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INTRODUCTION 

Due t o  the random nature  of turbulence, radar re turns  from turbulence- 
induced f luc tua t ions  are s tochast ic  processes and have t o  be characterized 
s t a t i s t i c a l l y .  The r e tu rns  from any one height form a random t i m e  s e r i e s  which, 
fo r  the purpose of t h i s  work, w e  w i l l  consider quasi-stationary (s ta t ionary 
within an integrat ion t i m e )  and Gaussian. 
close t o  r e a l i t y ;  one can always adjust  the integrat ion t i m e  so t ha t  the f i r s t  
assumption i s  t rue;  t he  second i s  a consequence of the mult iscat ter ing nature o f  
the radar return.  

Both assumptions are f a i r  and very 

A Gaussian and s ta t ionary process i s  fu l ly  characterized by its auto- 
correlat ion function, p ( . r > ,  or  equivalently by i t s  Fourier transform, the 
frequency power spectrum, F(w). Because of the Gaussian d i s t r ibu t ion  of velo- 
c i t i e s  i n  the turbulent s c a t t e r  volume, we know the shape of these functions: 
they a r e  a lso Gaussians. Thus, the processes w e  w i l l  be discussing are Gaussian 
s t a t iona ry  processes with a Gaussian shaped power spectrum. The f i r s t  q u a l i f i e r  
r e f e r s  t o  the multivariant amplitude d i s t r ibu t ion  of the s ignal  proper and the  
second t o  the d i s t r ibu t ion  of the power a t  d i f f e ren t  frequencies, i .e.,  i ts 
spec t r a l  shape. They should not be confused. The autocorrelation function has 
a l so  a (complex) Gaussian shape, since the Fourier transform of a Gaussian i s  
a l so  Gaussian. 

A Gaussian power spectrum has the form 

It i s  f u l l y  defined by the value of three parameters: P, 8, W. They 
correspond t o  the t o t a l  power, the frequency s h i f t  and the spectral  width, 
respectively.  
echoes, and they a re  a l l  w e  need t o  know t o  characterize the process. 
a measure of t h ree  important physical properties of the medium: 
intensi ty ,  mea 
variance, <u2>g, under c e r t a i n  conditions). 

They contain a l l  the iaformation we can obtain from the radar 
They are 

turbulence 
r a d i a l  veloci ty  and veloci ty  dispersion (turbulent ve loc i ty  

These three parameters correspond, a l so ,  t o  the three f i r s t  moments of 
S(w), defined as 

P = j s(w) dw (2) 

I 
P Sa - S(W) dw ( 3 )  

It i s  preferable t o  take (21, (3)  and (4) as the de f in i t i on  of the three para- 
meters of i n t e r e s t ,  P, ~a and W, s ince they are always w e l l  defined, even i n  the 
case when there  are dexiations from our assumptions and expectations about t he  
nature  of the process. 
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The scope of the present paper i s  t o  review s igna l  processing techniques 
which have been used, or  should be used, i n  MST radars,  i.e., techniques which 
lead t o  a good es t imat ion  of the  th ree  f i r s t  moments of the spectrum. 

2 The number of poss ib le  es t imators  f o r  P, and W i s  unlimited. There- 
fore,  we can not be exhaustive. 
bounds, we s h a l l  l i m i t  ourse l f  t o  "good" es t imators  and t o  es t imators  t h a t  are 
presently i n  use. 

I n  order t o  reduce the  scope of t he  paper t o  

We would l i k e  t o  t a l k  about "best" estimators,  but we have a problem, s ince  
there  are two criteria f o r  goodness one would l i k e  t o  sa t i s fy :  
should be good from an s t a t i s t i c a l  point of view, i.e., the variances of the  
estimated values should be a s  close to  minimum as  possible,  but a t  the same time 
they should be p rac t i ca l .  A s  
one improves the goodness of an estimator one increases the  complexity of the  
procedure. 
point,  a s  we w i l l  see when w e  t a l k  about the Maximum-Likelihood (M-L) estima- 
to r s ,  but they a r e  very d i f f i c u l t  i f  not impossible t o  implement. I n  general  
one would l i k e  a procedure which one can use i n  r e a l  t i m e .  This requirement can 
be very l imi t ing ,  not so much because of the  time sca l e  of the  processes, which 
are r e l a t ive ly  slow, but f o r  the l a rge  number of p a r a l l e l  channels one has t o  
process. 
high a l t i t u d e  reso lu t ion .  

the  estimator 

These two c r i t e r i a  are usually not compatible. 

It  i s  possible t o  t a l k  about bes t  estimators from an s t a t i s t i c a l  

The demands are very l a rge  i f  one i s  a f t e r  the whole MST region with 

We can l i m i t  the scope of our paper, i f  w e  l i m i t  ourself  t o  representa t ive  
techniques which have been ac tua l ly  implemented i n  MST radars.  
t h i s ,  but include a l so  some discussion about M-L estimators since they give us  
a l i m i t  i n  performance with which we can compare other techniques. 

