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3.3A AN EVALUATION OF THE ACCURACY OF SOME RADAR WIND PROFILING TECHNIQUES
A. J. Koscielny and R, J. Doviak

National Severe Storms Laboratory
1313 Halley Circle
Norman, OK 73069

INTRODUCTION

Major advances in Doppler radar measurement in optically clear air have
made it feasible to monitor radial velocities in the troposphere and lower
stratosphere. For most applications we want to monitor the three dimensional
wind vector rather than the radial velocity. Measurement of the wind vector
with a single radar can be made assuming a spatially linear, time invariant wind
field. The components and derivatives of the wind are estimated by the para—
meters of a linear regression of the radial velocities on functions of their
spatial locations. The accuracy of the wind measurement thus depends on the
locations of the radial velocities.

PETERSON and BALSLEY (1979) point out that a tradeoff exists for a given
technique between the accuracies of horizontal and vertical component measure-—
ments. Because we usually need to measure the three components of wind with
different accuracy and as inexpensively as possible, we are led to evaluate the
suitability of some of the common retrieval techniques for simultaneous
measurement of both the vertical and horizontal wind components, The techniques
we will consider are fixed beam, azimuthal scanning (VAD) and elevation scanning
(VED).

ERROR ANALYSIS THEORY

The estimation of the parameters of a linear wind field from radial velo-
cities is discussed by KOSCIELNY et al. (1982). The measured radial velocity A
can be modelled by a linear regression equation of the form

v, =P K+ e 1

where P, is a row vector of regressor variables which are functions of range r,
azimuth 9, and elevation angle 0¢; Ky is a column vector of m parameters, The

measured v,., a reflectivity weighted mean of radial velocities within the
radar's resolution volume, can contain errors € due to nonuniform reflectivity,

turbulence, targets such as hydrometeors that move relative to the wind, and a
nonlinear wind, It can be shown that, given n measurements of Vs least
squares estimates of Km are computed by

- T -1 T
K = (an an) (an vn) (2)

where T indicates transpose and P is an nmm matrix of the regressor variables
corresponding to the n radial velocity measurements in V,,, Measurement errors
in the radial velocities produce uncertainties in the estimate Kp and the
covariances of Ky about X, are given by

c =( Tp )yt 2 (3)
mm nm nm €

where 092 is the variance of ¢,
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If the wind field has variations not modeled by (1), the K_will be biased
and the amount of bias B_ is given by the product of a known alias matrix Ay
with the vector K, of the % unknown parameters of the wind field mot includeﬁ
in K . Thus

Bm = Amz Kl (4)
where
_ T -1 T
A, = (an P ®_ Pnz). (5)

Pnz is a matrix of regressor variables for the components not included in (1),

The various techniques referred to in the introduction assume the wind to
be uniform (i.e., the first and higher order derivatives are zero) over the data
analysis volume. However, because w cannot be uniform for any appreciable depth
of the troposphere (i.e., w must be zero at the earth's surface), the horizontal
wind can never be uniform at all heights. Thus we must account for errors
produced by wind shear. We propose to analyze the errors in these techniques by
computing the bias 3nd variance of the least squares estimates Ry with
assumptions that 0_“ is constant and the wind field is actually linear. Thus K3
contains the three uniform components u,, v,, W, and Kg contains the 8 spatial
derivatives (ux, U,y Vgy Vy, Ut Vo, Wy, w&, w,) of the linear wind. In our
evaluation and compariBon of techniques, we assume that a total of n measure-
ments are available for each and these n measurements are distributed in space
to estimate wind at some height h.

(a) Fixed Beam

We consider a configuration for the fixed beam technique in which three
beams, one verticl snd two off-vertical at elevation 6,, are sampled. The off-
vertical beams usually have perpendicular horizontal projections; for
convenience, we will consider them to have azimuths 0° and 90°. The total
number of radial velocity measurements for a height h for all three beams is nj
for generality, we let the number of vertical measurements be N.

The bias and variance properties of the estimates ﬁér= (u,, v, w,) are

computed in Appendix 1 using (3) and (5), and we find that, for n = 3N,
2
R . g 2 2
VAR(d ) = VAR(V ) = -5~ . 3 . (Bec“s + tan“p )
o n e e
2
VAR(w ) = — 3 (6)
) n
a u cotg + w
o x e x
Bias | v > h| v cotg + w @)

BN

The bias equation is approximate because we have used h¥rsinf, which should be
appropriate for r<30 km. From (7) we see that the bias due to spatial
derivatives is a linear function of height which is expected because the beam
separation is linearly dependent on h, In addition, we see from (6) and (7)
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that the variance decreases with n, but that the bias cannot be reduced by data
averaging.

