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2.5A THE AR VS (AR)? QUESTION - THE PULSE-LENGTH DEPENDENCE
OF SIGNAL POWER FOR FRESNEL SCATTER

W. K. Hocking

Max-Planck-Institut fur Aeronomie
D-3411 Katlenburg-Lindau, FRG

It has been proposed that the enhanced echoes from the atmosphere observed
with a vertically pointing radar are due to reflections from horizontally
stratified layers. The general case in which there are many closely spaced
layers at random heights has been called "Fresnel scatter", The variation of
received power with transmitter pulse length is examined for various models of
Fresnel backscatter. It is shown that for the model most often used in previous

- work, the power is proportional to the pulse-length (Ar), and not to the pulse
length squared, However, for more general models a pulse-length dependence more
complex than either (Ar) or (A)2 is found.

1. INTRODUCTION

Radar backscatter at VHF from the troposphere and stratosphere shows at
times evidence of weak partial reflections from extended horizontal
irregularities. These irregularities are at least a Fresnel zone in horizontal
extent, and fluctuate in the vertical by less than about A/8 over this
horizontal distance. Here, A is the radar wavelength. This type of reflection
is in addition to scatter due to turbulence-induced irregularities (e.g., GAGE
and GREEN, 1978; ROTIGER and LIU, 1978; ROTTGER, 1980a). GAGE et al. (1981a)
have proposed that these scatterers occur at random heights in the atmosphere,
and have then, using this simple assumption, proceeded to determine the expected
dependence of backscattered power on the radar and atmospheric parameters. GAGE
et al. (198la) will be denoted by GBG here. The model was also discussed in
GAGE and BALSLEY (1980), GREEN and GAGE (1980), GAGE et al. (1981b) and BALSLEY
and GAGE (1981). The formula which GBG produced took the form
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P = [FOV).H1%(ar)? (1)

R

This formula is only relevant for the case in which the same array is used for
both transmission and reception, P, is the received power, o is the array
efficiency, P. is the peak transmitted power, A, is the array effective area,
A is the radar wavelength, r is the range of the scatterers, M is the mean
generalized refractive index gradient, and F()) is a "calibration constant"
which must be determined empirically for each radar. The term (Ar) represents
the pulse width.

Most of equation (1) is intuitively reasonable, but the (Ar)? terms
appears to be odd. In this paper, the procedures adopted in obtaining this
(Ar)? dependence will be carefully re—examined. It will be shown that there
were errors in this original formulation, and that a proper treatment leads to
a (Ar) dependence.

This paper will primarily present the arguments for and against the (Ar)?2
formula, although some mention will be made of generalizations of the Fresnel
model. A more complete discussion has been presented elsewhere (HOCKING and
ROTTGER, 1983).
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2., PHYSICAL PICTURE

A simplified view of the model presented in GBG is presented in Figure la.
We will begin by discussing this simple model, and then will generalize it to
gather complexity.

Imagine that a square pulse of duration AT is transmitted upwards into the
atmosphere, and at some time to/2 the pulse is centred at a height z; (t, is
the time for the pulse centre to go to height z and be reflected back to the
ground), Consider a vertical region of length cAT/2, centred on z,, and assume
that within this volume, there are seven reflectors, of equal reflection
coefficient but at random heights. Each reflector will reflect the pulse for a
time duration AT, and at time t, = 2z,/c (where c is the speed of the radio
waves), some part of the pulse will arrive back at the ground from each of these
7 reflectors. No signal will arrive at time t, from reflectors outside of this
region. (i.e., The received signal is a convolution between the pulse shape and
the reflection coefficient profile.) The seven reflected signals will have
approximately equal strengths, but because the reflectors have random heights,
each signal will arrive back at the ground with random phase. The resultant
signal may be described by the dark vector in the right-hand diagram of Figure
la; that is, it is the sum of 7 vectors of equal strength but random phase.
This is simply the classical two-dimensional random walk problem, as first
described by RAYLEIGH (1894). It is well known that the modulus of the
resultant vector of the two-dimensional random walk problem has a "Rayleigh
distribution", and that the mean square length of the resultant vector is
proportional to the number of contributing vectors. Thus if we double the
pulse length to AT' and the mean number of reflectors per unit height remains
the same at all heights, then we have approximately 14 reflectors in the new
length CAT'/2 in Figure la. As a result, an approximate doubling of the square
of the resultant vector can be expected when the pulse length is doubled.