We s h a l l  do 

Recently ZRNIC'(1979) has reviewed the  subject of spec t r a l  moment estima- 
t ion .  Although t h e  paper w a s  motivated by weather radar appl ica t ions  and needs, 
i t  i s  f u l l y  appl icable  fo r  MST radars.  
avoiding r e p e t i t i o n ,  unless w e  want t o  stress important conclusions. This 
includes the  references;  the  reader w i l l  f ind  a very extensive l i s t  of re fer -  
ences i n  Zrn ic ' s  review. 

We s h a l l  take advantage of t h i s  review, 

I n  the next sec t ion  we s h a l l  describe straightforward power spectrum 
approaches, w e  s h a l l  then describe and discuss a co r re l a t ion  or  covariance 
approach and f i n a l l y  the M-L estimator concept and d iscuss  the l i m i t s  of 
performance they define. 

MOMENT ESTIMATORS VIA POWER SPECTRUM 

The most straightforward estimators of the  th ree  parameters of i n t e r e s t  i s  
suggested by t h e i r  de f in i t i on ,  through (21, (3) and (4). We should remember, 
though, t h a t  we cannot ob ta in  i n  p rac t i ce  S(w); w e  obtain ins tead  
s t a t i s t i c a l l y  estimated values of it, S'(wi) a t  a f i n i t e  d i s c r e t e  number, N, 
of points of frequencies. 

The d e f i n i t i o n s  suggest the  following estimators,  P' ,  i' and W ' ,  f o r  P, 
and W: 
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We need then, procedures, hopefully optimum, to  f ind  good estimated values of 
the power spectra.  This i s  a very old and general problem fo r  which the re  i s  
extensive l i t e r a t u r e .  
(1958) f o r  an introduction, and t o  the section on spec t r a l  estimation i n  the 
IEEE book on s ignal  processing f o r  more modern approaches (RABINER and RADAR, 
1976). 

The reader i s  referred t o  the book by BLACKMAN and TUKEY 

We would l i k e  t o  point out, t h a t  unless the sampling frequency, l /Ts ,  i s  
larger  than the mean frequency plus a few spectral  widths, 2II(R + 2W) , R' and 
W2 as given by (6) t o  (7) would be biased because of a l ias ing.  This b i a s  can 
be reduced i f  we assume per iodici ty  and calculate  the moments centered around a 
good guess of R. L e t  w .  be a good guess of the actual  value of a, then w e  
w a l u a t e  a correct ion wE such t h a t  8' = w + w w i s  evaluated from 3 

j E, E 

the  spectral  width i s  be t t e r  estimated from 

( w  - w + w 1 S ' h i )  i j a  
W' = 1 

i=j-N/2 
(9) 

I n  pract ice  the problem i s  complicated by the f a c t  t h a t  the signal i s  con- 
taminated with noise and echoes from e f f i c i e n t  targets  on the ground (ground 
c l u t t e r ) .  I f  we have an independent way of evaluating the  noise power spectrum, 
N(w), the algorithms presented i n  (5) to  (9) are s t i l l  va l id  provided w e  
replace S' (w)  by S " ( w )  - N, where S"(w) i s  the power spectrum estimate 
including noise. R e r e  t he  noise spectra have been taken as constant independent 
of frequency since usually the receiver bandwidth i s  much narrower than the 
PRF, and the re  i s  no correlat ion between noise a t  two d i f f e ren t  sample 
pulses. 
p rac t i ca l ly  no signal ,  fo r  instance from 45 km or from ionospheric a l t i t udes ,  
or from a few pulses with the transmitter off .  
f r ac t ion ,  but for tunately small, of the observing t i m e ,  s ince the noise l eve l  i s  
independent of a l t i t u d e  and one can use an average of the estimates from a l l  the 
d i f f e ren t  a l t i t udes .  

The noise l eve l  can be estimated from an a l t i t u d e  where there i s  

The last  approach requires a 

The presence of ground c l u t t e r  presents a source of b i a s  and an addi t ional  
problem. Different techniques have been used t o  cancel or minimize i ts  effect .  
Ground c l u t t e r  s ignals  have a spectral  signature which consist  essent ia l ly  of a 
s ing le  spec t r a l  l i n e  a t  the o r ig in  with a strength which depends on the ground 
shielding of the radar. A t  tropo- and s t ra tospheric  heights,  it i s  a t  least 
comparable to  the s ignal ,  and of ten many orders  of magnitude larger.  When the 
c l u t t e r  i s  strong enough, i t  presents, i n  addition, a component of the spectrum 
with a spec t r a l  width comparable t o  the s ignal  strength width. This r e s u l t s  
from the s l i g h t  propagation fading of t he  c l u t t e r .  As i n  the case of noise, one 
should subtract  the contribution of t h i s  interference before evaluating the 
moments. This contribution can be easi ly  estimated i n  the case of non-fading 
c l u t t e r .  The c l u t t e r  adds a constant value t o  the s igna l ,  i.e., a spectral 
l i ne ,  and can be estimated by integrat ing the  r e tu rns  fo r  as long as the 
spec t r a l  estimation t i m e  (usually one or two minutes). One can, then, subtract  
the theo re t i ca l  contr ibut ion of t h i s  constant component. 
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The fading component i s  d i f f i c u l t  t o  estimate independently. One way t o  
eliminate its biasing e f f ec t  i s  t o  ignore the frequencies around zero (dc) 
frequency. 
magnitude l a rge r  than i t s  width. 
c u l t i e s  only when one i s  looking too close t o  v e r t i c a l ,  o r  the medium veloci ty  
is too slow (of the order of 1 mlsec o r  less). 
advantage of the symmetry of the ground c l u t t e r  component. 
evaluating the  antisymmetric component of the spectrum, replace the negative 
powers by zero, and evaluate the moments of what i s  obtained (SAT0 and WOODMAN, 
1982). This technique a l s o  has d i f f i c u l t i e s  when the s ignal  i s  too close t o  the 
center or t o  the Nyquist frequency. 