(b) Azimuthal Scanning

In an azimuthal scanning technique, usually called VAD (Velocity
Azimuth Display), data along a circle centered on the radar are used to
directly estimate the components of the uniform wind field., The results of the
bias and variance equation evaluation, in Appendix 2, are that

2
o

€ 2
a 2sec ee

VAR(3,) = VAR(v,)

- g 2 2
VAR(w ) = —=— + csc”0 (8)
o n e
u |_wx
Bias | v T hiw (9)
o y
~ 2
v, 1/2(ux+ vy) cot ee_l

(¢) Elevation Scanning

In the elevation scanning (Velocity Elevation Display) technique,
radial velocities at a height h are collected for elevation angles
80$0o$180-8,. We assume I data are collected for the two azimuths 0° and 90°
so both horizontal compon&nts are measured, It is shown in Appendix 3 that

2

) A 4(n-20_)
VAR(uo) = VAR(VO) ="n - {Tr—Zeo-sin(n—Zeo)}
N 2(n-20)
VAR(WO) = {ﬂ—260+sin(n—290)} (10)
i w
° X
Bias | v = bl w (11)
AO y Tr—Zeo—sin('n—ZOO)_'
(u+v) .,
Vo x y n-260+sin(1r—260)—‘

ERROR COMPARISON

The results of our analysis of the three techniques,, summarized in Table 1
show the variances of the wind estimates all depend on ¢ “/n. Since the
variance of an average of n independent data is ¢ “/n, wk will divide this
quantity by the variance of the estimate of the wind component. Because of its
similarity to the usual statistical definition, we term this quantity the
efficiency of the estimate.

The variation of the efficiences of the horizontal wind estimates with
elevation angle are shown in Figure 1. The VAD technique has the highest
efficiency of the techniques for all elevation angles, 1In addition, the VAD
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maintains reasonmable efficiency to larger elevation angles (75°) than either
fixed beam or VED.

Figure 1 shows efficiencies monotonically increasing as O_ gets smaller.

But for measurements at a constant height the range increases when ee
decreases, Because echo power reduces in proportion to the inverse sSquare of
range (assuming the echoing layer scatters isotropically and is horizontally
homogeneous) the signal-to-noise ratio (SNR) falls as 6 _ decreases. If
measurement errors are solely due to thermal noiie and §NR is less than one
ZRNIC' (1979) shows that measurement variance ¢_“ is proportiomal to (SNR) 4,
The effect of decreasing SNR as 6, becomes smali is to increase 082 as csc 6.3
the efficiency of the horizontal wind measurements thus vanishes as 8¢ goes to
zero, However, the variance o 2 includes meteorological effects such as 2 -2
turbulence that, in our experience, places a lower bound on ocz of about 1 m"s ~,
Because we are mainly concerned in this paper with elevition'angles larger than

_40° and, consequently, ranges less than about 30 km, o can be regarded as a
constant. i

The efficiencies of the vertical velocity estimates are shown in Figure 2.
The VED has the highest efficiency, but for large elevatign angles the VAD is
comparable, The fixed beam has_a constant efficiency of 3.si.nce the number of
vertical estimates is fixed at £

The biases of the estimates show a linear dependence on the height h., To
normalize bias errors, we assume h = 1 km, so the bias for greater heights can
be simply computed. The biases depend on the value of unknown spatial -3 -1
derivatives. Following WALDTEUFEL and CORBIN (1979) we use u = v_ = 10" s
and w_ = w_ = 107%8™* as maximum values, The biases thus com%uted are shown in
Figure 3 £dr the horizontal components and in Figure 4 for the vertical
component. The asymmetry of the beam locations about the vertical for the fixed
beam technique produces a horizontal wind bias due to u, and v, which decreases
as cot8,. The horizontal wind biases for the VAD and VED are ¥he same and are
constant with elevation angle. For the fixed beam techmique the vertical velo-
city is not biased by any derivatives. The vertical wind bias in the VED and
VAD decreases with increasing elevation angle.

