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ABSTRACT 

The  s a l i e n t  features  of the spectra  of atmospheric r e tu rns  due to  random 
The nonhomogeneous r e f r a c t i v i t y  f luc tua t ions  i n  the MST region are reviewed. 

layered s t ruc tu re  of turbulence i s  of ten evident as mult iple  peaks i n  the 
spectra.  The t i m e  evolution of the spectra  observed with a f i n e  Doppler 
resolut ion provides evidence f o r  t h in  regions of turbulence associated with 
gravi ty  waves and shear i n s t a b i l i t i e s .  
horizontal ly  extended r e f r a c t i v i t y  s t ruc tu res  t h a t  produce enhanced r e tu rns  due 
t o  specular ref lect ions.  It i s  conceivable t h a t  some enhanced r e tu rns  arise due 
t o  anisotropy of small-scale r e f r a c t i v i t y  s t ructures .  Observed correlat ions of 
the strength of the r e tu rns  with t h e i r  Doppler spread, wind shears, and winds 
provide insights  into the physical mechanisms t h a t  produce turbulence. 

INTRODUCTION 

The use of s ens i t i ve  high power radars a t  VHF and UHF frequencies i n  

Embedded i n  these regions a re  

s tudies  of the Mesosphere-Stratosphere-Troposphere (MST) region has been 
reviewed extensively i n  recent years (see e.g., ROTTGER, 1980; BALSLEY, 1981). 
These radars  a re  sens i t i ve  to  weak f luc tua t ions  i n  the radio r e f r a c t i v i t y  of the 
atmosphere a t  a scale  t h a t  usually i s  ha l f  the radar  wavelength (BOOKER and 
GORDON, 1950; BOOKER, 1956). The  r e f r a c t i v i t y  f luc tua t ions  are induced by 
atmospheric turbulence and a c t  merely as t r ace r s  f o r  larger-scale motions 
associated with atmospheric winds and waves. 

In most radar experiments it i s  usual t o  parametrize the spectra  of the 
received s igna l s  by t h e i r  low-order moments which are then interpreted i n  terms 
of the physical and dynamic propert ies  of the medium (WOODMAN and GUILLEN, 
1974). Details i n  the spectra t h a t  a r e  not  readi ly  characterized by the low- 
order spec t r a l  moments , and observed i n t e r r e l a t i o n s  between the spec t r a l  
moments, provide in s igh t s  i n t o  the physical mechanisms t h a t  produce the radar 
re turns  and a r e  reviewed here. 

The response of the radar t o  the radio r e f r a c t i v i t y  f luc tua t ions  i s  b r i e f l y  
outlined i n  the following sect ion,  where w e  a l s o  discuss  the consequences of 
layered turbulence on the spectra  and the inferred parameters. I n  direct ions 
close to  the v e r t i c a l ,  these turbulent l aye r s  o f t en  can produce enhanced specu- 
lar echoes. The spectral  cha rac t e r i s t i c s  of these enhanced echoes are br ief  1y 
mt l ined ;  observed correlat ions between the spec t r a l  moments, and the implica- 
t ions of these i n  terms of t h in  layers  of turbulence generated by enhanced wind 
;hears and subsequent thickening of layers  a r e  discussed i n  the respect ive sec- 
:ions. 
tvidence for  the observed correlat ions a r e  discussed. 

