
A KOSLOFF/BASAL METHOD, 3D MIGRATION PROGRAM
IMPLEMENTED ON THE CYBER 205 SUPERCOMPUTER

L. D. PYLE
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF HOUSTON
HOUSTON, TEXAS

S. R. WHEAT
BELL TELEPHONE LABORATORIES

NAPERVILLE, ILLINOIS

https://ntrs.nasa.gov/search.jsp?R=19840012164 2020-03-22T08:37:47+00:00Z

Title: A Kosloff/Basal Method, 30 Migration Proqram Implemented
on the CYBER 205 Supercomputer

Authors: L.D. Pyle* and S.R. Wheat**

ABSTRACT:

Conventional finite-difference migration has relied on approximations to
the acoustic wave equation which allow energy to propagate only downwards.
Although generally reliable, such approaches usually do not yield an accurate
migration for geological structures with strong lateral velocity variations or
)./ith steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal

the Full Acoustic Wave Equation) examined an alternative approach
based on the full acoustic wave equation. The 2D, Fourier-type algorithm which
was developed was tested by Kosloff and Baysal against synthetic data and against
physical model data. The results indicated that such a scheme gives accurate
inigration for cdmplicated structures. This paper describes the development and
testing of a yectorized, 30 migration program for the CYBER 205 using the
Kosloff/Baysal method. The program can accept as many as 65,536 zero-offset
(stacked) traces. In order to efficiently process a data cube of such magnitude,
(65 million data values), data motion aspects of the program employ the CDC
supplied bubroutine SLICE4, which provides high speed input/output, taking advan-
tage of the efficiency of the system-provided subroutines Q7BUFIN and Q7BUFOUT
and of the parallelism achievable by distributing data transfer over four differ-
ent input/output channels. The results obtained are consistent with those of
I<osloff and Baysal. Additional investigations, based upon the work reported in
this paper, are in prcgress.

This research was supported by the Control Data Corporation and the Allied
Geophysical Laboratories at the University of Houston.

*Department of Computer Science, Unversity of Houston, Houston, Texas
**Bell Telephone Laboratories, Naperville, Illinois

327

1.1

In an attempt to develop a migration technique that did not have

the faults of conventional finite-difference migration techniques,

Kosloff and Baysal introduced a migration technique based on the full

acoustic wave equation ill. While conventioml finite-difference

techniques used an approximation to the wave equation, they allowed

energy to propagate only dmnwards. Although these techniques yield

reliable :yigration in most cases, they usually do not yield an accurate

PigratiOn for geologicdl structures with strong lateral velocity

variations or with steeply dipping reflectors. The results of the

migration technique developed by Kosloff and Baysal shcwed their

technique to be able to accurately migrate these canplicated geological

structures. Furthermore, they found that there was no need to invoke

complicated schemes in an attempt to correct the deficiencies of

one-way equations 121.

328

-

ONOF'lS-IElZZ%NT.SJJ,IQX

Although the technique developd by Kosloff and Baysal provides an

excellent migration algorithm, it still is a two-dimensional migration

technique. The object of this research was to extend the 2D migration

technique of Kosloff and Baysal into a 3D migration technique that

would migrate a cube of 65,536 (or less) traces, each of length 1,024

samples. This goal miately imposed several problems that were mch

greater than extending the numerical methods of Kosloff and Baysal. Of

these problems, execution time and data motion were the most

significant. Although the 2D migration of Kosloff and Baysal was

implement& on a Digital Equipnent Corporation VAX-11/780 incorprating

a ETS-100 array processor, with favorable processing time, it was

observed that this hardware was much too ~~11 to expect it to handle

the 3D technique in a reasonable amount of time. Consequently, for its

high rate of computation, the CDC CiBER 205 located at Colorado State

University (CSU) was chosen to be the target machine. In Chapters II,

III and IV, the following aspects of the 3D migration technique are

developed: (1) the numerical methods involved: (2) the major features

of the program implementing the 3D migration technique; and (3) the

results of numerical tests of the program.