In conclusion, the vertical velocity wvariance and the bias errors can be
decreased by using larger elevation angles, The variance for horizontal
components increases with elevation angle but can be controlled to an extent by
data averaging. Because bias increases with height, the higher altitudes may
require a vertical measurement for vertical velocity.

(a) Example

The bias the variance equations can be used to choose an elevation angle
for profiling. For example, suppose we wish to profile the winds at 5 km using
360 measurements with o, = 1 m-s”l, The root mean square errors (bias squared
plus variance) for the horizontal and vertical components are shown in Figures 5
and 6 for each of the techniques., We have kept vertical and horizontal errors
separate because vertical velocity is much smaller and requires greater -1
accuracy. If we require horizontal and vertical velocity accuracies of 1 m-s
and 0.1 m-s = respectively, we would use an elevation angle between 83° and 85°
for the VAD and 77° and 81° for the VED, Because of the bias error, the fixzed
beam horizontal wind error is 1.5 m-s — or larger.

POSSIBLE IMPROVEMENTS

The analysis of the previous section suggests some simple improvements that
can be made td increase the accuracy of the measurements.
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(a) Fixed Beam with Error Minimization

The wind estimate efficiencies for the fixed beam technique can be improved
slightly be collecting a specified number N of vertical data., Minimizing the
first diagonal element of the matrix in (Al.l), which is VAR(uo) = VAR(vo)
gives

N sing
L - A (12)
n /ﬂsinﬁe

8o N would vary from § at 6, = 45° to about 0.4 n for 6, near 90°. The

efficiencies are shown in Figure 7 for u, and Figure 8 For Woe It can be seen
that for 0, > 45°, the efficiency of estimating i is unchanged but is slightly
improved for w °
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Figure 7. Horizontal wind estimator efficiency for fixed
beam, fixed beam with horizontal error minimization, and
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The size of the variance contribution (i.e., © 21:¢m29el}l) from the

vertical velocity bias removal appears to indicate that it might be better to
ignore the bias error (wotane ). However, for observation time intervals of
several minutes, a mesoscale value of w, should be used. For large elevation
angles, (ee 2 75°) the bias error could be several meters per second or larger.
For tropospheric observation under all conditions, the bias should be removed if
a horizontal velocity accuracy of 1 m.s — is required.

(b) Three Off-Vertical Beams

For some applications, ground clutter presents a problem for vertical
measurements, The fixed beam technique with three off-vertical beams with
elevation 0, and azimuths 0°, 120°, 240° is analyzed in Appendix lb, The
analysis shows that the variances (and efficiencies) of the estimates are
identical to those for the VAD technique (compare Figures 1, 2 with Figures 7,
8).. The biases for the u, estimate is very similar to the fixed beam with one
vertical but the w, estimate is biagsed as shown in Figure 9,

(c¢) Application of the Continuity Equation to VAD Data

Vertical winds as small as few centimeters per sec are important in fore-—
casting and, as noted earlier, w, should be estimated with more accuracy than
the horizontal components. Because of ground clutter it may become very
difficult to estimate the radial component of air motion when the beam is
pointed near the vertical since the radial velocities will have values close to
zero, We now show that by assuming a linear wind field and applying the mass
¢ontinuity equation, we can estimate vertical wind, averaged over the circle of
measurement, with the required accuracy. When mass continuity is applied, we
will call the techmique indirect whereas the previously discussed techniques
(e.g., VAD) are direct measurements of w.

Two VAD modes in which vertical soundings can be made are fixed 0,
variable r, and variable 0, fixed r. With variable r however, the horizonmtal
area for which w,is representative varies, so we prefer the second mode.
Divergence is estimated by -applying Gauss's theorem to the volume V (see Figure
10) enclosed by the area 5, at constant range from the radar and the area 8,
at constant height (DOVIAK and ZRNIC', 1983)., Applying mass continuity and
integrating gives an areal averaged w,
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Figure 9. Vertical wind biases for the same techniques as
described in Figure 7 captionm.
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Figure 10. Geometry to estimate vertical velocity
averaged over the circular area 8j.