lADAR RESPONSE TO REFRACTIVITY FLUCTUATIONS 

Final ly ,  the types of observations tha t  may resolve some conf l i c t ing  

The electromagnetic aspects of s ca t t e r ing  of radio waves from random 
e f r a c t i v i t y  f luctuat ions i n  radar  experiments are su f f i c i en t ly  w e l l  understood 
see e.g., TATARSKII, 1971; ISEIMARU, 1978). The r e f r a c t i v i t y  f luc tua t ions  
( r , t )  cons t i t u t e  a random f i e ld .  The received signal z ( t )  i s  l i nea r ly  r e l a t ed  
o the s p a t i a l  Fourier component of t h i s  f i e l d  a t  the Brfngg vector 
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$b = (ai - 3,) corresponding t o  the propagation vectors  
incident and the received f i e lds .  
radars)  kb corresponds t o  a s p a t i a l  scale of half  the radar wavelength. 
second-order s ta t is t ic  of the received s ignal  z ( t )  * e i t h e r  its autocovariance 
funct ion R ( r )  o r  the power spectrum S(f) ,  i s  measured i n  the radar  experiments. 
These statistics can usually be r e l a t ed  t o  the t i m e  or frequency behavior of 
these components of the f i e l d  n ( r , t )  t h a t  have a s p a t i a l  wave number kb. 

n(g, t ) .  
assumed t o  be homogeneous and i so t rop ic  a t  l e a s t  over the radar ce l l  (BOOKER and 
G O W N ,  1950). 
s ingle  Doppler-shif ted peak (ISHIMRU, 1978). 
shape of the spectrum, the lowest-order moments of S(f)  provide information on 
the turbulence-induced r e f r a c t i v i t y  variance (C,'), r a d i a l  ve loc i ty  
(v = kb - y ) ,  and the r a d i a l  veloci ty  spread (uv) (see e.g., WOODMAN and 
GUILLEN, 1974; ZRNIC' ,  1979). 

and kr o r  the 
For backscatter (usually the case f o r  MST 

A 

To proceed fu r the r ,  assumptions must be made about the nature  of the f i e l d  
I n  the most widely used (and least general)  information n(x, t> i s  

The signal spectrum S( f )  can be characterized in t h i s  case by a 
Without r e so r t ing  t o  the exact 

The assumption of homogeneiety of the f i e l d  n ( r , t )  over a r ada r  cel l  breaks 
down i n  experiments t h a t  have a coarse a l t i t u d e  resolut ion of 1-3 km. This i s  
pr incipal ly  due t o  a layered s t ruc tu re  of turbulence t h a t  i s  c h a r a c t e r i s t i c  of 
the atmosphere and ocean. Often these l aye r s  have a nominal thickness of tens  
t o  hundreds of meter. Early evidence for  the occurrence of turbulent l aye r s  i n  
the s t ra tosphere (WOODMAN and GUILLER, 1974) and i n  the mesosphere (BASTOGI and 
BOWHILL, 1976) was inferred from VHF radar  observations a t  Jicamarca. 

When two or more layers  occur i n  a region of shear through a radar c e l l ,  
I n  the spectrum S(f)  has cha rac t e r i s t i c  mult iple  peaks as shown i n  Figure 1. 

UHF radar  experiments a t  Millstone H i l l ,  t i m e  evolution of these spec t r a l  peaks 
has been observed with a f i n e  Doppler-resolution a t  low elevat ion angles t o  
provide evidence fo r  breaking gravi ty  w a v e s ,  and possibly a Kelvin-Helmholtz 
s t a b i l i t y  i n  the troposphere (WAND e t  al., 1983). 
i n  which the mult iple  peaks i n  the spectra  can be seen and tracked over 
contiguous r ada r  cells. 

e r r o r  introduced i n  the estimation of the Cn2 parameter from the measured 
s ignal  power. Radar experiments t h a t  assume ho ogeneous turbulence throughout 
the radar c e l l ,  would tend t o  mderestimate Cn'by a factor  t h a t  depends upon 
the unknown volume f r a c t i o n  (F) of the c e l l  t h a t  i s  actual ly  f i l l e d  by 
turbulence. VANZANDT e t  al. (1978) have proposed a model t h a t  can be used t o  
i n f e r  Cn2 from the back-ground wind and temperature 
radiosondes. Simultaneous radar  measuranents of C,'can be used t o  i n f e r  the 
f r a c t i o n  F. 
i n  f i n e  a l t i t u d e  resolut ion experiments i n  which the v e r t i c a l  s i z e  of the radar 
c e l l s  i s  b e t t e r  matched t o  the layer  thickness (SCHMIDT e t  al., 1979; ROTTGER e t  
al., 1979; WOODMAN, 1980; WOODMAN e t  al., 1980). I n  these experiments, the 
assumption of homogeneiety over the radar c e l l s  is  approximately val id ,  except 
f o r  a possible  complication due t o  specular r e tu rns  (discussed i n  the next 
section).  

