundary-layer transition were conservative, although some were close
(refs. 6 and 23 to 25). A detailed presentation of the Orbiter flight boundary transition data Is _
contained in reference 36. The data indicate a definite "tripping" and rapid transition, although
w_ether the cause is distributed roughness (ref. 36), _ingle governing roughness (ref. 37), or con-

figuration (ref. I) is under debate. Predictions of laminar convective heating are generally conser-
vative (ref. 3B), although the extent to which this is due to flowfield assumptions or to surface
catalysis effects is under study (refs. 37 to 41). Fortunately, a series of Shuttle flight experl-
merits with catalytically coated tiles (refs_ 42 and 43) has provided vivid illustration of finite sur-
face catalysis effects (fig. 8). Turbulent heating levels were very well predicted on the basis of
normalization to wind-tunnel data. This agreement was somewhat expected because of the lower sensi-

tivity of turbulent heating to local flow parameters when compared to the laminar case. It should be
noted that there is an apparent trend for the entry heating in the highest temperature surface areas
to increase (refs. 40 and 44) with flight experience. This trend would indicate changes in surface

properties such as emittance or catalycity. Except for this observation, the flight data are quite
repeatable.

In the light of the complexity of th_ Orbiter flowfield, the various phenomena involved, and
the limitations of wind tunnels in simulating the flight environment, it is fortuitous that the
simplified model works quite well. On the leeward side of the vehicle, where the simplified model
equals the current level of sophistication, agreement is also reasonable. Figures g and 10 illus-
trate the normalized film heat-transfer coefficient (inferred (ref. 45) from surface temperature

measurements) as a function of Reynolds number and angle of attack, respectively. As can be seen,
the flight data are quite repeatable and the potential for heat transfer is quite sensitive to angle
of attack.
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CONCLUSIONS

The definition of entry heating to the Space Shuttle Orbiter was an exciting challenge to the
aerothermodynamics community from the standpoint of technology, engineering, and management. It was

met by a balanced effor t of varying levels of sophistication weighted heavily with experience and
adherence to basic engineering principles such as similitude. The use of nominal heating predictions
for design was not a low-risk approach but one that helped to provide vehicle performance and an ade-
quate TPS. The treatment of boundary-layer transition is without precedent, except perhaps for the

design of a w!ng for the P-51 airplane.

The reliance on both numerical and wind-tunnel simulations has afforded an efficient means of

defining the entry environment and an adequate level of preflight confidence. The high-quality
flight data provide opportunity to refine the operational capability of the Orbiter and serve as a
benchmark both for the development of aerothermodynamic technology and for use in meeting future

entry heating challenges.
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