—ZePh h

- T -Th
= 13
V= on2/e)r fo e 'C_(h)dn (13)
where 1 = gM/RT is the average lapse rate of air density versus height and
: 1 27
Co(h) =57 fo vrrdq; (14)

is the average radial velocity around the circle of measurement,

To f£ix the number of measurements at n, we assume M values of v, are
made on each of L circles spaced at intervals Ah from h=0 to h=hm. Then

M
C (h) = ) v ‘ (15)
o m=l rm

=

If all the radial velocities are independent with the same uncertainty, then

4 eZFh

r2(1_h2/r2)2 N n

VAR{w] =

b VAR[v ] { 1-g~2Th } (16)

ar

For a direct measurement with a vertical beam VAR[w,] = VAR[v, ]/N. If we

require that, for our maximum height hm, VAR [w] = VAR[wO], then the range can
be found by solving

Th rz [ h 2
2rh, = gn {1 + & tl-—%—

n
N (17)
T

Because of the accuracy needed for vertical velocity estimates, the number N of
vertical data will be much larger than the n-N data for horizontal wind
component estimation. Thus in (17) we can assume n/N=l, Using h, = 10 km,

T = 0,113 kol in (17) gives r=40 km, so 0,,*14°, For heights lower than h ,
VAR[W] is less than for a direct measurement. m

To compare the variances for direct and indirect measurements, assume that
we have n/10 measurements at each level for estimating u,, v,, and w, at each -3
of 10 levels spaced 1 km apart. Solvi&g (16) assuming a specified VAR[w] = 10
mls~2 at hy = 10 km with VAR[vr] =1 m“s”2 gives n = 1080. So there are 108
data at each level and, from (8) VAR[u,]=2x10"2m?s~2, With 108 data at each
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level for the direct VAD measurement techniques, the VAR[w,] is larger than
that obtained using the indirect method even with 8 = 90°, Because w_ needs
to be estimated with better accuracy than u,, Vo COBBLdEI' that most measure-
ments are made with a vertical beam. We need at least & data spaced 90° apart
on a circle at each level in order to remove the bias in Uy, Vo due to uy, vx
(Equation 7). Thus from (8) we have VAR[u,]20.5 w?s~2 which should be
satisfactory for horizontal wind estimates but which is an order of magn:.tude
larger than obtained by the indirect method. Furthermore, we have at most 104
data availabl at each level for the vertical beam with the comsequence that
VAR[wo] 1072 mf 2, an order of magnitude or more (at h<l0 km) larger than

obtained using the indirect method. A comparison of these variances is shown in
Figure 11,

In reality, the variances for the indirect measurement technique may not be
this much smaller, since we have neglected the dependence of signal strength
(and VAR[vr] with range. However, this analysis has shown that the indirect
technique does not require a tradeoff between vertical and horizontal variance.
It offers the advantages of low variances, an areal averaged vertical velocity,
and requires no assumption about the spatial structure of the wind to measure
vertical velocity.

SUMMARY AND CONCLUSIONS

We have examined the errors in three radar techniques (three fixed beams,
VAD, and VED) used to directly measure the three components of the wind,
Equations were derived for the bias and variance of the uniform wind components
estimates under the.assumption of a spatially linear, time invariant wind field

: I .1, (1) I
L ‘ ——— INDIRECT MEASUREMENT .
= DIRECT MEASUREMENT
n = 1080
VAR (o] '
108 e e e o2 IS — Y,
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Figure 11. Comparison of wind estimate variances
for direct and indirect techniques.
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and a constant radial velocity measurement error. The measurement errors
produce variance in the estimates and the linear wind shear biases the
estimates, The variance of the estimates can be reduced by averaging more
measurements but the biases cannot. Thus, for these direct measurement
techniques, the selection of an elevation angle for simultaneous observation
requires a compromise based on the required accuracy of the measurement.

We have also examined the errors for an indirect measurement technique
based on Gauss's theorem with an equation of continuity constraint. ITwo
advantages this indirect technique offers are that it does not require any

assumptions about the spatial structure of the wind to measure vertical velocity
and that its error variance can be smaller because it does not require a

vertical and horizontal measurement variance compromise.
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APPENDIX 1.,

ANALYSIS OF THE FIXED BEAM TECHNIQUES

For the fixed beam technique with one vertical, and two off-vertical beams at
elevation 9., azimuths 0° and 90°, we find, following the notations of KOSCIELNY
et al. (1982), that

o -
cosSe 0 sind
(repéats (n-N/2 times)
P = 0 cosf sin =P
oo (repeats (n-N)?Z times) n3
0 0 1
(repeats N times)
L. —d
Arvvieunid
£2:§l~c0829 0 i&:ﬂl cosf +sinb
2 e 2 e e
Tp = (2-N) c0829 ) (o-N) cosb +sind = p.Tp,
oM nm 2 2 e e 3°3
N + (a-N) sinzee

o]
Since this is a symmetric matrix, we_have not euntered the identical terms below

the diagonal elements, We invert P3TP
to reduce it to the identity matrix. %
matrix reduces it to [P3TP3]”1 (ANTON, 1981).