329

Conventional finittiifference migration has relied on

approximations to the wave equation which allow energy to propgate

only tiards. Although generally reliable, such equations usually do

not give accurate migration for structures with strong lateral velocity

variations or with steep dips. The migration technique presented here

is a three-dimensional extension of a two-dimensional migration

technique developad earlier by Kosloff and Baysal [31. The migration

technique presented here, referred to in this paper as the KEF

migration technique (for Kosloff/Baysal Fourier type>, is based on the

full acoustic wave equation, (2.1).

330

2.2 INHfi

It is assmed that input to the KBF program consists of a “cut@

of terosffset traces in (k,y,z=O,t) space. ‘I% KEF technique

presented here is designed to handle Nx + Ny such traces correspctlding

to?& l ~uniformlyqaced pints in the x and theydirectim. The

bn@nentatim discussed is designed so that the following must be truer

.
32 <- Nx <- 256 and Nx - 2l for sme integer i

32 <- Ny <- 256 and Ny - 2j for sag integer j

These restricticns were chosen so as to test program efficiency:

they do not apply, in general, to the KBF Scheme.

For each (x, y) pair, there will be Nt qle pints in time, &,

m - 1, Nt, at which values of pressurer P(x,y,~O,hl are given.

Nt nust also be a pwer of two.

In equation (2.1) it is assmed that the density, pt iS CmStant

and that the velocity function, c(x,y,z), will be provided by the

user. For testing pxpses, velocity is given by a Fortran function

subprogram in the co& presented in Appendix. Other forms

representing the vehcities my be used to replace the supplied

function.

331

2.3 nrE=m

Given P(x, y, z-0, tl for t - o, m, m, . . ., ‘IMAX

obtain P(x, y, zr t=O) for 2 - 0, mz, 2~2, zmx

Equation (2 .lI is Fourier transforned with respect to the o

assming density, p is constant. The seam3 order transformed

equations can then be reduced to a systen of first order equations in

the usual manner. If density Is constant, then we an write the

folldng series of equations:

P(x,y,z,t) = F -lP(x,y,z,w)

KS - 4+-1P
t

332

where

W’

where

+I
wl . .

l W n-1 I

& [!g] IL [3 -9 :] [g] (2*2)

which is of the form

where

(2.3)

(2.4)

(2.5)

333

Iht expressim gtransformd with m3pect to timP man6 that the

fmctial6 P(XtYa ftm) are repceaented &y Diecrete Fourier

Nt
P(x,y,z ,tml - c Ftx,Y, Wile Be-m (2.6)

i-l

where

(m-1) m for m - 1, 2,S + 1
2

(*(Nt+l))Ifi for m - F + 2, Nt

P is given by the Inverse Discrete Fourier Transform:

Nt
(2.7)

here

. 2+
rnt

(i - 1) for i - 1, 2, Nt +1
3

2+
rnt

(i-(Nt + 1)) for i - * +2,
2

. ..I %

.

334

L@ is the sampling interval in time; j = Jim Equation (2.6) is then
substituted in (2.1). This results in (2.21, which nust be satisfied

for each Wi, for i - 1, !k + 1.
2

Tl=b the Nt partial differential equations which provide a

discrete approximation to (2.11, involving unknown functions

P(x,y,z, t,) are replaced by !k +l partial differential equations
2

iIIVOlVing Mkn~ functions ~(X,y,Z,Wi). Note that in the transfO&

equations, dependence on time, t, has been eliminated.

With an appropriate approximation to
+9+ @

the "classifzl" 4* order Runge-Rutta algorithn is applied to integrate

equation (2.2) numerically in 2. The hector) amputational equaticns

are surranarized below:

Kl = Dz * f(z, v old)
pz K2rm*f(z+2, void++

K3 -Dz l f(z +
nz K2
2r %ld + 2)

K4 - Dx l f(z + Dz, v old + IC3)

%ew - void + (Kl + 2K2 + 2K3 + K4) / 6

335

2.4 K8F

The program has four n~~in subdivisions , whose tasks are summarized

beloW:

Part I : For each pir of (x,y) values, the corresponding

zero-offset trace of P(x,y,O,t) tiues is converted to another "trace"

of ~(x,y,O,w) M-lues by application of the discrete Fourier transform

(2.7).

