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2,16 FRESNEL ZONE CONSIDERATIONS FOR REFLECTION AND SCATTER
FROM REFRACTIVE INDEX IRREGULARITIES

R. J. Dovizk and D. S, Zrnic'

National Severe Storms Laboratory
Norman, OK 73069

INTRODUCTION

Several different echoing mechanisms have been proposed to explain VHF/UHF
scatter from clear air. GAGE and BALSLEY (1980) suggest three: (1) anisotropic
scatter; (2) Fresnel reflection, and (3) Fresnel scatter, in order to account
for the spatial (angle and range) and temporal dependence of the echoes.
ROTTGER (1980) proposes the term "diffuse reflection" to describe the echoing

- mechanism when both scatter and reflection coexist., We present a wnifying
formulation incorporating a statistical approach that embraces all the above
mechanisms and gives conditions under which reflection or scatter dominates.
Furthermore, we distinguish between Frawnhofer and Fresnel scatter and present a
criterion under which Fresnel scatter is important.

Scatter from anisotropic irregularities of refractive index n has, for many
years, been thought to be principally responsible for microwave echoes from the
clear air. Existing formulations assume that the correlation length of n
irregularities generated by turbulence. are small compared to the Fresmnel
length. But there is experimental evidence that the contrary may be true. This
paper extends the existing formulations for the case where the Fresnel zone
radius is comparable to or smaller than the correlation length. LIU and YEH
(1980) recognized the limitations of the existing formulations which are based
upon first—order expansion of the phase term in the integral for the scattered
(or reflected) electric field intensity and WARASUGI (1981) suggested expansion
to second order.

THE FRESNEL TERM IN THE INTEGRAL FOR ECHO POWER

TATARSKI (1961, sect. 4.2) derived a formula for the field scattered from a
volume V; with dimensions that implied the size of Vg cannot be determined by
the radar's resolution volume Vg (DOVIAK and ZRNIC', 1983). (The subscript 6
is used to denote a resolution volume circumseribed by the surface giving a
weight, to the scatterers, 6 dB less than the peak at the volume origin; DOVIAK
et al., 1979.) In a later publication, TATARSKII (1971, sect. 2.8) extended his
earlier formulation so that Vg could equal Vg. It can be shown that for back-
scatter the condition asgumed in this extension is

o, << Nr f2m = £/ w

where rg is the range to an element of the scatter volume A, the radar wave-
length, £ the first Fresnel zone radius, and p; is the correlation length of
refractive index irregularities for lags transverse to rg. Inequality (1)
imposes the condition that constant phase surfaces of the incident wave are
planes over the distance pi, and the receiver is in the far field of this
correlation length (i.e., ry > 2p¢°fA).

We now develop the scatter equations which allow correlation lemgth to be
larger than that specified by (1). Assuming the Born approximation (i.e.,
single scatter theory), the field intensity E,, backscattered by refractive
index irregularities An in the antenna far field is
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2B £g(®) MnE,e)
5 exp {-JZkors;dv (2)

s

EAT ,t) = k
1 e ° (211)3 VS T

vhere r o is the range to An at T (see Figure 1), f (r) is the angular pattern
of the incident electric field intensity assumed to be circularly symmetric
about the beam axis, n, is the free space wave igpedance, k =27/}, P, is the
transmitted peak power, g the antemna gain, and r the distance from the origin
of Vo to the scattering element. Vg is a spherical shell of thickness ct/2
vhere T is the transmitted pulse width and therefore E(r ,t) is the intemsity
of echoes sampled at a range-time delay (2r /c)+T after the transmitted pulse.
Assume An to be a zero mean random variable, In a matched filter receiver
having an internal resistance R, the increment of current magnitude |dI]
produced by the scattering element is .

