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8.4A REVIEW OF CORRELATION TECHNIQUES
S. A. Bowhill

Aeronomy Laboratory
Department of Electrical Engineering
University of Illinois
Urbana, IL 61801

The problem of correlation amalysis in MST radar is to determine the
scattered power, Doppler frequency and correlation time for a noisy signal. It
is assumed that coherent detection has been employed, with two accurately
balanced quadrature receiving channels, It is further assumed that coherent
integration has been performed with a window length significantly less than the
correlation time of the signal.

The analysis problem may be looked at from the point of view either of
Fourier analysis or of correlation analysis, and it must be emphasized that the
two approaches, if used properly, give identical results. Why. then, use
correlation amalysis at all? The reason can be seen from the spectrum and
correlation function shown in Figure 1. 1In each case 1l min of data is
represented, for example (with 1/8 sec cohérent integration time) 480 pairs of
data points (real and imaginary). Ordinary discrete Fourier analysis requires
about 2 x 109 floating-point multiplications, all involving transcendentals.

In fact, however, only the area P under the echo spectrum. its positiom fj
and its width fy are required; these quantities have to be calculated from the
spectrum by separate algorithms.

It can easily be shown that the quantities P, f; and f, can be determined
from the first few values of the complex autocovariance functions, shown on the
lower part of Figure 1, This function can be calculated out to a number of
lags approaching the length of the sample, but almost no additional information
is contained in the part of the function beyond the first few lags. In
examining such a function, it is necessary to make an assumption; namely, that
the curve for lags other than zero can be extrapolated back to zero to give the
signal power P and the noise power N as shown; this is possible because the
noise power is uncorrelated from one coherently integrated sample to the mext,
while the coherent integration time has, as indicated above. been chosen so as
to make the correlation between one sample and the next very good.

The correlation time (or time to correlation equals .5) is estimated as
shown after the noise power has been removed. The spectral width f, is the
reciprocal of the correlation time. The Doppler frequemcy £, is found from the
slope of the imaginary part of the correlation function at the origin, care
being taken to eliminate the vnwanted variance N.

In principle, only 3 points on the complex autocorrelation function need to
be calculated, which would require about 6000 multiplications, many fewer than
the number required for the spectral approach. In fact, a larger number of lags
(up to 12) is often calculated with the idea of improving the analysis. As
described by COUNTRYMAN and BOWHILL (1979), the values of the argument of the
complex covariance for the various lags can be weighted to give a more accurate
value. A maximum likelihood analysis of the estimation problem is given in
Appendix 1. This method of analysis has not yet beem applied to experimental
data.

The calculations of autocorrelation functions,.however, need not
necessarily use multiplication at all. BOWHILL (1955) described a method of
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finding autocorrelations using the mean difference of separate samples rather
than their mean product. Appendix 2 gives a description of the algorithms used.
This technique has been successfully applied in a microcomputer operating system
for the real-time processing of MST data (see paper 8.3-D).

There are other ways in which the correlation process can be speeded up.
HAGEN and FARLEY (1973) describe 11 methods. Table 1 illustrates several of
these algorithms, together with the efficiency in terms of use of the input
data. It should be emphasized that the technique of Appendix 2 has an
efficiency in excess of 95%. The question arises as to whether a hardware
correlator is worthwhile for MST radar. It is my opinion that the use of
coherent integration, which reduces the number of input data by about 2 orders
of magnitude, makes a special hardware device unnecessary, particularly with the
use of algorithms such as those described in this paper.
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Figure 1. Power spectrum and autocovariance function
corresponding to a coherently scattered signal plus

noise.
Table 1
Type of Correlation Output Efficiency (%)
Multibit % 100
One~bit x multibit (2/n)ljzop 64

One-bit (2/7) sin"lp 41
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APPENDIX 1. Maximum-Likelihood Estimation of C-S Parameters.

Suppose that the real part of the complex autocorrelation function is given

by
r(t) = roexp(—atz) coswt + €,(1)
where eo(1) = l-r, (r =0)
=0 (r >0)
and T=0,1, 2 ... 0.

Now let the observed autocorrelation function have real part R(t). For the
imaginary part, i(t) = r, exp(-at”) sinwt + go(7) if the r and i channels have
equal sensitivity.

Now let the noise n on the r and i chanmels have a Gaussian distribution

exp(-bnz) then the likelihood of a given set of I(r) and R(t) is

L = exp[-b g {R(1) - r(T)}2 -b {I(x) -i(1)}]

o™z

and - —‘1;1:; L =73 [R(1) —r(r)]2 + g [1¢) -i(0)1?

orMB

and maximum likelihood amounts to a least squares £it of R(T) and I(T) by r(1)
and i(t).