CRANE (1980) shows examples 

An important consequence of the unresolved layers  of turbulence i s  the 

r o f i l e s  measured with 

The e r ro r  i n  the estimates of C n 2  i s  usually considerably smaller 

The assumption of isotropy of turbulence a t  the Bragg sca l e  ( typ ica l ly  3 
meters fo r  VHF radars  and 0.3 meter fo r  UHF radars)  is reasonable i f  t h i s  scale 
i s  s u f f i c i e n t l y  small compared t o  the outer scale a t  which energy i s  fed' i n t o  
turbulence. 
turbulence is more l i k e l y  t o  occur a t  VHF, than a t  UHF frequencies. 
from anisotropic  r e f r a c t i v i t y  f luc tua t ions  (BOOKER, 1956 ; TATARSKI, 1971 ; 
ISHIMBRU, 1978) can produce enhanced radar returns.  
however, i s  not expected t o  be s ign i f i can t  a t  mesospheric heights,  where the 
Kolmogorov scale associated with turbulence increases t o  1-5 m e t e r .  

For a typical  layer  thickness of 100 m, anisotropic  Bragg-scale 
Scat ter ing 

The e f f e c t  of anisotropy, 
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Figure 1. An example of s igna l  spectrum with mult iple  peaks ( ident i f ied  a s  
1 and 2) observed with a 0.125 Hz reso lu t ion  a t  Millstone H i l l .  
s h i f t  a t  10 Hz corresponds t o  a horizontal  ve loc i ty  of 4.5 m/s .  
c l u t t e r  a t  zero frequency, and a narrow spike a t  the power l i n e  frequency 
of 60 Hz are c l ea r ly  discernible .  
a r i s e  due t o  layers  of turbulence i n  a shear region. 

A Doppler 
The ground 

The in se t  shows how these peaks can 

LIU and YEH (1980) have considered sca t t e r ing  from t h i n  l aye r s  of 
urbulence tha t  i s  frozen-in with the medium, and have obtained spec i f i c  r e s u l t s  
or the modified spec t ra l  moments. 
e loc i ty  component i s  s m a l l  compared t o  the ve loc i ty  of the medium along the 
adar axis. 
uf f ic ien t ly  away from the v e r t i c a l .  

PECULAR REFLECTIONS 

Their ana lys i s  i s  v a l i d  when the turbulent 

This i s  usually the case when the radar i s  pointed downwind, 

Enhanced echoes have been observed from the S-T region (see e.g., GAGE and 
kEIW, 1978; ROTTGER, 1978) and from the mesosphere (FUKAO et al., 1980) i n  VEF 
t pe rben t s  t ha t  use a radar  bean pointed close t o  the ve r t i ca l .  These a re  
:tributed t o  weak, p a r t i a l  or specular r e f l ec t ions  from sharp r e f r a c t i v i t y  
-adient8 associated with turbulent  layers. 

The spectral cha rac t e r i s t i c s  of specular re turns  have been observed i n  the 
.T region i n  VEF radar  experiments by examining the autocovariance func t ion  of 
e re turns  (ROTTGER and LIU, 1978; BASTOGI and ROTTGER, 19821, and d i r e c t l y  i n  
F radar  experiments (SATO, 1981). The temporal coherence of specular re turns  

ecular  re turns  can be discriminated, to  some extent ,  from the sca t te red  
gnals  by examining the spectra  i n  the v i c i n i t y  of the Doppler p r o f i l e  through 
ndows of d i f f e ren t  width. The Doppler reso lu t ion  i n  the frequency spec t ra  
served with most MST radars ,  however, has not  been adequate fo r  f r u i t f u l l y  
rsuing t h i s  approach. 

manifest i n  t h e i r  longer cor re la t ion  t i m e  o r  smaller spec t ra l  width. 
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RELATION BETWJ!XN SPECTBAI. MOMENTS 