2
/gf (r)
ldli = IdEl] )\W(;) Z}%‘?{—_ k 3

where W(Z) is the range weighting function (ZRNIC' and DOVIAK, 1978; DOVIAK and
ZRNIC', 1979), The integration now extends over all ¥ for which Wfg An has
significant value., For a receiver filter matched to a rectangular transmitted
pulse, the range weighting function is

R zlic’-Zo[ o
Wr)=1- re3a | <c7/2
et ° (4)
=0 3 otherwise
vhere 3; is the unit vector from the origin of V6 to the radar.
The received power, time averaged over a cycle of the transmitted
frequency, is:
P =Lm (5)
r 2
where * denotes the conjugate.
From the integral of (3)
Mg B Wi @ andE, eI Ho%s
1= —= % 3 v ©
(2m)

r
s

For the conditiom c¢ << r, r, does not change significantly where W(¥) is
appreciable so r in the denominator of (6) can be replaced with r_ Upon
substituting (6) into (5) and taking the ensemble average, the expected received
power becomes:

2
P g . [
<@ > = £ 4” R(Z,2') W(E) w(?')fez(?)fez(?') e32k (ro-15 ) gyav'  (7)
40"
o
R(Z,2') = <mn(F) m(:')> (8)

Let's agsuyme that the irregularities have homogeneous statist%cgl properties so
(r) is given by

that R(z,r')=R(r-r') and that the two-way pattern function f6
2
£2(E) = exp {~0%/40, "} (9
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where g 2is the second central moment of the two-way power pattern and 9 is the
angular displacement, measured at the radar site, of T from the grigin of V6'
In terms of the 6 dB angular width 64 for the two way pattern fe s 96=3-3306-
For the assumption of narrow beams (9) can be approximated

2 2,2 2
fB = exp {-t /41:0 g } (10) .

where t=/t_° + t ? is the projection of T onto the plane transverse to the heam
axis at T % 2 :
o
The Gaussian matched filter provides the best resolution of all the
receivers having the same bandwidth (ZRNIC' and DOVIAK, 1978). Because of this
and because practical "matched filters" used in Doppler weather radars are
Gaussian we assume that W(7) is well approximated by

> > 2 2
W(ZE) = e~(a 1) /4o, (11)
. . . . 2>
where crzls the second central moment of the weighting function W (r) and

o =0.35¢1/2=0.30T1 (12)
r 6

for a Gaussian filter "matched" to a rectangular pulse of width 1. The 6 dB
range resolution is r

6°
Use the Taylor expansion for L
r = A = r-dF 4 PG DD (13)
s o o o 2r o

for terms up to second order in r2. Ve note that the second term of this
expansion is the projection of 7 onto the 3 direction and the third term
contains the projection on the transverse piane. Thus, in terms of the g,t
coordinates centered in V6’

T =T + 4 t2/2r (14)
s 0 o

This quadratic expansion is valid (i.e., third order terms in r are negligible)
provided that the scatter volume v, size is by limited by

a.2< 2 |/ (mva - 4|} (15)

where 2d_ and 2d, are the dimensions of V_ transverse and parallel to r_ . The
condition (15) assumes dp<<r_. As can besdeduced, the farther the integration
variable is displaced from the plane £=0, the smaller must be the scatter
volume size perpendicular to the beam axis., However, d, in (15) need not be
larger than the smaller of r_ /2 or the longitudinal projection

(4, /cosyp+r pgtany/2 of the sCattering layer within V. (Figure 1), Substituting
(13), the integral in (7) becomes

r N 2, ,2 2__ 12
L= “ R(E-2') W(L) W(L') exp {- EJLZJ- j2k (1=g' + Lért_)} avdv* (16)
20 o
t

where g =g ro/f is proportional to the arc length of ¥V

6° We now still find it
convenibnt®t3 define new coordinates:

- 1= . - t = . —_ 1 =
£ 65ty t2 26,5 -1 _63 (17a)