Q&II: For each wi value (i=1,2,...,Nt) the F(x,y,O,wi) values

are re-ordered into wi-slices organized either sequentially in y for

each x, or sequentially in x for each y, as appropriate for further

transformations.

,l&LUX: Each wi-slice, from the transformed input cube of

"x,yrO,wi) values (see Figure 2.1) , is developed into an (X,y,Z,Wi)

'ube Of ~(x,y,Z,wi) values. TICS development is performed by

integrating equation (2.2) numerically. ?he resulting P(x,y,z,wi)

values are accunulated for all Wi for each (x,y,z) combination. Since

all the related exponential multipliers elmit equal 1 in rrqnitude

(see equation (2.611, this results in the generation of P(x,y,z,t=O)

values, as required. (Note: 5 = 0)

336

k?Qk: z = 0 throughout this data cube.

Figure 2.1
Transformed Input C&e

w-slice

There are two sub-problems of Part III:

=
&.rJ;L: Initial values for F- Z

are obtained by the application

of a twc--dimensio& Fourier transform to 6 follcwed by multiplication

by SQRrr-1 * P2
c2 _-

&I. Evanescent energy components are then

eliminated and iF Z is obtained by the application of a 2-dimensional
=

inverse Fourier transform to F- 2.

337

part III.2: B(x,y,z,w) and F-f z x,y,z,w) are propagated fran z to z+

Vz using the Runge-Kutta qth order method to integrate equation (2.2)

numerically. lb do this

mst be approximated four times for each Vz. This is achieved ty the

use of a two-dimensional Fourier transform, followed by multiplication

by -(kx2 +ky2L Kvanescentenergy is eliminated frm Bby applying a

two-dimensional Fourier transform to f;, obtaining i. For all (Kx,~)

pairs such that Kx2 + KY2 > wi/c(x,y,z), i is set to zero. Then a

two-dir&nsional inverse Fourier transform is applied to yield P', which

is input to the next step of numerical integration. Evanescent energy

isalsc rmovedfrun in the samemnner.

Part IV: For each (x,y), the P(x,y,z,t=O) values in Part III are

retrieved so as to be contiguous in Z. These space traces are each

Fourier transformed and the dmngoing energy is eliminated by filtering

out ampments with negative wave nmtbers K,. The resulting filtered

traces are inverse Fourier transformed, retaining only the real part of

the result, which is the desired 3D depth migration.

338

The speed and capacity of the computer available to an individual

researcher imposes certain restrictions on the types of problems that

can be solved. The CYE3ER 205's vector features and high sped scalar

processor provide a tool for solving problems in a matter of minutes

that would take on the order of days on a conventional scalar machine

(this speed increase depends, to a considerable extent, on the degree

to which it is possible to "vectorize" the scalar c&e). Of the

problqs that can new be solved using the CYBER 205, the migration

application presented here makes extensive use of the CYBER 205's

vector facilities. This chapter contains an overview of vector

processing on the CYEER 205 and an in-depth discussion of the data-flow

required by the KBF migration algorithm.

339

- -- _. . ._._ _. ._ ..--

3.2

This section deals primarily with the concept of vector machines;

hmever, it is not within the scope of this paper to bring the novice

up-to-date on vector computing. Several texts and ppers have been

written to perform that task. Hackney and Jesshope 141 present a

comprehensive text covering vector and parallel processors as well as

vector and parallel algorithms. Section 2.3 of Hockhey and Jesshopz

[51 is dedicated to the CDC CYEER 205. For more information on the

CYEER 205, see also Kascic 161.

The CYBER 205, announced in 1980, replaced its predecessor, the

CXXR 203. In turn, the CYBER 203, introduced in 1979, was a

re-engineered version of the STAR 100. Conceived in 1964, the first

STAR 100 became operational in 1973. The instruction set for the

vector operations in the STN? 100 were based, primrily, on the AFL

language. The STAR 100 was designed to execute at a rate of 100

Mega-flops (1 Mega-flop = one million floating point instructions

executed pzr second).

340

The CYBER 205 is a member of the family of 'pipelined" mchines.