Empirical correlat ions between the lovrorder spectral moments, o r  para- 
meters derived therefrom, have been observed i n  several  radar experiments. Some 
of these correlat ions,  e.g. , those between wind (from the f irst-order moment) , 
wind shear (height der ivat ive of wind), and s ignal  power (zeroth-order moment), 
can be reconciled with physical mechanisms t h a t  generate turbulence. Others, 
e.g., a co r re l a t ion  (pos i t i ve  or negative) between signal power and the spec t r a l  
width (second-order moment) remain physically e lusive,  but probably depend on 
the growth of turbulent regions. 

In the  absence of convection processes, l oca l  wind shears are the pr incipal  
source of turbulence. A necessary condition fo r  the onset of turbulence i s  t h a t  
the loca l  Richardson number R i  should become smaller than 0.25. The s ignal  
power measured i n  radar experiments i s  an indicator  of the s t rength of 
turbulence. The shear inferred from the r a d i a l  wind a t  contiguous radar  c e l l s  
has a scale corresponding t o  the a l t i t u d e  resolution. An excellent s imi l a r i t y  
has been observed i n  the  stratosphere and troposphere between the p ro f i l e s  of 
inferred shear (at a 300-111 scale) and s ignal  power i n  a series of f ine-al t i tude 
resolut ion (150 m) experiments a t  Arecibo (SATO, 1981). 

Even with a l t i t u d e  resolut ions of 1-2 km, a co r re l a t ion  of the order of 0.7 
between wind shear and s ignal  power has been observed i n  experiments a t  Poker 
F l a t  (SMITE e t  al., 1983), and a t  Millstone H i l l .  A similar order of correla- 
t i o n  is  observed between wind and s igna l  power, especial ly  i n  regions of l a rge  
(>30 m / s )  horizontal  wind. The f a c t  t h a t  even the shear inferred a t  a 2-km 
scale  appears t o  bear a good co r re l a t ion  with the s ignal  power, suggests t h a t  
small-scale shears probably are enhanced i n  regions of large background shear. 
The co r re l a t ion  of s igna l  power with strong winds can be explained e i t h e r  on the 
bas i s  of large Reynolds number, or a l t e rna t ive ly  because regions of strong winds 
(e.g., the j e t  streams) a l s o  have a l a rge  shear associated with them (SMITH e t  
al., 1983). 

An in t r igu ing  co r re l a t ion  between the s ignal  power and fading t i m e  ( inverse 
of spec t r a l  width) of mesospheric VBF echoes was f i r s t  seen i n  A-scope t r aces  by 
BOWLES (1958) i n  h i s  pioneering incoherent-scatter experiment. 
co r re l a t ion  was noticed i n  A-scope t races  a t  Jicamarca (FLOCK and BALSLEY, 
1967). 
pronounced i n  the lower mesosphere (RASTOGI and BOWHILL, 19761, though i t s  sense 
i s  frequently reversed above 80 km (FUKAO et al., 1980; COUNTRYMAN and BOWHILL, 
1979). 

A similar 

Later experiments showed t h a t  t h i s  type of correlat ion i s  of ten q u i t e  

Since the s ignal  power i s  r e l a t ed  t o  the r e f r a c t i v i t y  variance, and 
spectral width t o  the r a d i a l  veloci ty  variance, a pos i t i ve  co r re l a t ion  between 
these quan t i t i e s  i s  normally t o  be expected. This argument f a i l s  t o  explain the  
observed cor r e l a t ion ,  however. 