86

RESOLUTION
« VOLUME

iNWwW
dz SCATTERING LAYER

A\ 4
\\e ;
\\\ |
\\) |6,
|
kRADAR ANTENNA
A DY

Figure 1. Geometry for backscatter. The distances £ and t are
measured from the origin 0 of the resolution volume in directions
parallel (longitudinal) and perpendicular (transverse) to the
beam axis ?O' tl is parallel to the y axis and perpendicular to

to.
t o+t ! tte)) 1
2 "2 _ 21+2 =
B Ty 2y T (17b)

so that the t;, t, compoment of (16) can be written as

6.2.8 2
() = “ R(3) exp {- _Liz_l-/—“ - 32k 018,/r } do s, (18)

)
t

> > > > . > > :
where & = a;81tagfotazfy is the lag vector (note a3=ao). The transformation
from (16) to (18) is valid if, as is assumed here, the limits of integratiomn
cover the entire volume where the integrand has significant value. Thus
executing the integration over oy

1(t) = o/ j R(3) exp {k_ 5, ot/ro)”' - 612/40t2}d61 (19)

Applying similar procedures to the t, and f coordinate integrations we obtain

2 2 2 2 2.2 2, 4
= 2 3/2 -(§ _“Jbo, " + 8§ /80 ") -w"6 "o /£ - j2k §, dvs
17 o0, T V2 JR(E) e 't t z rv‘ Coe e 03 (20)
Resolution Volume Fresnel
Weight Term

where 6t2= § 2, 8 2 . The solution (20) is acceptable if the 2nd order expansion
of rg in (14} is valid, Inequality (15) is the condition on Vg for this

expansion to be applicable. However, when the transverse dimemgion 2, of V. is
large such that (15) is not obeyed, we can still use (20) if R({$) is small when
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S has a magnitude comparable to or larger tham the right side of (15). 1In
other words the correlation length Pe perpendicular to the beam axis must be

o B¢ 2x {Méz/ﬁdzz— 4,13 (21)

1f condition (15) is satisfied, then there is mo condition on p.. By comparing
(21) with (1), it becomes evident that the second order expansion relaxes the
limits placed on the scatter volume size and correlation length p . Now these
limits are increased by the factor (8ﬂrolk)1/4. For example, if r =10 km and
2=6 m, p, would have to be less than 1.4 km in order for (20) to be applicable
whereas Pe would have to be less than 100 m for a lst order theory.

In the integral (20) the correlation is multiplied by two exponential
weighting functions: (1) the resolution volume weight which depends solely upon
the width ¢ _ and range resolution o, of V. and (2) the Fresnel terms which
gives a veiéht in the t direction that depends upon the ratio flot. Only when
the radius of the Fresnel zone is large compared to vwo p, can the Fresnel term
in (20) be ignored. Therefore, both beam width and correlation length enter into
the comparison with £. But because o, is a function of f, that is

0.45 ¢ 2
v = o _0.9¢ (22)
' p/in2 D/2n2

where D is the antenna diameter, we can simplify the conditioms so that the
Fresnel term can only be ignored if Py satisfies

o < D¥4n2 (23)
t 0.97

On the other hand, because £ is always smaller than o, in the antenna's far
field, the Fresnel term in (20) will have more weight than the beam width part
of the resolution volume term. Thus situations that allow us to neglect the
Fresnel term will also permit us to ignore beam width influence. If (23) is
satisfied, we can use (20) (without the beam width and Fresnel terms) to obtain
the scattered field, even though Vg is larger than Vg3 then we need to sum
incoherent echo power from elemental wolumes large compared to p 3 but small
compared to V, (DOVIAK and ZRNIC', 1983). We call this case incSherent
Fraunhofer scatter. But HODARA (1966) shows that within the lower troposphere,
the correlation length has the following height dependence

p = 0.4h/(1+0,01h) (m) (24)

where h is in meters. Furthermore, VHF backscatter data analyzed later in
this paper suggest that p =20 m for irregularities in the lower stratosphere,
Thus, unless the antenna diameter is of the order of 100 m or more, the Fresnel
term will be important in determining the field scattered by refractive
irregularities, If the scattering volume contains many subvolumes for which
(20) applies, but (23) is not satisfied, we have a situation of incoherent
Fresnel scatter. When d.<v2r f (from Equation 15), then we have coherent
Fresnel scatter. 1If d <f, then signal is coherent irrespective of the trans-
verse reshuffling of réfractive index irregularities.