Pipeline refers to an assembly-line style of performing oertain

operations: thusmore thanone set of operands can be operated upon at

a time. The vector processor of the,CYBER 205 has what are known as

vector pipes. These vector pipes are designed to stream contiguous

data elements (vectors) through their pipelines. Presently, the CiBER

205 can have as many as 'four vector pipes, all of which can operate

concurrently. A four pipe CYBEIR 205, processing 32-bit words, can

operate at a peak rate of 800 q-flops.

TIie various data Qpes utilized by the CYBER Fortran 2.0 language

include the following:

Connnents
--

: the machine is bit addressable
Half-word : 32-bit floating point
Ml-word : 64-bit floating point; 64-bit integer
Double-precision : 128-bit floating pint

two consecutive 64-bit words

341

VECTOR OPERATIONS AND CONSIDERATIONS

Vectors on the CUBER 205 are "pointed to" by vector descriptors.

A vector descriptor is,a 64-hit entity with the following two fields:

(1) Vector length, which cmsists of 16 bits and (2) Virtual address of

the first vector elment, which consists of the remaining 48 bits.

Thus, a vector can have a length ranging from 0 to 65,535. Note that a

bit vector can be no longer than 65,535 elements even though it

consists of only 1024 64-hit memory words.

Vector operations ame in a variety of forms on the CYBER 205,

sune of which are displayed in Table 3.1.

Table 3.1. Vector Operation Examples.

DIHEXSION A(lOO), B(1001, C(100)

L = 100

EQUIVALEXC
NUMBER VECTOR Q3DE SCAM? CDDE
-- -- ----

(1) A(1; L) = Q8vINTL(O, 1; L) co10 I=l, L
10 A(I) = I - 1

(2) B(1; L) = AU; L) * 20.0 co20 I=l,L
20 B(I) = A(I) * 20.0

(3) C(1; L) = A(1; L)*2.O+B(l; L) In 30 I = 1, L
30 C(I)=A(I)*2.0+B(I)

342

The examples in Table 3.1 are rather simple but resemble my

operations in scientific programs. Examples 1 and 2 show a vector

function call and a vector-scalar operation. Example 3 shaws a "linked

triad” operation. A linked triad operation takes advantage of CYBER

205 hardware which supports such operations. As one can sea in Table

3.2, the linked triad operations are quite efficient. An operation is

generally considered a linked triad when it consists of two vector

operands and one scalar operand.

In certain situations, the results of sane elements of a vector

opration need not be saved. In this case, there is a mechanism for

avoiding storage which involves a control vector. A control vector iS

a bit vector that specifies the storage of vector results. The control

vector will be the same length as the result vector and where it has a

value of one the corresponding result vector element will be saved and

where it has a value of zero the corresponding result vector element

will not be saved. The programmer also has the choice of reversing the

meaning of the one's and zero's in the control vector.

A certain mnber of clock cycles are needed to set up the vector

pipes. As this setup time is constant for a given operation, it is

mre efficient, in terms of total execution time, to reduce the number

of vector operations by increasing the vector lengths whenever

pssible. Table 3.2 shows the set-up times, as well as the timings for

the actual operations for various operations on the CYBER 205.

343

Table 3.2. Vector Timing Information

Numhx of Numberof
Vector Instruction Set-up Cycles Operating Cycles

--- I--

Addition, Subtraction 51 N/4

Multiplication 52 N/4

Division, Square root 80 N / .61

Linked triad 84 N/4

Where:
N= Vector length
1 Cycle =2onano-seconds
The vector operations are on 32-bit words

344

The XBF migration technique is such that ahxt all of the

necessary operations can be vectorized. When working with a pxticular

u-slice, all of the cperations, including the two-dimensional FTPs,

are vector operations. T%e ccxnputations performed at my given pint

of the artega-slice must te performed at all of the points. If there is

a certain criteria that causes saxthing different to occur at a given

ancqa-slice pint, a Wntrol vector czlll be created, dynamically, and

the operation cM still be performed in a vector manner. An example of

this rrq be found in the routine cu?DFF where the evanescent energy is

elhinated, In 6-2~~ there is no

prticular opzration in the KBF migration scbene that can not be

treated as a vector opxation. To en@size this paint, one should

examine the technique pesentcd In chapter 2 and notice that there are

no tricky operations that would prevent vectorization. In prticular,

it is imprtant to note that there are no operations that have the

follahq structure:

W 100 I = 1, N
X(I) - F(Y(I))
IF (X(I) .LT. VALJ 00 T0 200

100 awrTNuE
200 Q3NTINuE

The above wde can not be efficiently vectorized hcaum of the

inherently quential Mture of the axnptations.