This i s  only possible when the s ignal  is  frequency sh i f t ed  by a 
This occurs frequently and presents d i f f i -  

Another technique takes 
It consis ts  of 

In using the spectral  moment technique the observer has some freedom i n  
select ing the frequency spectrum estimating algorithm, the sampling frequency 
(or  s i z e  of the spectral  window) and the frequency resolut ion.  T h i s  freedom has 
d i r ec t  implications on the processing speed. 

A s  f a r  as the estimating algorithm, most modern procedures use a Fast 

One should always use 
Fourier Transform. 
pursued, unless one has a hardwired autocorrelator.  
algorithms especially designed f o r  2" samples, and i f  possible,  specially 
designed fo r  the pa r t i cu la r  exponent, n, selected.  
savings i n  t i m e  t h i s  way. 

This is  an e f f i c i e n t  way of doing it and should always be 

There can be considerable 

As f a r  as the sampling frequency and maximum (Nyquist) frequency are  con- 
The maximum duty cerned, the MST signals  deserve some special  considerations. 

cycle and maximum range of i n t e r e s t  permit ,  i n  MST radars,  pulse r epe t i t i on  
frequencies which can be more than two orders of magnitude higher than the 
maximum frequency content of the signals.  
sampling and calls f o r  some signal  f i l t e r i n g ;  not so much t o  increase the system 
s e n s i t i v i t y  - as one sometime reads or hears -- as f o r  reducing the information 
input i n t o  the spectrum system and the amoa t  of s ignal  processing. 
well  known, an FFT evaluation takes,  N I n  N additions and computations. A 
reduction, of l e t  us say, a f ac to r  of 256 i n  the number of points,  speeds up 
processing by a factor  of 2000. 

This produces high redundance i n  the 

As it i s  

The simplest and easiest f i l t e r  t o  implement d i g i t a l l y  i s  a boxcar inte- 
grator  (coherent integrat ion) .  T h i s  simply integrates  N number of samples from 
a given a l t i t ude ,  takes the integrated value as  a sample of the f i l t e r e d  output 
and resets the in t eg ra to r  r e g i s t e r  t o  zerc ,  ready fo r  the next integration. The 
in t eg ra t ion  t i m e  should not be much larger  nor shorter  than half  the period of 
the expected maximum Doppler frequency s h i f t  plus the expected spectral  width. 
The integrat ion t i m e  defines the sampling rate. 
consequent a l i a s i n g  can be allowed, i f  (8) and (9) i s  used f o r  the evaluation of 
Q' and u; but, any oversampling i s  a waste of e f fo r t .  

Some undersampling and 

Another processing parameter t ha t  the observer has some freedom t o  choose 
is the frequency resolution. 
t i m e  span taken i n  wa lua t ing  the DFT or the t i m e  width of the weighting 
function (Hanning window, etc.). 
correlat ion width, say 2 or 4 t i m e s  the half  correlat ion t i m e ,  since t h i s  w i l l  
give uti 4 or 8 points t o  sample the spectral  function shape, more than enough t o  
determine the three parameters t h a t  define it. 
processing e f f o r t  without much gain i n  parameter accuracy. 

t o  know the va r i a  ces u2, 02, o2 Sf the estimated values with respect t o  t h e i r  
expectations. up> = c(Pi - (Pi>) . This i n  general  depends on t he  algorithm 
used f o r  the evaluation of S ' ( w ) .  We w i l l  quote here . the\resul ts  obtained by 
MILLER (1974). 

It i s  inversely proportional t o  the s i z e  of t he  

The lat ter should not be much longer than the 

Higher resolut ion increases the 

I n  order t o  discuss the goodness of the spec t r a l  moment estimators w e  need 

I 
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H e  gives us a simple expression f o r  the variances f o r  the case of a 
Gaussian-shaped spectrum with no addi t ive noise. 
assuming a continuous time se r i e s  weighted with a Gaussian window of width 
Tf27r. The variances,  using our notation, are given by 

The der ivat ion was made 

Usually WT > 1, since it i s  a good practice. 
observation t i m e  To, the number of DTFs is given approximately by T,/2T. 
I n  terms of To w e  can then w r i t e  

Also w e  have t h a t  f o r  a given 

0 6 %  
- w  0 - 3  

FW =- - -  W 8 

which are f igures  of m e r i t ,  t h a t  serve t o  compare d i f f e ren t  techniques. 
normalize the variances with respect t o  the width of the spectra  and include the 
dependence on the square root  of the number of degrees of freedom (number of 
independent samples) which should be common t o  any estimator. 