Of course in the above discussion we dealt with small numbers of randomly
phased vectors, and strictly speaking the Rayleigh distribution is only relevant
for large numbers of vectors. Nevertheless, even for the cases of these small
numbers of vectors, the mean power is still proportiomal to the number of
vectors, provided that the reflectors are allowed to fluctuate vertically in
time (so that each reflected component has a uniform phase distribution between
0 and 27°), and that the mean power is calculated over a long time interval.
Naturally, however, the fluctuation in power about the true mean (relative to
the true mean) will be smaller when larger numbers of reflectors contribute,
More to the point, however, the above problem is only illustrative, and is
unlikely to properly model the real atmosphere, Therefore, let us increase the
complexity of the model. The above analysis at least gives one an intuitive
feel that the power should be proportional to the pulse length,

A more general model is represented by Figure 1b. 1In this case, many
reflectors are assumed to exist within one pulse length, but they are allowed to
have varying reflection coefficients, This situation is analogous to that
assumed in GBG. The situation is now far more complex than the classical
random~walk problem. Nevertheless, HOCKING and ROTTGER (1983) showed that by
dividing the reflectors into subsets of equal strength, it could be shown that
the resultant vector will still be proportional to the number of contributing
vectors, provided that the amplitude distribution of these vectors remains
unchanged, and their phases are genuinely random. BECKMANN (1962) has
considered the problem more rigorously and more generally, and has shown that
the vector sum of a large set of vectors { s; }, which have an arbritrary ampli-
tude distribution but random phases distributed uniformly between 0 and 25, is a
vector with a Rayleigh distribution of amplitudes, Furthermore, BECKMANN (1962)
has shown that the mean squared length of the resultant vector is proportional
to the number of contributing vectors, in line with the above discussion. These
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Figure 1. Pictorial description of reflection from a group of reflectors
distributed randomly in height., The pulse is illustrated to the left in
each figure, and the reflectors and their strengths are indicated by the
horizontal lines.
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results are also consistent with NORTON et al. (1955).

Therefore, it may be expected that the received power is proportional to
the pulse length,

The above arguments also apply if an arbitrary form of pulse shape is used,
rather than a square pulse. Provided the pulse shape is sufficiently long that
many reflectors contribute to any signal, the picture is still similar to Figure
1b, but the amplitude of the pulse may change within the region cAT/2. This
simply weights the reflection coefficients, but the signals contributing to the
total power at any instant are still due to signals reflected from a range of
reflectors. These contributing signals are still uniformly distributed between
0 and 27 radians in phase, and the effect of the pulse is simply to modify the
amplitude distribution of the component vectors. Thus the results outlined
above still apply.

We may now make a general statement. If we have a sequence of vectors
{s.}, which have an arbitrary amplitude distribution and a uniform phase
distribution (0-2wc), and this sequence is multipled by an envelope function E,
then the vector sum of the resultant vectors {Eigi} obeys the relation

82 « W, (2)
where Wy is the width of E, defined in any manner, and S2 is the mean square
vector sum. This relation is true for any specific envelope shape, but cannot
of course be used to compare powers between different envelopes.

It should be pointed out that if one or two of the specular reflectors are
much stronger scatterers than all the others, the above statistical treatment is
no longer valid. These cases require special consideration (e.g., RICE, 1944,
1945; BECKMANN, 1962), but were not considered in the model of GBG and so will
not be considered here.

3. GBG TREATMENT

In this section, the treatment adopted by GBG will be briefly outlined,
For a more detailed treatment, the original paper could be consulted, as the
description given here will be largely qualitative. Nevertheless, the principle
is so simple that the "pictorial™ treatment given here actually describes the
model adequately.