T -
(RyP,)

VAR(GO)

by performing a sequence of row operations
erforming this same sequence on the identity

Thus
ZSecze tanzé tan29 tanf
e 4 e e - e
n-N N N N
1 Zseczee tanzee tanee
= Py + N -5 (Al.1)
1
| N
For an equal number of measurements on each beam, 3N=n and
- 3o 2 2 5
= VAR(VO) = (sec ee + tan Ge) (Al.2)
30 2
= —E£ A1.3)
n {al.

VAR(WO)

The biasing of the estimates by the derivatives of the linear wind can be com-

puted from the alias matrix of (3).
vertical derivatives cause no bias.

nl

—y

r cosze
e

ve D o see O e

0 r cosB _+sinb

. e- e
cosze 0

- e .

0 4

r cosf® +sinb
e e

Since the analysis is for constant height, all
Thus, for equal numbers of measurements,

oy

sre O

¢« e




Agy {anTan]—l anTPnl and performing the multiplication gives
;—cose r sind
e e
A34 = 0 r cosee 0 r 31n6e
0 0 0 o
-
Using the approximation harsin ee
‘h cotf 0 h 0
e
A34 = 0 h cotee 0 h
0 0 0 0
.
T
and K2 = [ux, vy, Vs wy).
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(Al.4)

For the fixed beam technique with three beams at elevation ee and azimuths 0°,
120°, and 240°, we find that

°ecosf
. e

*cosf
e

.
.
.

*cosb
e

2 secze
[ -}

sin0°
P = |sinl20°
nm
sin240°
L
so
n
T -
(an an) N
and
T -1
@ 2 )=

cosO°-cosee

.
.
.

cosl120°+-cosh
e

c05240°-cos6e

n c0s26
e

2 secze
—t

The alias matrix can be computed as before.
function for deformation is nonzero so

siné
N e

.
.

siné
e

.
*
.

sin@
. €

For this case the predictor

(Al.5)
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2 L]
0 0 r cos Be 0 r sinee'cosee
P = —abr.cosze azr.cosze bzr.cosze ar cosé :sine -br siné :cose
o1 . e . e . e e, e e, e
abr cosZG azr c0329 b2r cosze ~ar cosd +sinb ~br sin® °cosb
. e . e . e e, e e, e

where a = v3/2 and b = 1/2. Computing A as before,

h cotee ]
3 0 0 h 0
~h cotee h
~ = 1.6
Agg 0 2 0 0 3 (a1.6)
2 2
h cot ee h cot ee ‘ h cot®
0 0 4.con
2 6 3

T
and Kk = [uy + Ves U vy, LA wy].

APPENDIX 2. ANALYSIS OF THE VAD TECHNIQUES.

For the VAD technique, n radial velocity data are collected on a circle at
height h. So
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To find the bias caused by negLF
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erforming the matrix multiplications in (5), approximating summations by integrals,
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APPENDIX 3. ANALYSIS OF VED TECHNIQUE.

In the VED technique, the azimuth is fixed and the elevation angle is scanned.
The range r is selected so the data are for a constant height h. To measure both
horizontal components, another azimuth, preferably at 90° to the first, must be
scanned. We assume - data are collected for each scan. For convenience, we
introduce the horizontal distance s which is directed along the azimuth ¢. We
make estimates of a horizontal component u, (directed along s) and the vertical
component LA The predictor function matrix is
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where the summations are for i=1, 2,..., B and Bi is the elevation angle.
Approximating the summations by integrals)
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The variance of LA is halved since we assume the results from the two scans

will be averaged.

The bias by the linear terms is again computed by the alias matrix.
prediction functions corresponding to the excluded parameters are
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Performing the matrix multiplications, approximating summation by integrals and

using hir sin® gives
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For the combined analysis of two scans at 0° and 90°,
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and the vector of excluded parameters is

K4 = (ux, vy, W wy).