They 

One can improve on the estimators 5 ,  8 and 9 with addi t ional  e f fo r t .  
Following a r u l e  t h a t  one should not use data  t h a t  ca r r i e s  no information, one 
should use only those points i n  the spectrum, Wi' for which there  i s  a 
s ign i f i can t  value fo r  S'b2, especially when the s ignal  is contaminated with 
noise. 
w e  have a reasonable estimate fo r  the mean frequency and i t s  width. 

This can be achieved with very l i t t l e  addi t ional  processing t i m e ,  once 

We can, i n  ~ ~ n e r a l ,  say t h a t  the spectral  moment approach provides good 
estimators of the desired parameters. 
DFTs f o r  every a l t i t ude .  
MST echoes a r e  slow, special ly  a t  50 MKz. With proper f i l t e r i n g  (coherent inte- 
grat ion)  and the use of FFT processors, it should be possible t o  perform the 
necessary operations i n  real t i m e ,  even i n  the case of high resolut ion radars. 
The processing system at  the Arecibo radar,  for instance,  i s  capable of process- 
ing i n  r e a l  t i m e  32-point spectra,  at 256 heights (WOODMAN, 1980). 
actual ly  capable of processing a t  least 4 t i m e s  more information, being l imited 
a t  present by the memory capacity of an array processor. 
out t h a t  the frequency of the Arecibo radar i s  430 MKz, producing t i m e  series 
close t o  ten t i m e s  f a s t e r  than a 5o-MHz radar and, therefore ,  ten t i m e s  more 
demanding. 
processor (a decoder). On the other hand, with the present s t a t e  of the art ,  
real-time ful l -spectral  processing of high-resolution radars  i s  not possible 
with a simple minicomputer. One needs the help of a special  purpose coherent 
integrator  and an FPT processor. 

It involves the real-time evaluation of 
This i s  a time-consuming operation, but for tunately 

It i s  

It should be pointed 

The coherent integrat ion i s  performed by a special  purpose pre- 
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PARAMETER ESTIMATION BY NONLINEAR CURVE FITTING TECHNIQUES 

The processing scheme described and discussed above implements the def ining 
equations (21, (3) and (4) and does not take advantage of the knowledge about 
the spec t r a l  shape. 
make use o t  as much information as one has and ask only what one ignores. 
Equation (1) suggests another technique f o r  evaluating the moments, or more 
properly - i n  t h i s  approach -- the  parameters P, $2 and Wz. We can ask f o r  a 
set of parameters such t h a t  S(w) = S(w; P, R,  W) best  approaches, i n  a least- 
squares sense, the experimentally determined set (S'(wi)l, fo r  a l l  i's. This 
i s  a standard parameter estimation problem. This approach is more t i m e  
demanding, but should produce b e t t e r  estimates of Pa 51 and W. I n  f a c t  w e  s h a l l  
see later tha t ,  with proper weighting, parameters obtained i n  t h i s  way a re  

There i s  a golden r u l e  i n  detect ion theory t h a t  one should 

maximum likelihood 
(SI (Wi) I .  

The technique 

N 

i=l 
c 2 =  1 

estimates f o r  a given s e t  of experimental estimates 

consis ts  i n  minimizing an expression of the form 

(14) 

The problem i s  nonlinear i n  the unknowns, P a  R, W and involve special  
techniques. 
hensive treatment. 

The reader i s  r e fe r r ed  t o  the t ex t  by BARD (1974) for  a compre- 

This approach has been taken by SATO and WOODMAN (1982) t o  process ST 
spectra  obtained with the  430 MHz. In  f a c t ,  they used the technique t o  estimate 
up t o  8 addi t ional  parameters which define the noise,  N, ground c l u t t e r  inter-  
ference, and i f  necessary, possible interference from strong turbulent layers  
from lower a l t i t u d e s  which leak t o  higher a l t i t u d e s  through code sidelobes. The 
technique includes instrumental and s ignal  processing sources of d i s t o r t i o n  and 
biases  i n  the theo re t i ca l  function. In  t h i s  way, the parameters of i n t e r e s t  a r e  
evaluated f r e e  of a l l  sources of biasing. Notice t h a t  an estimation of noise 
l eve l  and c l u t t e r  cha rac t e r i s t i c s  a r e  obtained simultaneously with the s ignal  
parameters. 
previous case. 
processing. 

This approach involves f i r s t  the estimation of S ' h ) ,  a s  i n  the 
The parameter information is obtained a t  the cost  of addi t ional  

Nonlinear automatic least square parameter estimation involves non t r iv i a l  
procedures. I n  the case of Arecibo, the additional processing i s  performed o f f  
l i n e  (SATO and WOODMAN, 1982). This takes -- making use of a floating-point 
array processor (AP-120) -- a time equivalent t o  the time it took t o  obtain the 
data. 
doubling the processing capacity. Although, for many appl icat ions,  i t  would not  
be necessary t o  perform the nonlinear estimation i n  real time. 