The approach adopted by GBG goes as follows, The reflection coefficient
profile r(z) can be considered as the sum of many sinusoidal oscillations, of
varying vertical scale, and varying amplitude. For example, the curves a, b and
c in Figure 2 represent three of these. The amplitudes of these various scales
can be found simply by Fourier tramsforming r(z).
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Figure 2. Typical profiles of refractive index n(z), reflection
coefficient r(z), and 3 examples of Fourier components of r(z).

Then GBG state that the pulse is comprised of only one frequency, so only
one of these vertical scales is important —— namely, the scale with a node-to-
node distance of A/2, A being the radar wavelength (i.e., this is the Bragg
backscatter scale). The received signal amplitude at the ground is proportional
to the number of oscillations in length cAT/2. Doubling the pulse length
effectively doubles the number of oscillations of this Bragg scale, increasing
the amplitude received at the receiver by a factor of 2, and therefore the power
by a factor of 4. A generalization of this discussion clearly suggests that the
received power is proportiomal to the square of the pulse length,

4., THE ERROR IN THE GBG ARGUMENT

The argument in the previous section contains one error, and this is in the
description of the transmitted pulse. GBG stated that a pulse consists of only
one frequency, but by definition a single, pure frequency must be infinite in
extent, A pulse comprises a spectrum of Fourier components, centred on the
central frequency. As a result, a pulse comprises a range of wavelengths, and
so in the description outlined in Figure 2, a finite spectrum of Fourier scales
must produce backscatter. Siunce r(z) is a random function of height, the phases
of these contributing Fourier components are random. Each scale therefore
produces a reflected signal, and each signal arrives at the ground with
different phase. These signals have random phase, so a "random-walk" type
problem again results.

It can be seen that a proper amalysis is more complex than the simple
description given by GBG. In the following section, the pulse-length dependence
of the scattered power will be re-derived from the point of view of considera-
tion of these various scales. It will be seen that the treatment given by GBG
is inadequate, and the results of section 2 will be reinforced through this
alternative approach.

5. QUANTITATIVE TREATMENT
Suppose that the pulse field strength at time t and height z is given by
z71 g(t-z/c).expijolt-2z/c)}, (3)
where w is the carrier frequency, and g describes the pulse envelope. In this

simple description, it has been assumed that the pulse travels at a speed
c(= the speed of light in a vacuum), and absorption has been ignored.
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For simplicity, the z~1 dependence will be ignored. Let the pulse at z=0
be written as

jut 2;‘”&
g (t) e =g, (€)e =_g_p(€). (4)

The function g, defines the pulse envelope, we have allowed g, to be in general
complex, and £ = ct/2 is a length coordinate, We will consider only the case
of g, symmetric about its maximum, as this is almost always valid for real
experiments. The following results are probably true generally, independent on
this symmetry refinement, but these asymmetric cases will be ignored for
simplicity. Let us also associate a phase with r(z), where the phase is deter-
mined by the height of the reflector above the ground, z. Then r(z) can be
regarded as a complex profile, r(z)., After backscatter from the reflection
profile r(z), the signal received at time t, can be shown to be given approxi-
" mately by

,g(zo) « _z;(zo)* g_p(zo)

=]

« [ z(z) gp(zo-z)dz, (5)

-0

where z, = CTO/Z-

That is to say that the received signal is a convolution between r(z) and

g,(z) (e.g., AUSTIN et al., 1969). It is convenient to work in the spatial
domain, which is the reason that z, has been used. The value 2z, can be approxi-
mately regarded as the height from which most of the scattered signal received
at time 7o was reflected.