THE SPECTRAL SAMPLING FUNCTION

Because it is common to describe the statistical properties of refractive
index irregularities by the spectral density function the effects of the
resolution volume and Fresnel terms on echo power can be examined conveniently
by introducing a spectral sampling functiom. Equation (20) can be expressed in
terms of the Fourier transform of R(3) multiplied by the lag weighting functiom
H(%) where '
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ﬂzc 2 § 2
1 t 2 3
H(§) = exp - ((—5) +—— 8.+ (25)
4o f 8o
t
Thus
I = @nw(0,0,Zko) (26)

where @nw(ﬁ) is the three dimensional transform of R(g) multiplied by the lag
weighting function., WNow &,, is the spectrum & of refractive index
irregularities convolved with the spectrum e of H(6):

o =800 2% /o *a (27)
nw r t n w

where * denotes convolution and

o = —1;-J #(3) exp(-i&-3) av (28)
W 3
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is the mormalized spectral sampling function. Substituting (25) into (28) and
evaluating:

7 “_3/20t2 ar /3 , ) o 2K 2
6 =—t X eplozpirio Lt t (29)
w 2 4,4 r % 2 4,4
(1+4w ot /£7) (1+47 Ut /£7)

where Kt= /£12+ K 2. The second order phase term has contributed the factor
4n“g 4f ¢4 in“the Above equation. Thus the first order expansion is valid only
if this factor is small relative to unity. However for V6 in the antenna far

b4 b
4“20t £ >> 1 (30)
For remote sensing with radar it is_commonn to have Ve in the antenna far
field, thus the Fresnel term in QW(K) cannot be ignored. As discussed earlier,
this conclusion is a result of the fact that the Fresnel radius is always less
than the beam width so that the Fresnel term always dominates the beam width
weighting function. Thus @w(ﬁ) can be well approximated by

0.44D20r£n2 9 9 DZKtzan
o (K) = ——575— exp (= 20 K ° - —F—rr (31)
m 3.24m

in which we have substituted (22) for o.. Equation (31) shows that the larger
is the antenna diameter, the narrower is the spectral sampling fumction. It is
surprising that the sampling function shape and size is independent of r, and,
for a given antenna diameter, the spectrum &,{K) of irregularities is weighted
equally for all resolution volumes in space. This result differs from that
derived by TATARSKII (1971) who only considered first—order phase expansion in
which case &; is a function of r,. By combining (7), (26) and (27) the back-
scattered power is given by
2/7(0.45) 2212 o P8 .
< > J o (K) ¢ (a;2k —K) av (32)

r 2D2 &n2 k
o

In the atmosphere it is usual for the horizontal correlation lemgth p_ to
be larger than the vertical one p, 80 @ (§) will be more sharply peaked along
the KX,Ky directions and less so along the K, axis. If the irregularities have
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shapes that are roughly described as oblate spheroids, then the correlation
R(3) would also have a similar form but ¢ (K) would be prolate spheriodal in
shape (Flgure 2a). Equation (31) reveals“that whenever range resolution

r.=3 330 is larger than 0.34D, as is usual, the samp11ng function (Figure 2b)
along K, w111 be narrower than along Kt’ If the beam axis is rotated by v
degrees from the vertical, ¢ (ﬁ) will also be rotated by y from the K, axis,

If echo power decreases significantly as ¢ is increased, then we have
specular type reflection. The sharpness of the angular dependence is a function
both of 5, and D. Referring to Figures 2a,b and Equation (31), we see that a
necessary condition to observe a specular type echoing mechanism is for
0.542/D<<1l, That is, narrow beams are required which is consistent with simple
physical arguments. Assuming space is filled with An, specular type echoes
will then be observed only if p>>p . However, we must be cautious in applying
these criteria because we have used a specific model (i.e., Gaussian) to