THE AUTOCOVARIANCE OR AUTOCORRELATION APPROACH 

It i s  f e a s i b l e  t o  perform t h i s  addi t ional  processing i n  real t i m e  by 

One of the most e f f i c i e n t  techniques from the point of view of processing 
requirements i s  the s ingle  delay autocorrelat ion approach. 
the s ignal  power and the autocovariance a t  a s ingle  delay i s  evaluated through 
the c l a s s i c a l  estimators 

I n  t h i s  approach 

p ' ( T )  'Fr X X * 
N T i=l i i+r 

(16) 
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where xi i s  the i t h  complex sample corresponding t o  a given a l t i t ude .  
mean frequency s h i f t  and the ve loc i ty  spread Q' and W', are then obtained from 

The 

The technique takes advantage of the r e l a t ionsh ip  t h a t  e x i s t s  between the  nth 
der ivat ion of the correlat ion function evaluated a t  the o r ig in  and the nth 
moment of the frequency spectrum. 

The technique w a s  f i r s t  used i n  1968 by WOODMAN and IIAGFORS (1969) for  
estimating the  electromagnetic d r i f t  of ionospheric plasmas a t  Jicarnarca, and i t  
was f i r s t  used i n  1972 by WOODMAN and GUILLEN (1974) fo r  s t ra tospheric  and meso- 
spheric applications.  The technique i s  i n  much use today by the weather radar 
community, but, apparently, a s  a consequence of some independent work by RUMMLER 
(1968) and by MILLER and ROCHWARGER (1972) and ha; been subjected t o  much 
discussion and evaluation i n  the l i t e r a t u r e .  

This technique involves only two complex mult ipl icat ions and addi t ions per 
a l t i t u d e  sample, as compared t o  1nN i n  the case of spec t r a l  moment estimation 
(where N i s  the number of spec t r a l  points).  
seemly surprising, i s  comparable to  the one obtained by integrat ing the moments 
of t he  frequency spectrum (RUMMLER, 1968; WOODMAN and KAGFORS, 1969). But, t h i s  
should not  come as  a surpr ise .  After a l l ,  it i s  eas i ly  accepted that  evaluating 
the power v i a  the average of the square of the magnitudes (equation 12) yields  
the same value as the  one evaluated by integrat ing the area of the frequency 
spectrum (equation 5). This i s  only a pa r t i cu la r  case, corresponding t o  the 
zeroeth moment of a more general rule.  

The variance of t h i s  approach, 

Woodman and Hagfors give us a s i m p l e  expression f o r  the variance of the 
mean angular frequency s h i f t ,  val id  fo r  l a rge  Ns and s m a l l  resul tant  values of 
T20n2(<<1 radians) : 

It i s  i n t e r e s t i n g  t o  compare the f igu re  of merit of t h i s  approach as with 
t h a t  of 12. For large SIN r a t i o s  and Gaussian-shaped autocorrelat ion functions,  
18 takes i t s  best  values a t  small 

(5 2 =." 
R 2N 

For a given observation t i m e  
estimates i s  N 5 To W. Hence, 

comparable t o  the spectral  moment 

8.  

(20) 

To, the number of ( su f f i c i en t ly )  independent 

(21) 

approach. 

Later on, when w e  consider the case of using autocorrelat ion values a t  
mult iple  delays, w e  s h a l l  see tha t  the variances of the estimate using the 
s ingle  delay technique i s  close t o  optimum only when the signal-tcmoise r a t i o  
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i s  high. This r e l a t i v e  good perfowance de te r io ra t e s  as the  signal-to-noise 
r a t i o  goes down. But, i t  should be mentioned t h a t  the same happens with the 
spectrum moment approach represented by equations (51, (6) and (71 ,  but not of 
the more sophisticated algorithm which includes weighting the spectral  density 
by zero i n  the regions where there  i s  no s ignal  (match f i l t e r  approach), or with 
the parameter estimation technique we have previously discussed. 

Another l imi t a t ion  of t h i s  technique i s  the d i f f i c u l t y  i n  discriminating 
against  fading ground c l u t t e r  or any other kind-of interference.  
i n  many MST ins t a l l a t ions ,  there  i s  only nonfading c l u t t e r  and white noise t o  
worry about, and the biasing e f f e c t  they produce can be eliminated by 
subtract ing independent estimates of t he i r  contr ibut ions t o  p(o)  and P(T). 
These estimates can be obtained by the same methods described before fo r  the 
spectral  moment approach. 

Fortunately, 

Going from (3) and (4 )  t o  (17) and (18) involves approximating the 
der ivat ive of p ( ~ )  by f i n i t e  differences between p(o) and p ( ~ ) .  This presents 
a bias  which could become s ign i f i can t  for  r e l a t ive ly  large TS (MILLER, 1972). 
Fortunately, i n  the case of symmetric spectrum, equation (17) i s  an equal i ty  and 
the b i a s  disappears. This i s  important since optimum values of T, fo r  noisy 
s ignals ,  a r e  not close t o  the origin.  

We are reproducing here, two graphs (Figures 1 and 2) from MILLER (1972) 
which depict  the performance of the s ingle  delay,  autocorrelat ion technique, by 
p lo t t i ng  the standard deviat ion of the estimates fo r  R and W as a function of 
the sample separation T(E h, i n  t h e i r  notation).  