Now introduce the functioms A, R, and G, defined as the Fourier
transforms of the functions a, r and £p+ That is,
a(z)— A(D)
£(z) R (0)
g ()= 6(0), (6)

where £ is the reciprocal coordinate of z. (¢ plays the same role to z as
frequency does to time; the [ coordinate will be referred to as "reciprocal
space".) Then, by the convolution theorem (e.g., BRACEWELL, 1978),

A(Z) = 6(5). R(%). (7

Thus the signal strength received at the receiver can be found in the
following way. First, find r(z), and then find its Fourier tramsform R(Z).
Then find the Fourier transform of the pulse, G(z). If R and G are
multiplied, and then reverse Fourier-transformed, the signal amplitude a(z)
can be found, This description is identical to the description given in section
4, except that in this case we began by assuming a convolution in the spatial
domain, whereas in section 4 we went directly to the reciprocal space domain.
This shows that the treatment in section 2, and the discussion in sections 3 and
4, are in fact different ways of viewing the same problem. We must now complete
the analysis in the reciprocal space domain quantitatively, to show that it does
in fact produce a pulse-length dependence for power. Given that GBG chose to
work in the reciprocal~space domain, the following section gives the form of
analysis which they should have adopted.
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Since r(z) is a random functiom of height, then R(z) is a random
function of ¥, Therefore the function A(Z) is a random function with an
envelope described by 6(¢t). Schematic examples of R and G are shown in
Figure 3, where gp(z) is taken as a Gaussian function, so G is a Gaussian
function centred on z = 2/2,

In any physical experiment, it is normal to "mix" the central frequency
down to 0 Hz, and for convenience we will do this in this theoretical considera—
tion, This simply means that £ = 2/) is shifted to £ = 0. Figure 4a shows an
example of A(z) after such a shift has been performed, and this function is
denoted by A (Z). Also shown (schematically only) in Figure 4 is the
amplitude, {a|, and phase, ¢, , of a(%), which might typically result after
A (L) has been reverse Fourier transformed. WNotice that no large variations
in g_l or ¢, can occur over distances of z of less than about one pulse length
of gp{z). This is because G(¢) defines a limited frequency band of non-zero
values Ay (L), so no frequencies outside this band can occur in a(%).

In any real situation, r(z) will change as a function of time, and
therefore so will a(z). The powers |a(2){2 at any height z may be averaged
to produce a mean over some time interval T. This gives the mean power at
height z, Since r(z) is random, there is no "preferred" z value, and after
sufficient averaging, |@|2 will be a comstant, independent of z. Therefore it
is only necessary to look at onme height, and for convenience we choose z = 0,

By definition,

a(z) = [ A(g)ed?™C g¢ (8)

—C0

so for z = 0

{a)
Re {R)

Ll A
ARG

{b)
(R

{c}

GI8)

i
n g
RECIPROCAL SPACE, §

Figure 3. Schematic illustration of R(z), the Fourier transform
of the reflection coefficient profile. (a) is the real part,
(b) the imaginary component. Graph (c) shows the Fourier trans-—
form of the transmitted pulse,
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Figure 4, (a) The function A, (%) (see text), (b) Typical amplitude
and phase which might be recorded at any instant after reflection
from the atmosphere, as a function of height, =z.
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a(0) = [ A (D)de. (9)

In other words, a(0) can be regarded as the "complex area" under A (L),
If we take di = AT as a sufficiently small constant,

N N
lato)] = |az nzl A G| = |8 nzl G ORE)HD (10)

This amounts to simply vectorially summing a set of vectors {AzAqi}. It is
clear that we are confronted with a very similar problem to that in section 2 --
namely, we have a random sequence of vectors {A¢R(zi)}, which we multiply by
some envelope G(Zi), and then we add to produce resultant. We wish to know

how the modulus of the vector sum varies as we change the envelope width. The
only difference compared to section 2 is that here the vectors are functions of
reciprocal space, whilst in section 2 we were dealing with vectors which were
functions of z. Clearly, then, the results in section 2 apply, and we see that
if we hold the peak amplitude of G(;) fixed, and define the "width" of G(g)

as W, then the vector a{0) obeys the relation (2): i.e.,

2©))% « W an

The width W may be defined in any way (e.g., half-power width, e™! width, etc),
provided the definition is invariant for the chosen function,

Equation (10) deals with the width of G(Z). It is now necessary to
determine how changing the width of the Tx pulse gp(z) affects G(g). Two
results from Fourier transform theory are first necessarily. Firstly, the width
of gp is inversely related to the width of G: 1i.e.,

-1
wgp « w o (12)

and secondly,
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£0) = f s(naz. (13)

-0

(conversely, G(0) = f‘gp(z) dz).