345

As previously discussed, a program iqlementing the KBF migration

technique, extended into three dimensions, is easily expressed in terms

of vector operations. !%e program developed here contains very few

scalar operations, rmny of which are operations needed in order to

control various vector instructions or vector subroutine calls. Having

such a match of software to hardware, one might conclude that there are

no retraining barriers to running the program. There are, tiever, a

few major items that one tends to overlook, being overwhelmed by the

computational per of the CYBER 205. The greatest of these is the

data motion required to keep the (,‘yBm 205 vector pipes busy.

One penalty for the use of vector operations is that the data must

be contiguous in memory for greatest efficiency (let alone for scme

vector operations to run at all). Furthermore, the vectors must reside

in main memory as much as pssible in order to prevent sure death fran

thrashing. With this in mind, one must realize that the memory

requirement for the vectors that are necessary to perform a single step

of the integration of one omega slice is quite large. For example, a

(256 by 256) ccanplex XY plane will require eleven vectors of length

131,072 half-words. These,. along with various suprt vectors,

arnprise 12 large pages (1 large page = 65,536 full-words). This is

slightly less than half of the memory available to a user on a

346

2-msgaword 205, however it is about all one can expect to get for any

reasotile'period in a time-sharing envirornnent. But ,this' is really

just the tip of the iceberg - these are just the work arrays. The

total data set consists of the input data cube, the work arrays,- and

the output data cube.

Continuing with the previous example, the input cube could very

well be of size 256*256*1024 half-words and the output cube could be as

much as twice the size of the input cube (the size of the output cube

depends upon the number of ZSTEXS in the migration). This would be a

total of 201,326,592 half-words, which is equivalent to 1536 large

Fag= l
obviously, this is much more data than any CYBER 205 can have

in memory at any given tin-e. Consequently, the question of how to

handle the data-flew arises. A solution that one may consider is to

declare the data cubes to be huge arrays and to let the virtual rrunory

mechanism handle the data cubes.

To consider declaring the two data cubes as arrays, one must

realize that access to these two arrays would have to be in a

contiguous manner. Otherwise severe thrashing would result. In the

case of the KBF migration algorithm, access to the data cubes must be

done in several ways that would break the rule of contiguous access.

!mls, it would be wise to check into at least one alternate ~thod of

handling these data cubes as large arrays.

347

Before presenting the data motion n-&hod used in this study, the

need for efficiency must be established. Ccntinuing with the previous

example and without discussing the code in detail, the subroutine RHS3

takes on the order of 100 milli-seconds to run, each time it is called.

In this example, RHS3 would be called on the order of 4*512*512

(1,048,576) times. The tin-e needed for all of these calls is

approximately 29 hours. Thus, any tin-e for performing the data-motion

is added onto the 29 hours. Therefore, one needs to find a mechanism

to perform the data-motion without making the program run for an

unacceptable amount of time.

348

CXBEZ? 205 Fortran provides several routines that my be used to

implment I/O that runs concurrently with other instructions being

executed as well as with other I/O. These routines include QIBUFIN,

Q-IBUKXJT, andQ7WAIT. For detailed information on these routines, see

the CDC CYBER 200 EURTPAN VERSION 2 m.1~1 t71. A typical use for

these routines would be as follows:
.
.

CALL Q7BUF&JTL..............)
CALL hoRK(. 1

.

.

.

In this example where the programmr wishes to write information

out to a unit and have the routine KlRK run amcurrently with the I/O.

In general, as long as KRK does not use the I/O unit referred to in

the Q7BUFCUT call, it can dc anything it wishes. Thus, there is CPU

activity concurrent to I/O activity.