(c)

L[ ] Jed
2| WA Ky
Ph

Figure 2. (a) Contour surface of constant spectra intensity @n(ﬁ)
for irregularities having symmetric correlation lengths along
x and y that are longer than the correlation length along z.
(b) Contour surface of the spectral sampling function ®y(K) for
beam axes at_ elevation angle 8 = /2 = %. (c) Contours of "
constant ¢,(K) for which the small-scale irregularities produce
isotropic scatter.
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describe the statistical properties of n and because py,p, only characterize
the most intense irregularities of refractive index, %hus, if the contours of
constant Qnﬂﬁ) have the dependence sketched in Figure 2c, scatter could be
independent of ¢ (i.e., isotropic scatter) if 21;:o>>pz"1 and 2k >>/2r -1, The
¢ (K) depicted in Figure 2c can be represented by a sum of isotropic 9. and
anisotropic ¢, parts where K, is the wave numberbeyond which ¢;>4, (in&épendent
of direction of K). ¢.(K) could have the -11/3 power law dependence on K
deduced from turbulence theories,

BACKSCATTERING FROM ANISOTROPIC IRREGULARITIES

As an example, let us consider the angular dependence of echo power when
the scattering medium can be decomposed into isotropic and amnisotropic
components (i.e., R2%5=R1+Ra). We further assume that R_ is isotropic in the
horizontal plane. To obtain an order of magnitude estimgte, we take R of the
form: s 2 52 a

= 2 h z
Ra-— <An >a exp L — = 2}

ZDh sz

where
8 = V8. "+ 38 (33)

The resolution volume coordinates are related to the mnatural coordinates x,y,z
via:

5X=61; 5y=62 cosy—§,siny; 6 =6, siny+s, cosy (34)

After introducing (34) into (33) and the result into (20), integration is
performed giving the formula for echo power from anisotropic irregularities as
being proportional to

= 23 . 2
2¥26 o "1 <An">
I = It dexp bk 22 (wv?a®-ctyy (35)
a a/hbZd®-c °
where for V6 in the antenna far field:
a2
t
az x4 (36a)
2, 2 fA
°h
2 2 o 2
bZ . Sin Y + cos Y + t (36b)
2p 2
z ZQh £
P (—lf - —li) sinycosy (36¢c)
ph pz
2 .2
d2 = Co8 ¥ 4 5in 1] + 1 (364)
20 2 2 8o 2
z ph r
Now for laminae of An such that P, is smaller than the smallest of:
2/2r6. ¢ Ph phf2 /20 fz
g r'h oo , or r_ 37

£ 2/7n6 o TR0
t%c
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we can simplify (35)

2 2 2.3
4<An"™> p p, "0 0 “w
. h "r’t 2 28
I (p) = 22 exp {~2k 2 38
al? i Xp o Py Q} (38)
where
0 2
s(y) = —hz'sinzw + coszw + Zvrzctzphzlf4 (39a)
Py
2 2 2,4
T=14+ 27 U Py /£ (39b)
Qly) =1 + (anutzph2 coszw/fa) + ph2 sin2¢/40r2 (39¢)

When height of V_ is constant and laminae are infinitesimally thin, the ratio
for echo powers gt angle y and zenith (¥=0) is:

2 2
<P (P)> p, sin Y
a - /Q(0) 2 _ 2 "h 40
Z, 005 "V o8 ¥ e -2k —ors— 1 (40

The term cosz¢ accounts for the decrease in power due to the range and o
increase with tilt away from the vertical because V. remains at constant
height. To <P (y)> we add the power Pi(w) due to isotropic irregularities to
obtain: a