From Figures 1 and 2 w e  can see t h a t  the best  separation for  T i s  tha t  
around a cha rac t e r i s t i c  width of the co r re l a t ion  function 1 / W  and t h a t ,  fo r  
noisy s ignals ,  the standard deviations of the estimates R.' and W i '  a r e  
inversely proportional t o  the SIN r a t io .  Similar p lo t s  we're produced by WOODMAN 
and HAGFOBS (1969) but f o r  a typical  incoherent-scatter autocorrelation function 
shape. 

It should be mentioned t h a t  the s ingle  delay autocorrelat ion approach, i n  
contrast  t o  the frequency spectrum approach, i s  very sens i t i ve  t o  the pre- 
f i l t e r i n g  of the time se r i e s .  F i l t e r i n g  of t he  s ignal  i n  t h i s  case does improve 
the signal-to-noise r a t i o  and hence reduces the variance of the estimates. A s  
i t  i s  t o  be expected, optimum r e s u l t s  are obtained using a matched f i l t e r ,  
matched t o  the shape of the s ignal  spectrum. But, a boxcar integator  (coherent 
integrat ion)  produces similar r e s u l t s  and it i s  much easier t o  implement. 
should be kept i n  mind, i n  any case, t ha t  f i l t e r i n g  could be a source of R and 
W biasing. This bias  can be computed theo re t i ca l ly  and should be corrected.  

COVARIANCE APPROACH AT MULTIPLE DELAYS 

It 

I f  the covariance approach was so e f f i c i e n t  a t  a s ingle  delay, it i s  
natural  t o  ask how much improvement can be obtained using more than one delay, 
T. 
(17) and t18) for d i f f e ren t  values T~ of 5. We can always obtain a new 
estimate R,, W, through 

L e t  8. and oi be estimates of $7. and cr. obtained on the basis  of equations 

M 

i=l 
R, = 1 ci Qi (22) 

M 
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Figure 1. Normalized standard deviation of mean-frequency 
estimator versus pulse-pair spacing. 

where Ci and C. are weights properly se lec ted  t o  minimize the  variances of 51, 
and W,, and n o h a l i z e d  such t h a t  C C i  = CCj = 1. 
problem for  t he  frequency s h i f t  Q,. 
t h a t  (8, - Q > i s  a minimum and discussed numerically the  e f f e c t  of averaging 
f o r  d i f f e r e n t  signal-to-noise r a t i o s ,  sampling spacing, number of points M and 
co r re l a t ion  func t ion  shapes. Figure 3 depic ts  the  optimum set of weights f o r  
two SIN r a t i o s ,  fo r  a Gaussian-shaped au tocorre la t ion  function sampled a t  32 
poin ts  wi th  a spacing of 0.1 (of the  typ ica l  width). The set f o r  low signal-to- 
noise i s  as expected; i t  corresponds to  the  normalized inverse of the variances 
of Q. a well-known r e s u l t  f o r  optimum averaging of independent samples. The 
r e su f t an t  set fo r  high S f N  r a t i o  i s  somewhat surpr i s ing ;  it has negative as w e l l  
a s  pos i t i ve  signs,  with absolute values which a r e  l a rge r  than unity.  
consequence of the f a c t  t h a t  the d i f fe rence  estimates are not independent of one 
another. 

WOODMAN (1975) has treated the  
H e  found an optimum s e t  of values C i ,  such 

This i s  a 

Figure 4, shows the variance of Qa as a function of the  coordinate of t he  
There are two groups corresponding t o  

I n  each group there  a r e  6 curves corresponding t o  1, 2, 
last sample ( i n  typ ica l  width un i t s ) .  
d i f f e ren t  SIN r a t io s .  
4 ... 32 samples. The f i r s t  conclusion w e  can draw from these r e s u l t s  i s  tha t ,  
indeed, f o r  high signal-to-noise r a t i o s  the re  i s  not much d i f fe rence  between t h e  
variance with 32 poin ts  a t  optimum delay and a s ingle  poin t  close t o  the or ig in .  
There i s  a 60% di f fe rence  (30% fo r  the standard deviation) i n  going from 1 t o  2 
points,  and an addi t iona l  50% (25% fo r  the sd) i n  going from 2 to 32. 
last improvement, i s  ce r t a in ly  not worth the  e f fo r t .  The increase from 1 t o  2 

This 



557 

- 7 0  - 

d 7  - 
-5 . 
-3 - 

0 

- I  - 
-.7 - 
-3 - 
-3 - 

- . I  - 
-.07 - 
-.os - 
-.03 - 

.Ol D3 .05 .07 0 I .3 5 .7 IO 3 5 7 7 0  

I :2 rb lh  

Figure 2. Normalized standard deviation of the estimate of 
'frequency spread versus pulse-pair spacing. 

could be j u s t i f i e d  i f  the redundancy i s  used t o  check the existence of 
unexpected interference.  

On the other hand, w e  see that,  for  high SIN r a t io s ,  the variance i s  
roughly inversely proportional t o  the number of sample points. 
surpr is ing since the estimates { a .  1 have s t a t i s t i c a l l y  independent e r r o r s  with 
respect t o  the real 0. 

This i s  not 

We can conclude then t h a t  B, a s  defined i n  (171, i s  a good estimator from 
a s t a t i s t i c a l  as  w e l l  as from a p rac t i ca l  point of view when the SIN i s  be t t e r  
than one, but it i s  f a r  from optimum when the signal-to-noise r a t i o  i s  low. 