RASTOGI and BOWBILL (1976) proposed t h a t  f o r  thinner layers  of turbulence, 
a broader range of wave numbers i n  the v i c i n i t y  of %are involved i n  sca t t e r ing  
and the fading time would be longer. 
longer fading times i n  the lower mesosphere then appears t o  imply t h a t  stronger 
turbulence should occur i n  thinner layers. 
stronger s ignals  appear to be associated with sho r t e r  fading times implying t h a t  
regions of st ronger  turbulence ought to' be thicker.  VEF radar  observations with 
150-300 m resolut ion actual ly  do reveal layers  1-2 km th i ck  a t  heights above 80 
km. These l aye r s  are several  times thinner and of ten unresolved i n  the lower 
mesosphere (BOTTGEB et  al., 1979; BUSTER e t  al., 1980). 
thickness above 80 km i s  a l so  consistent with va r i a t ion  of the Kolmogorov micro- 
s ca l e  with height (see e.g., BALSLEY, 1981). 

An associat ion of stronger s igna l s  with 

In t he  upper mesosphere, however, 

The increased layer  
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Figure 2 shows a s c a t t e r  p l o t  of changes i n  s igna l  power and changes i n  
spec t r a l  width observed f o r  a few selected tropospheric range c e l l s  i n  a low- 
elevat ion experiment a t  Millstone H i l l .  The two regression l i n e s  also are shown 
f o r  each p lo t .  
associated with a decrease i n  spec t r a l  width, or an increase i n  fading time 
(s imilar  t o  t h a t  observed i n  the lower mesosphere a t  Jicamarca). 
e levat ion angles, f o r  shear-generated turbulent  layers ,  the spec t r a l  width i s  
proportional t o  the layer  thickness (WAND et al., 1983). 

These p lo t s  imply t h a t  an increase i n  the s ignal  power i s  

A t  low 

These observations tend t o  favor the  notion t h a t  the observed co r re l a t ions  
a r e  an indicat ion of the broadening of turbulent layers  by entrainment. Thin 
layers  are possibly generated as a consequence of i n s t a b i l i t i e s  i n  the flow. 
Eventually the t r ans fe r  of energy from the background flow i n t o  the turbulent 
l aye r s  ceases, and the in t ens i ty  of turbulence (hence the  s ignal  power) must 
decrease with t i m e  due t o  viscous diss ipat ion.  
layer ,  however, are usually intermit tent  and would en t r a in  the ambient non- 
turbulent f l u i d  i n t o  the layer,  making i t  thicker. 
become turbulent should then show high s ignal  powers confined t o  narrow spectra. 
Those containing decaying turbulence would exhibi t  laver  s ignal  power associated 
with wider spectra,  thereby explaining the observed correlat ion.  

The outer  edges of a turbulent 

Regions t h a t  have j u s t  
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Figure 2. Sca t t e r  p l o t s  of changes i n  spec t r a l  width and s igna l  
power fo r  a few heights i n  the troposphere observed a t  a 20 
elevat ion angle with the Millstone H i l l  radar.  The p l o t s  have 
about 400 points  each. Trends with periods l a rge r  than 30 min 
have been removed. 
coeff ic ient  a l s o  are shown. The sense of the implied co r re l a t ion  
is similar t o  t h a t  observed i n  the lower mesosphere with VHF 
radars.  A t e n t a t i v e  in t e rp re t a t ion  is given i n  the  t ex t .  

The two l i n e s  o f  regression and co r re l a t ion  
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DISCUSSION 

We have'briefly discussed some cha rac t e r i s t i c s  of the spectra, observed with 
MST radars ,  t h a t  provide . interest ing in s igh t s  i n t o  the mechanims t h a t  may be 
responsible fo r  ptoducing the radar returns.  
have been obtained i n  experiments t h a t  use coarse a l t i t u d e  and Doppler 
resolut ions by looking fo r  "statistical" co r re l a t ions  between the low-order 
spec t r a l  moments. 
of turbulence i n  the middle atmosphere - and t h e i r  radar signatures - can be 
obtained through experiments with improved r e so lu t ion  i n  a l t i t u d e  (150 m o r  
b e t t e r )  and r a d i a l  veloci ty  (one t o  few c m f s ) .  Such experiments may a l s o  be 
helpful  i n  observing i so l a t ed  cases of the  generation, growth and decay of 
turbulent layers.  

Most of the r e s u l t s  i n  t h i s  area 

A b e t t e r  understanding of the de t a i l ed  s t r u c t u r e  of regions 
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