We are now in a position to examine the pulse-length dependence of the
received power, As seen in equation (10), we have the following “random-walk"
problem. We have a sequence of random vector {A;R(ci)}, and we multiply them
by an envelope {G (z;)}. We know that the transmitted pulse g (z) may change
in width but must maintain constant peak amplitude g, (0). Changing the width
of gp(z) affects both the width and peak value of G(z). The width of G(r) is
inversely proportional to the width of g _(z) (by (12)). This fact, together
with (13), means that the peak value of B(C) must be proportional to the width
of gp(z) when gp(0) is held fixed. Thus both the width and peak value of G(Z)
change, If we consider the rescaling of the function G(z) and keep its width
constant for now, we see that this simply increases all the vectors
fALR(zi) G(z;) } by a factor proportional to Wgpe This must therefore rescale
the total power by Wgp? times. Now, we must only consider the effect of
changing the width of the function G(y). Equation (2) can be applied here, so
it is clear that changing the width of G changes the power proportionally to Wg.

Combining the above effects, we have
—1 2
|20 °=w_*w Qs
gp G
for the case of unchanging pulse peak power, and using (12),

2
ja(2)|2 = W, (15)
—_— e
(We have already shown that |a(z)| = }a(ﬂ)iz for all z),

This proves that the mean square received power is indeed proportional to the
pulse width, even when viewed from the inverse space domain.

6. COMPUTER SIMULATION AND GENERALIZATION OF ASSUMPTION

Computer tests have been done to test equation (1), since that equation is
crucial to all the arguments presented here. A Monte Carlo approach was adopted
(e.g., SCHREIDER, 1967). The details of these tests will not be given here. It
is suffice to say that equation (2) was completely verified by these numerical
simulations.

This Monte Carlo approach also allowed a generalization of the assumptions
made by GBG. 1In the troposphere the mean reflectivity decreases approximately
exponentially with height (e.g., BALSLEY and GAGE, 1981). Therefore the
situation of a pulse incident on such a reflectivity structure has been
investigated. In such circumstances, varying the pulse width will vary the form
of the amplitude distribution of the reflected signals, and so the pulse-length
dependence for scattered power is no longer simply proportiomal to (Ar). The
details of this simulation can be found in HOCKING and ROTTGER, (1983), but the
results are summarized here with Figure 5. Suppose that the RMS reflectivity as
a function of height is <r2(z)>1/2, and that <r2(z)>!/2/z takes the form
exp(-z/H). Suppose that a Gaussian pulse of half-power full width h is trans-
mitted., Then the received backscattered power is a function of h/H, and follows
the form indicated in Figure 5, Clearly for h > 0.5 x H, the power is no
longer simply proportional to the pulse width.

7. DISCUSSION

In any experiment to test the pulse-length dependence of backscattered
power, various precautions are necessary, or else misleading results can ensue.
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Figure 5. Plot of received power as a function of the ratio of the
pulse width to the scale height of the reflection strengths, for
the case of an exponential decay in reflection strength with height.

Firstly, it is important that the receiver has sufficient frequency band~
width to accommodate the pulse. For example, imagine the situation of trans-
mitting a Gaussian pulse, and using a receiver matched to the pulse. (This is
normally done, in order to optimize the signal-to-noise ratio.) If the trans~
mitted pulse g,(z) is now made narrower, the peak value of G(z) falls
proportionally., But if the receiver bandwidth is not widened to accommodate
the wider range of frequencies, then equation (14) becomes