Notice t h a t  the above discussion assumes t h a t  the sampling i n  the t i m e  
s e r i e s  i s  such tha t  the spacing f o r  32 points i s  optimum, Le., t h a t  approxi- 
mately 32 or  N points can be f i t  i n  approximately a correlat ion time. Other- 
w i s e ,  a gain proportional t o  the number of samples cannot be achieved. Cor- 
r e l a t ion  samples which f a l l  a t  points where the correlat ion i s  low do not con- 
t r i b u t e  t o  improve the accuracy of the estimate. 

It should be mentioned t h a t  the de t e r io ra t ion  o,f the s ing le  delay 
covariance approach should not be held as an argument i n  favour of the sampled 
spectral  moment approach. 
formed with the spectra,  the s ingle  delay autocorrelat ion approach yields  the 
same performance as the s t r a igh t  spec t r a l  moment approach, including the case of 
noise signals,  as i t  was quoted before (RUMNLER, 1968). 

Unless some more sophisticated processing i s  per- 
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Similar computations have not been performed fo r  the variance of the 
spectral width estimate, but w e  can expect that ,  qua l i t a t ive ly  a t  least, the 
same conclusions w i l l  hold. 

MAXIMUM LIKELIHOOD ESTIMATORS AND BOUNDS 

Given a set or  sequence (random process) of N obselrvables xi with an N 
j o i n t  probabili ty function F(&{A}) such t h a t  F(X;{A) 5 g(fqt$'.dn@{A}) where 
{Alia a set of parameters. 
number of estimators of {AI and estimates of { A . }  as a function of the 
observables. 
condition that  (Ai'> = Ai and tha t  the variances aa2 = <(Ai' - A.12> be small. 
For a given sample 
{A) vary. There w i f l  be a value of {A} for  which F($;{AI) i s  a maximum i n  {A) 
space. This value i s  cal led the maximum likelihood estimate of {A). It can be 
shown tha t  such an estimate produces minimum variance among a l l  possible 
estikfiators (CRAMER, 1946). 

It i s  possible t o  fi%d practica ly an innumerable 

For these estimates t o  be of p rac t i ca l  use they must m e e t  the 

of the process, w e  can form a function F($;fA}) and l e t  

Usually it i s  not possible t o  f ind e x p l i c i t  solutions or p rac t i ca l  
algorithms fo r  the ML etimators, on the other hand, the theory gives us formal 
expression f o r  the ML variances, which can be used t o  compare the "efficiency" 
of a given estimator. It i s  possible, i n  the case of large N processes w i t h  a 
Gaussian-shaped spectrum plus white noise , and using j u s t i f i a b l e  approximations, 
to  obtain exp l i c i t  expressions fo r  these bounds. Zrnic, for  instance, using a 
ML approach, f inds the following lower bounds. 

when the noise l eve l  i s  zero, and 

when the SIN << 1 and WTS/2s<<l. 
complex, samples spaced by T,. 

H e  assumes a continuous sequence of N 

We should s t a t e ,  though, that  w e  f ind equation (24) disturbing, since for  a 
given observation time To = T, M, w e  can make the variance a r b i t r a r i l y  small by 
making T, a s  s m a l l  as possible. 
fo r  a given W and no noise, sampling times smaller than W - 1  gives redundant 
information, and should not improve the variance of any estimator. 
e x p l i c i t  indicat ion on the reference fo r  the expression not t o  be va l id  fo r  
small wTs. 

complex values (x x ) but correlated i n  between. The ML estimator can be 
found exp l i c i t l y  &:; %ge Ne (MILLER, 1972). It turns  out t o  be the same as  
the covariance approach heur i s t i ca l ly  described by RUMMLER (1968) and WOODMAN 
and HAGFOBS (1969) and discussed previously. 

T h i s  i s  contrary t o  our expectations, since, 

There i s  no 

I f  the sequence of observables Ix.1 i s  given by M pa i r s  of independent 

It i s  also possible t o  use an M-L approach s t a r t i n g  with sample estimates 
of , p ' ( ~ ~ )  or S' (wi) , of e i the r  the autocovarianee function, p h ) ,  or the 
spectrum S(w), a s  the set of random variables t o  be used i n  an M-L estimate of 
the parameters P, R, Wand N, w e  a re  interested in. The procedure, then, 
s t a r t s  with the set of observables {xi}, from which w e  obtained an estimate, 
P'(T~) or  S'(wi), of p(ri> or  S(wi), using any of the avai lable  algorithms. 
These estimates, which hopefully contains a l l  the desired information about the 
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process, are then used i n  an M-L approach t o  obtain the desired parameters. 
LEVINE (1965) has taken t h i s  approach s t a r t i n g  with an estimate S(w) of the 
frequency spectrum. 
Zrnic 's  review f o r  the so lu t ion  algorithm. There i s  no exp l i c i t  formula fo r  the 
estimates. 
The lower bounds for  t he  variances are given by 

We r e f e r  the reader t o  the o r ig ina l  reference, or t o  

They involve the solut ion of some nonlinear simultaneous equations. 

n 

" w -  4 M  4T 
(28) 

These bounds are va l id  fo r  l a rge  signal-to-noise r a t io s .  