Substituting for r(t) and i(1), and neglecting r = 0,

n n
- %&n L=1 {R(1) -, exp(—aTz) coswt}Z + § (1) T exp(—arz) sian]2
1

n
= i (RZ(t) + 12(1) + roz exp(-2at2) ~ 2r02exp(-aT2) (R(T) coswt + I(r) simwt)]
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Differentiating with respect to r,, a and w, and equating to 0, we get the
following equations which must be satisfied simultaneously:

n n
r, I exp(—zarz) - i exp(-at2) [R(1) coswt + I(r) simut] = 0
1

n n
T, E 12 exp(-2at?) - % 12 exp(-arz) [R(t) coswt + I(t) sinwt] =0
1

g exp(~at2) [R(t) sinwt - I(1) coswt] = 0

w = 2 L1(1) exp(-ar?)
L R(T)T exp(—arz)

or for wt << 1,

APPENDIX 2. Rapid Pseudocorrelation Technique.

Consider two voltages R(t) and I(t), nominally the real and imaginary parts
of the phasor of a radar return signal. The problem is to determine the center
frequency and power, and correlation time, of an embedded signal of frequency
We

REPRESENTATION OF R(t) AND I(t)

The signal of frequency w can be represented by a phasor S(tr) at that
frequency, giving Sg(t) coswt and S;(t) cos(wt+d) in the voltages R(t) and
1(t), respectively. Sz(t) and Sy(t) are random variables, such that
Sp(t)/s;(t) = constant. The phase shift ¢ is nominally m/2. A noise voltage
n(t) will also appear in R(t) and I(t), which is supposed to be completely
uncorrelated from one pulse to the next,

We therefore have

R(t) = sp(t) coswt + mp(t)

1(t) = 81(t) cos(wt+dp) + ny(t)
MEAN SQUARE DIFFERENCE DEFINITIONS
Let  RO% = <RZ(t)>

102 = <12(t)>

RR? (1) = <[R(t) - R(t + 1)]1%>
117 (1) = <[1(t) - I(c + 1)1%>
RIZ(r) = <[R(t) - I(t + v)12>
IR2(r) = <[I(t) - R(t + 1)12>
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Now all these quantities may be related to the mean absolute values of the
squared quantities by the relation:

& (1) > = k[<|x(t)|>1?
where k is a constant for a given waveform.
EVALUATION OF DIFFERENCES

From the expression for R(t),
2 Sl o2 2
®(£) > =5 <§ () >+ <np”(t) >

since SR(t) and nR(t) are independent random variables, Further, we define

’ st = <SR2(t)>, NR2 = <nR2(t) >,
RO? = % Sg2 + N2
0 =1 837 + Np°
RR2(1) = <[8R(t) coswt + nR(t) - SR(t + 1) cos(ut + wr) - nR(t + T)]2>
= %‘SRZ + NRZ +-% SRZ + NRZ - 2<8p(t) Sg(t + 1) cosur cos(wt + wt)>
= 5.2 + 2% - <sp(t) Sp(r)> cosur

and defining

p(r) = <8p(t) st + T)>/SR2

It

RRZ(T) SRZ[I - p(t) coswt] + 2NR2

112 (1)

512[1 ~ p{r) coswr] + ZNI2
Similarly,
RI%(1) = <[sgp(t) coswt + np(t) - Sg(t + 1) cos(ut + wt + ¢) - nI(t-+r)}2>
='% SR2 + NR2 + % SI2 + NIZ
+ 2 <8p(t) s7(t + 1) coswt cos(uwt + wt + ¢)>
+ 2 <nR(t) nI(t + T

and the latter term is always zero. So

RI%(r) =1 5?45 52 ¢ w2 v w2
+ 2 <8p(t) Sp(t + 1) % cogut + ¢)>
=% st +92: sI2 + NR2 + NIZ + 8;8, (T) cos(+uT + ¢)
Similarly,
m2(c) =1 52 + 25?4+ m? ¢ m® ¢ 58y 0(5) cos(ut ¥ 6)
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POWER AND FREQUENCY CALCULATIONS

From the above relations,

2R02 - RRz = SRZ p(T) coswt
2
2102 - II2 = 81 p(1) coswt
2 2 2 :
RI” - RO” - I0° = SpSy 0(T) cos(wT + ¢)

IR2 - R02 - IO2

SgS¢ (1) cos(-wt + ¢)

and

1/2

[(2Ro2 - RRZ)(ZIOZ - 112)] = sRst(r) dBswT

IR2 - RI%= 2 SpSrP (1) simt - 8ind

r1? + 1R% - 2(r0? + 10%) = 2 5.8.0(T) cosut * cosd
Nommally, ¢ is set to w/2, so the first tw0 equations become

[(2r02 - RR2) (2102 - 112)]1/2 = 5,8.0(0) cosut

2 - r1? = 2 §,5,0(1) sinut

IR
and SpSy and wT may be found trigonometrically. SpSy may be adopted as the
measure of scattered power. The third equation may be used as a check upon the
accuracy with which the phase—quadrature channels have been adjusted.