<P_(y)> 2 <P(y)>
a . =
:Egzgj;.+ Acos P} {1+A} P (o)> (41)

where A=P; (0)/P,(0). Equation (41) was fitted to data (Figure 3) from ROTTGER
et al. (1981). Pertinent parameters for the Rottger et al. data are: X=6.4 m;
D=260 m; heights h=16,9->18.1 km near the tropopause; beam width 631=1,7°; and
range resolution = 300 m. We find ;=20 m for the horizontal correlation
lengths, and A=0.04 fits well these data. Comparing terms in (39) it is seen
that the Fresnel term (i.e., the 2nd term in Q(y)) does not contribute
significantly. Although we have not distinguished any one of the mechanisms
discussed in the introduction as being responsible for the echo power, we see
that scattering from anisotropic irregularities can account for the observed
angular dependence which is sufficiently peaked that one might believe a
reflection mechanism is acting.

For sake of simplicity, it is preferable to label the echoing mechanism as
scatter whenever there are several or more scattering irregularities for which
only a statistical description of their properties (e.g., size, intensity, etc.)
is practical. Thus, we do not need to invoke a reflective process to explain
observations in this case; the scatter formulation presented here can explain
all the features of the received field if indeed the medium is comprised of many
irregularities of refractive index for which only statistical properties are
knowm,

Equation (2) is the starting point for our formation for scatter from
refractive irregularities. Although we refer to (2) as the scatter integral, it
can be used as well in situations (i.e., P¢>>f) which might be interpreted as
rveflective. In order to determine echo power when irregularities have
horizontal dimensions large compared to the Fresmel radius, GAGE et al, (1981)
have used the general formula
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—-— [SOTROPIC HEIGHT = 16.9-18.1 km
~em— ANISOTROPIC 8,=17°
30 |- TOTAL POWER pr=20m
A=0.04 (14 dB)
A=6.4m
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TILT FROM VERTICAL =/2-8 (deg)

Figure 3. Angular dependence of observed mean backscatter power
(open circles) from anisotropic irregularities as the radar
beam axis is tilted away from the vertical (ROTTGER, 1981).
Fitted to the data is a model that consists of anisotropic tur-
bulence with a two-dimensional (horizontal isotropy) correlation
function in an isotropic background.

2/2

2

|&] exp {~j2k z} dz| (42)

1ldn

- 4 | J n dz

-2/2
for the power reflection coefficient where £ is the thickness of the partially
reflecting layer. In this form variations of n along the horizontal are ignored
and, if the scattering layer is in the antenna far field, the echo power P
easily found by cons:.denng an image source which gives
2 2

P =PA |R| 2%

(43)

where Ay is the effective area of the antemna (A —g}\2/4). For exzactly the same
assumptions on n, the solution of (2) should produce an identical echo power.
In Appendix A we prove this contention by simply using the second-order phase
terms; this shows the wide applicability of the solution presented earlier.

Figure 4 illustrates the type of scatter that would be effective versus the
location of the sampling wave number 2k, for the case p >>p,. The location of
boundaries are functions of the parameters Phps D, T, an the relative strengths
of &, and ¢;, and thus there could bg a d1fferent order than presented on
F1gure 4, For example, if K, i<2r /ph , then Fraunhofer scatter could be either
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ANISOTROPIC] ‘, [ 1soTROPIC g
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Figure 4. Types of echo mechanisms versus the location of the
sampling wave number 2kg for a particular ordering of boundaries.
Ph>>Py, and Vg is uniformly filled with irregularities.

anisotropic or isotropic depending upon the value of 2k_. 3Because we had
assumed infinitesimally thin laminae (K.»> in that case?, scatter will be
anisotropia no matter how large is 2k,  However, it is more likely that
Ki<2ﬁr0/p so that if 2k, was larger than 2 n~1 we could pass into a region of
isotropic scatter. Data collection at various ZkO's (i,e., multiple wavelength
radar) could establish the correlation length pzéand a value for K,. At UHF
wavelengths 2k is so large that the peak of @W(K) is expected to fall most of
the time in the tail of @n(K) at wave numbers where turbulence is mostly
isotropic and ¢, is expected to have the same 11/3rds dependence on K as does
the velocity fluctuations., However, at the longer wavelengths in the VHF band,
2k, is much smaller so it can place the @w(f) peak in a region where ¢  may
sometimes be larger than @i or smaller than it.