We should not ice  t h a t  (27) gives about the same lower bounds as (241, which 
means tha t ,  at l e a s t  fo r  the frequency s h i f t  variance, t h i s  approach can be as 
good as the M-L approach which starts with the observational t i m e  s e r i e s  ti. 
In  tenus of our f igures  of m e r i t  we can w r i t e  

We can see that  f o r  sampling t i m e s  comparable t o  a co r re l a t ion  t i m e ,  i.e., 
fo r  WT, = 1. 
s h i f t  estimators i s  comparable t o  both M-L estimators. According t o  (29) and 
(30) both estimators improve as w e  reduce the sampling t i m e  spacings eventually 
becoming much be t t e r  than the simple estimators w e  have mentioned. Again, we  
f i nd  t h i s  behavior i n  the l i m i t  -- as T, + 0 -- disturbing, since (high 
sampling) rates redundant should eventually produce oversampling, which should 
not  decrease the variance of our estimates. Figure 3, f o r  instance,  desp i t e  i t s  
sophis t icat ion,  de f in i t e ly  does not show t h i s  improvement; i t  shows instead some 
level ing o f f ,  as w e  expect. 

The performance of the spectrum and the s ignal  delay frequency 

The corresponding variances €or the case of small SIN r a t i o s  are:  

The corresponding f igu re  of merit fo r  the f i r s t  moment is :  
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which behaves i n  the same way as f a r  as i t s  dependence on Ts and (g), as the  
mul t ip le  delay autocovariance approach w e  have discussed previously (Figure 2). 

We have mentioned before, t h a t  parameter estimation by a l e a s t  square 
f i t t i n g  of the  theo re t i ca l  shape of the spectrum i s  an M-L technique. 
indeed an M-L estimator which starts with the  frequency spectrum estimates 
s ( w i )  z si as t h e  o r ig ina l  s e t  of random variables.  Let F(,S;{Pi}) be the 
multivariance d i s t r i b u t i o n  function, where C is the  set of spec t r a l  values 
S ( w i )  E Si i n  vector form. 
la rge  number Ma of DFTs of weighted sec t ions  of the o r ig ina l  t i m e  series, 
F($,, {Pi]) i s  a Gaussian j o i n t  p robabi l i ty  d i s t r i b u t i o n  func t ion  and the  
logarithm oi t he  l ike l ihood func t ion  i s  given by 

It i s  

I f  s ( w i )  i s  obtained by averaging a su f f i c i en t ly  

where S i =  S (u.;{Pk}) i s  a known function of the  unknown parameters P 
s h a l l  consider h e  covariance mat r ix  Q known. 
function L i s  equivalent t o  minimizing the  quadra t ic  expression, namely t o  solve 
the s e t  

We 
Maximizing the  l i ke l iho& 

(35 

It i s  known tha t ,  i f  the  s i z e  of the t i m e  window i n  the  DFT i s  l a rge  
with respec t  t o  the  co r re l a t ion  t i m e ,  the variances of (Si - si> a r e  in- 
dependent, and Q i j  i s  diagonal with elanents 0 

t o  solve the set 
2. The problem i s  then reduced 

sii 

(36) 
2 1  - Si({P,3>) - -2= 0 fo r  a l l  ks a 

i - 1 ( 6  

apk i ‘ii 

But t h i s  i s  exactly the  s t a r t i n g  point of a l e a s t  squared estimation 
2 technique provided tha t  each element (si - Si) 

weighted by the inverse of t h e i r  expected variance. 
i n  the  quadra t ic  expression i s  

Note tha t  the s e t  of parameters i s  not l imi ted  t o  P, w, W. The parameter 
estimation procedure used f o r  the  Arecibo ST data,  (SAT0 and WOODMAN, 19821, 
f o r  instance,  f i t s  up to  e l w e n  parameters. 

CONCLUSIONS 

The s ing le  delay au tocorre la t ion  approach i s  a very simple and s ta t is t ical  
e f f i c i e n t  estimator for  MST radars  and should be used fox real-time processing 
of MST radar  s igna ls ,  whenever the complexity and cost  of t he  i n s t a l l a t i o n  i s  t o  
be kept low. A coherent i n t eg ra to r  i s  indispensable, since t h i s  reduces the  
processing capacity requirements and improves the (SIN) and f i n a l  estimated 
variances.  Nonfading c l u t t e r  and noise should be estimated concurrently and 
accounted for .  The technique does not allow fo r  cor rec t ing  o ther  sources of 
interference.  

I f  the  complexity of the i n s t a l l a t i o n  allows fo r  the  inc lus ion  of an FFT 
processor, the f u l l  spectrum or  co r re l a t ion  function should be evaluated and the  
parameters evaluated using e x i s t i n g  sophis t ica ted  algorithms. Parameters can be 
evaluated i n  t h i s  way with much improvement over the  s ing le  delay co r re l a t ion  
technique spec iaf ly  under conditions of low SIN r a t i o  and ex is tence  of sources 
of in te r fe rence  l i k e  fading ground, ocean or s e l f  c l u t t e r .  Normally only the 
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es t imat ion  of t h e  spectrum or c o r r e l a t i o n  needs t o  be  eva lua ted  i n  real time. 
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