Another example where two I/O requests cause concurrent I/O, is as

follms:
.
.

CALL Q7BUF;NL.............)
CALL, Q7BUFWT(..............)

.

.

.

349

According to the UX CYBER FORTRAN 2 mual 181, these calls are

1-t so long as they do not access the same data block on the same

disk. Also, twoQ7BUFIN, two Q7BUEWT calls, or a Q7BUFIN and a

Q7EWEWT call can be active at one tirrre for a given unit.

It should be obvious that these "47" calls are the basis of a

solution to the problem of data-flow that was presented in the previous

section. Indeed, they are: yet they are only the basis of the method

used in this study. Dr. Bjorn Mossberg 191, of Control Data

Corporation, wrote a utility kna~n as SLICEI. Mossberg used the "Q7"

utilities; hmever, the scheme he developed is much mxe elaborate

than a series of Q7 calls to a prticular I/O unit.

It is not within the scope of this pper to duplicate Mossberg's

documentation of SLICEI. Hcwever, the concept and the terminology of

SLICE4 will be presented as it applies to this study. For efficient

operation, SLICE4 must tx tightly integrated into the master program.

merefore, its terminology affects the view that one takes of the

mster program.

In this study, two im@mentations of SLICE4 wereneededand used;

one for the input data cube and one for the output data cube. To

explain the use of !ZLICE4, only the input data cube will be treated.

The output data cube is'handled in a similar mer.

350

II

The first step in using SLICE4 is to -se a coordinate system

upon the data cube such thatthecube is NI by N2 by N3 elements in

size, where Nl is the number of elements in what one normally considers

the 2 direction, N2 is the n&r of elements in the X direction, and

N3 is the nlrmber of elements in the Y direction. The next step is to

define a second coordinate systen on the data cube. Instead of being

coordinates of individual data items, this second coordinate system

gives coordinates of "super-blocks.' Super-blocks are small cubes of

the original data set. The super-block coordinate system has Ml

super-blocks in the l-direction, E62 in the 2-direction, and NS3 in the

3-direction, where Nsl and NS2 must be multiples of four. E3 does not

have this restriction; however, for greatest efficiency, it should be

one or a multiple of four. The reason for the multiple of four rule is

that the super-blocks will reside on four different I/O units. M

matter which direction the cube is accessed, each I/O unit will have

one quarter of the super-blocks accessed. This is not the case when

only a prtial row or column of super-blocks is accessed; thus, it is

most efficient to access a complete rem or column. If it shouldhappen

that mOre than one I/O unit be controlled by a given controller, then

SLICE-4 will still execute, but in a less efficient manner (i.e. the

parallelism is prtially inhibited). Thus, one may access any four

adjacent super-blocks at a cost which is one fourth the ast of

accessing the same data with conventional techniques.

351

The super-blocks thenselves have a coordinate structure imposed

upon them. This coordinate structure is LJ by I2 by W. Where Ll is

the n&r of elements fran the data cube in the l-direction: X2 and

L3 are defined in the sama manner for their individual directions.

Summarizing the terminology presented so far, the original data

cube is broken up into El by E2 by NS3 super-blocks. Each

super-block has LJ by L2 by W data elements. Thus the follming rules

must apply:

N =N!31*Ll with E1=4*i, i=> 1

z
=IS2*L2 with E2=4*jr j => 1
=NS3*L3

The rows and columns of super-blocks are referred to as slices. A

l-slice is some column of super-blocks in the l-direction, a 2-slice is

scnne row of super-blocks in the 2-direction, and a 3-slice is scme row

of super-blocks in the 3-direction. One may access all, or just sax,

of the super-blocks of a slice via SLICE4. However, in this study,

only the most efficient access is lzerformed - accessing all

supx-blccks of a given slice. As access can be by any given slice,

SLICE4 must have the super-blocks allforrnattedin the samernanner.

Thus, when accessing a given slice, the slice is written into a buffer

by SLICE4 and the user must re-formatthedata frcan the buffer intoa

work array in the format that correspxds to the direction of access.