ECHO POWER DEPENDENCE ON RANGE AND RANGE RESOLUTION

GAGE et al. (1981) propose a model for which echo intensity varies as the
inverse square power of range but has a range resolution dependence that can
vary from zero '‘to a square law. BALSLEY and GAGE (1981) introduce the concept
of a scatter volume defined, transverse to the antenna beam, by a correlation
radius to derive an echo intensity that depends on the fourth power of range.
It is improper to form such a condition because the scatter volume Vg is
defined by either the spatial distribution of intensity of An fluctuations or
by the resolution volume Vg, whichever is smaller. We shall use the solutions
derived here to determine the conditions under which various dependences can
occur. Recently HOCKING and ROTTGER (1983) have critically reviewed the inter-
pretations of Balsley and Gage.

Assume vertical incidence and use (31) and (32) to obtain

Co > >
e >=_L 5 (K)* ¢ (K) (44)
r 2 'n W
o]
where C is a constant independent of oL and L and Q“SE) can be expressed as:

- _ 2, 2
@W(K) erWﬂKt) exp { Zcr K, } (45)
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where now Kt2== KX2+ Kyz. Consider two cases: (1) d)n(g) broad and (2) narrow

compared to q;w(f) along the wave number Kz coordinate (Figure 5).

(a) ¢ Broad
n

Integration along KZ gives a <Pr> approximated by

Cao

= L
® > = - 5 ” @w(Kt) @n(xx,xy,Zko)dede (46)
O

which illustrates that the expected echo power is proportional to range resolu—
tion (assuming a uniformly filled V6) and inversely proportional to the square
of range r . This is the usual dependence expegted when scatter is from
irregularities produced by turbulence, The r ~“dependence occurs irrespective
of whether oL is large or small compared to £°

(b) @n(f) Narrow

In this case (44) can be reduced to
—9g 2 - 2
Co 2 20r (Ksz Zko)
IO ¢ (K)o (X) dv (47)
<E 2 2 wot’'n K

T
(o]

Again <P > depgnds upon the inverse square of 1,,a result which is independent
of p,. If @W(Kt) is also broad compared to ‘%(k) along K, then (47) reduces to

co 2 “20 2(x_ -2k )2
r SZ (o} J

~ r -
<Pr> = @W(O)e

>
- @n () dVK (48)
o

in which @n(ii*) is assumed to have a peak at K =0, This case occurs when
refractive index irregularities have pp>f and strong Fourier components
clustered about 2k .. Only if 2k,=kg, will <P.,> be proportional to © 2; other~-

wise, we could have other range resolution dependencies., The integral in (48)
is the variance <m“>.

(a)
A
B,(K)
@
AN HCS

Figure 5. Cases in which ¢, is broad (a) and narrow (b) compared to fbw.
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If the irregularities are contained in a thin layer having a vertical
dimension small compared to 0y, then echo power would be independent of Uy,
when the resolution volume is centered on the layer. For resolution volumes
displaced from the layer height, echo power would have a strong dependence on
0y even exceeding the square law one! 1If the scattering irregularities are
confined to horizontal dimensions small compared to beam width, then a fourth
power range dependence would be obtained. However, the correlation length does
not determine the scatter volume dimension as stated by BALSLEY and GAGE (1981).
In the cases discussed in (a) and (b) the echo power depends on the inverse
square of range because we have assumed uniformly filled Vg.