120 |2 = [W(gp)?1. 1, (16)

and the received power appears to be proportional to the square of the pulse
width, In fact, in any real investigations of this reflecting process, the
effective pulse is not simply the transmitted pulse but rather that pulse
convolved with the impulse response of the receiver. This last point is
important, and care must be taken in performing receiver matching. The receiver
bandwidth must not be just equal to the bandwidth of the Fourier transform of
the pulse, but considerably wider. For example, suppose that the transmitted
pulse is described by g(t), and the Fourier transform of g(t) is G(w), w being
the angular frequency. Let the receiver response be also G(w) ~- then the
effective transmitted pulse is not g(t), but rather g(t)¥*g(t) =- or a function
roughly v2 times wider than the transmitted pulse. The receiver response
should be flat over all non-zero values of G(®) in order that the effective
pulse is the same as the transmitted pulse. :

Secondly, if the receiver is matched to the transmitted pulse on all
occasions, it is interesting to look at the signal-to-noise ratio., Doubling the
pulse width doubles the received power -- but if the noise is constant as a
function of frequency over the bandwidth of the receiver, and the receiver band
width is halved, to match the transmitter, then the received noise power also
decreases by a factor of 2. For the case of VHF radars, the main noise is
cosmic noise, and this can be regarded as constant over the band width of most
VHF systems, Thus the signal-to-noise ratio is proportional to the square of
the pulse length. It is important in any experimental test of the preceding
theory to measure absolute power, and not signal-to~noise ratios.
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HOCKING and ROTTGER (1983) presented a preliminary test of the above
theory, using experimental data from the SOUSY radar. These results are
summarized in Figures 6a-c., Figure 6a shows the experimentally observed power
profile for a 150 m pulse after averaging over a period of 50 min. Figure 6b
shows the profile which would have been observed had a pulse of length 1.5 km
been used, with peak power equal to that of the 150 m pulse. A factor
(1500/150) has been removed from this figure for ease of comparisons. This
profile 6b was produced by computer manipulations; the details are discussed in

HOCKING and ROTTGER (1983).
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Figure 6. (a) Mean power as a function of height, recorded with the

SOUSY radar on 6 March 1981. The noise has not been subtracted;
the noise level was about 5~8 dB. (b) The resulting profile which
would have resulted from using a pulse with a coarser resolution.
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Figure 6c¢c shows a comparison of the 2 profiles —- and it can be seen that
they are in approximate agreement, now that the factor (1500/150) (i.e,, the
ratio of the pulse resolutions) has been removed from the low resolution pro-
file., This is support for an approximately (Ar) power dependence. However, a
great many more experimental results are necessary to properly test the theory.
Also, agreement is not perfect in Figure 6c¢c; this is discussed further in
HOCKING and ROTTGER (1983). ‘

Figure 6d shows the power as a function of height and time during this
recording interval, after the mean power profile for the period has been
removed., Notice the existence of certain stable, well-defined echoes. These
are not consistent with the "Fresnel Scatter" model of GBG, and their existence
must be borme in mind., This point is discussed further in HOCKING and ROTTGER
(1983), The Fresnel scatter model may have relevance to the atmosphere, but it
is not always applicable.

6 MARCH 1981

(c)

2/ km

0 10 20 30 40 50 60

173

1431

........

134

(d)

z Ikm

834

53

s mlmmui'
sx28pizgRasazeaaiafi;

23 i
1100

110 1130

Figure 6. (c) A composite of (a) and (b). The solid line shows
Figure 6(a) taken at steps of 1500 m. (d) Details of the echo
strengths as a function of time during the period used to form
the mean profile 6(a). Darker spots indicate greater intensity.
The mean profile over the period has been subtracted, so these
plots are "residual signal strengths".
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CONCLUS ION

The Fresnel scatter model by GAGE et al. (198la) has been critically
examined. It has been found that equation (1) is in error, and the (Ar)¢ part
should simply read (Ar). Appropriate adjustment of F(A) is also necessary.

In the more general case of an exponential decay of <r(z)2>1/2/z with
height, a more complex proportionality results, and this has been illustrated
with a numerical Monte Carlo approach.
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