352

One needs to be careful to have enough array and buffer space to

access the data cube in all the necessary directions. Thus, the size

of the super-block cmes into question. The 'larger the super-block,

the fewer accesses to the data cube are needed and vita versa. In this

study, the LJ dimension was set permanently to the value of 2. The

reason for this is that, as one recalls fran the migration technique, a

complete XY plane is processed at arry given time and there is only

enough rmmxy space to have two input planes in memory at the same

time.

353

As discussed in secticrr 3.4, it would take over 29 hours of

executicm time to migrate the maximum (assumed) data cube; thus for

testing prpses, an inpt cube of size (64x64~~641 MS used. For both

of the test runs discussed here, all of the traces consisted ampletely

of zeros, except the center trace that had a single wavelet peaking at

wle 16 (in tine). l%e ccrrectly migrated result, in this case,

consists of a ht&sphere. The first run (Figures 1 md 2) incorporated

a padding in the time direction to &lay the wraparound effect

inherent in Fourier algorithms. The second run (Figures 3 and 4) did

not incorporate a @ding - thus, wraparound effects apeared. The

first run took 240 CR1 seccnds and the second run took 115 CFU seconds.

w: The migraticn of the input cube described above,

using a constant velocity of 3000 m/s, a Dz interval of 6.0 mters, a

DX interval of 12.0 mters, a Dy interval of 12.0 ureters, and a time

interval of 4 .O milli-seconds, yields the results shown in Figures 1

and 2. Figures 1 and 2 are slices of the outprt cube in the X2 and in

the YZ directions, respectively, intersecting at the oenter of the

output cube Wte the absence of the wrap-around effect).

354

J&L&xQ: The migration of the same inprt cube used in Test Run

1 using tne same sampling rates in all dimksions, but with a velocity

interface (see Figure 3; VI = 4000 m/k; V2 - 3000 m/s), yields the

results displayed in Figures 3' and 4. Note the wraparound effect

present in these figures.

4.2 S-spT.FaDF

Until a superior algorithm for performing the I/O required by the

KBF migration algorithm appears, SLICE4 will remain the most efficient

method available to perform the I/O task. -ever, should a CYBER 205

ever lx equipped with 8, or even 16, I/O channels, SLICE4 should easily

be adapted to create SLICE8 and SLICE16 versicns. Until then, there is

little chance of decreasing the tima required to perform the I/O.

Other than I/O, the Runge-Kutta 4* order algorithm emplqed in

the KBF migration technique is the most expensive feature.

Consequently, use of a less costly method for numerical integration

(e.g., a nailti-point method, using the Runge-Kutta method t0 get

started) might result in increased cunputational efficiency.

The 3D KBF migration program, implemented on the CYBER 205

Suparcanputer presented in this thesis, yields results that are

consistent with those of Kosloff and Baysal [lOI. This was confinned

by Kosloff [ill. Thus, a 3D migration programr using the KBF migration

technique based on the full acoustic wave equation) permitting lateral

velocity variations is new available for use on the CYBER 205.

355

‘I

I

I
I

‘I
I

ii] I
‘II ii1

Figure 1

._..

I
‘I
1 I

III
/I !
I’

Figure 2

356

I

“I

ii

I

‘I !
ij

I .
I I

,

II
‘I I,

I
I

Figure 3

-- Velocity
Interface

Figure 4

357

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Kosloff, D., and E. Baysal, qigration With the Full Acoustic Wave
. . Equation," SS

Review, No. 9 (19821, pp. 151-165.

Kosloff and Baysal, p. 152.

Kosloff and Baysal, pp. 151-165.

Hackney, R. W., and C. R. Jesshope, m .

. ecture. F%grw4 (Bristol: Adam Hilger Ltd.,

1981).

Hackney and Jesshope, pp. 95-126.

Kascic, M. J. Jr., VectOrPr~Qk&QQ (St. Paul:

Control Data CorIpration, 1978).

Control Data Corp., m~vber 200 Fofis (St. Paul: Control

Data Corporation, 1981).

Control Data Corp.
. * Contrpl Data Corp., M ri&rv Utll,&y .

Kosloff and Baysal, p. 155.

Personal interview with Dan Kosloff, 25 August 1983.

358