CONCLUSIONS

When scattering layers are in the far field of an antenna, the Fresnel term
is a more important weighting function than the antenna pattern because the
width of the antenna pattern is always larger than the Fresnel radius £. Only
in the case where the correlation leagth p _of refractive index irregularities
Mm perpendicular to the beam is much smaller than f will the first-order
truncation of the Taylor series expansion for phase be valid, Then Fraunhofer
scatter is considered to be effective. However, when retention of second~-order
phase terms is necessary a Fresnel term (see Equation 20) is introduced. The
criterion for keeping the second-order phase term depends both upon beam width
and the Fresnel radius, Thus, the condition under which incoherent Fraunhofer
scatter is effective becomes solely a function of antenna diameter D (i.e.,
0¢<0.29D). When the Fresnel term needs to be included in the solution we have
the situation of Fresnel scatter or reflection. It is suggested that unless the
antenna diameter is of the order of 100 m or more, the Fresmel term is important
in determining the field scattered by refractive irregularities.

The formulas derived here establish the conditions under which a scatter or
reflection mechanism can be distinguished. However it is important to have the
proper statistical description of the irregularities in order to obtain the
spatial and temporal dependence of echo intensity. A multiple wavelength radar,
in which its beam position can be scanned, could supply invaluable data to
characterize the spectrum of refractive index irregularities and help to explain
the properties of the echoes, Only when irregularities have a spatial spectrum
form that concentrates variance <An“> at wave numbersnear 2k, does echo power
depend upon the square of range resolution. Echo power depends upon the inverse
square of ramnge r, independent of whether P is less than or greater tham £f.
However the resolution volume must be uniformly filled with 24n.
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APPENDIX A

In this appendix we shall demomstrate that (42) and (2) and identical
formulations for the situation considered in this paper (i.e., a scattering
layer in the far field of an antenna, and range resolution sufficiently narrow
so that the 1/r? term can be brought out of the integral (2)).

For pulsed transmissions the height interval that contributes to the echo
sample is determined by the pulse shape if refractive index irregularities are
distributed throughout the vertical. Therefore, in this case (dn/dz)/n in (42)
must be multiplied by the range weighting function (e.g., (11)) and then, for
pulse widths small compared to r_, the limits on z in (42) can be increased to
infinity without significant error. Thus the reflection coefficient takes the
form:

2 2
1 -z /4(7r P
R =3 I e E;-(Znn) exp {—j2koz} dz (al)

Using integration by parts and noting that n = 1 4+ /n where An<<1, (Al) can be
reduced to

2
_ z . ozt .
R = [ ( 7 + Jko) o exp { 5 JZkoz} dz (A2)
o 46r 40r
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Now for range resolution many wavelengths long (i.e., k or>>1) the term z/4o
can be ignored in the integral without adding apprec:.able error to p, Then

R = jk0 I W(z) m(z) exp {—jZkoz} dz (A3)

-0

We note here that W(z), as defined in this paper, also contains the weight
associated with the frequency transfer function of the receiver's filter.
Although this function does mnot rigorously belong in the integral for p, we
are primarily interested in the received echo power which is dependent upon the
filter function. For a linear system we could, if we ignore receiver noise,
just as well consider the filter at the transmitted output thus modifying the
pulse shape to give the equivalent weight W(z) considered herein. With similar
consideration we can also express (2) in the form

K 2 P gn
o= -2 o Iw(z)fez(r)m exp {-jZkors} dv (A&)

1 2 3
r, (27)

We now consider An to depend upon z as in the reflection formula and using (10)
for £ 2(r), the second-order expansion (14) for r S and integrating over the
horlzt?ntal we obtain

2
Tk P_gn ~j2k r ko
1 5 —F—%e °9 ¢ 12+j-r—°)le bn exp {-j2k z}dz (A5)
r, (2w) ZUt o

Now for r, in the antenna far field the temm Jk(/r has a magnitude larger than
1/20t2. The echo pover P, in temms of E, is:

Pr=r= AelEll /Zno (a6)
substitution of (A5) and (A3) into (A6) reveals
A ZlRIZ
P = _____3._____
ropk 2
[o]

which is identical to (42) derived from the reflection formula.



