
ADAPTING ITERATIVE ALGORITHMS FOR SOLVING LARGE 
SPARSE LINEAR SYSTEMS FOR EFFICIENT 

USE ON THE CDC CYBER 205 

DAVID R. KINCAID 
AND 

DAVID M. YOUNG 

CENTER FOR NUMERICAL ANALYSIS 
UNIVERSITY OF TEXAS AT AUSTIN 

AUSTIN, TEXAS 

https://ntrs.nasa.gov/search.jsp?R=19840012152 2020-03-22T08:31:59+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10371927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ADAPTING ITERATIVE ALGORITHMS 
FOR SOLVING LARGE SPARSE LINEAR SYSTEMS 
FOR EFFICIENT USE ON THE CDC CYBER 205 

David R. Kincaid 
David M. Young 

Center for Numerical Analysis 
University of Texas at Austin 

Austin, TX 78712 

* Adapting and designing mathematical software to achieve 
optimum performance on the CYRER 205 will be discussed 

* Comments and observations are made in light of recent work 
done at the Center for Numerical Analysis on 

- modifying the ITPACK software package 

- writing new software for vector supercomputers 

147 



Research goal - develop very efficient vector algorithms and 
software for solving large sparse linear systems 
using iterative methods 

(older) SCALAR APPROACH - develop algorithms that minimize 
either number of iterations or arithmetic operations 

* Not necessarily the correct approach for vector computers * 

(newer) VECTOR APPROACH - avoid operations such as table 
lookups, indirect addressing, etc. that are inefficient on a 
vector computer, i.e., non-vectorizable 

* Fully vectorizable code may involve more arithmetic operations 
but can be executed at a very high rate of speed * 

* Advances in high performance computers and in computer 
architecture necessitates additional research in mathematical 
software to find suitable algorithms for the supercomputers of 
today and of the future * 

148 



THE VECTORIZATION OF THE ITPACK SOFTWARE PACKAGE 

Scalar ITPACK: 

package for solving large sparse linear systems 
7 iterative algorithms available 
sparse storage format used 
Kincaid, Respess, Young, & Grimes [1982] 
ITPACK 2C (ALGORITHM 586) in T.O.M.S. 
"Transactions on Mathematical Software" 

VECTORIZATION: 

- First step: look for obvious vectorization changes since this 
was a large package of over 11,000 lines of code and we did not 
want to completely rewrite it 

- Vector ITPACK (standard Fortran version): used a minimum of 
vector syntax available in CYBER 200 Fortran for a portable 
version of Vector ITPACK 2C 

- Vector ITPACK (CYHER 205 version): a modified version of 
Vector ITPACK written using CYBER 200 Fortran vector syntax 
where possible 

149 



A.I)A.PTING SCALAR ITPACK 2C FOR HIGH PERFORMANCE COMPUTERS 

- DO loops which had been unrolled for scalar optimization were 
not recognized as vectorizable by optimizing vector compilers 

- These loops were rewritten as simple tight DO loops so that 
they would be executed in vector mode 

- The sparse storage scheme used for the matrix in Scalar ITPACK 
was row-oriented and inhibited vectorization (The IA-JA-A data 
structure as in Yale software YSMP used.) 

- A column-oriented data structure was used in Vector ITPACK to 
increase vectorization (The COEF-JCOEF data structure as in 
Purdue software ELLPACK used.) 

- The version of Vector ITPACK specifically for the CYBER 205 
was tested on the CYBER 205 at Colorado State University (CSU) 
and has been added to their Program Library 

- The improvements in time of the vector syntax version over the 
one in standard Fortran were not as significant as we had 
anticipated 

- The automatic vectorization available in the CYBER 205 Fortran 
compiler did a very good job of optimization and vectorization 

Moral: vector syntax best when used in designing and writing 
new code 

150 



PROBLEM: 
U +2u =o 

xx YY 

U = 1+ xy 

on S=(O, 1)x(0,1> 

on boundary of S 

Discretization: standard 5-point finite difference formula 

-6 
Stopping Criterion: 5.0 x 10 

Mesh Sizes: l/16; l/32; l/64; l/128; l/256 

Number of Unknowns: 225; 961; 3969; 16,129; 65,025 

Computer: CSU CYBER 205 

CYBER 200 Fortran: Large pages, unsafe vectorization 

Scalar ITPACK (unrolled DO-loops & YALE storage used; 
T.O.M.S. version) 

Modified Scalar ITPACK (rolled DO-loops & minor changes: 
Q8SDOT used) 

Vector ITPACK (rolled DO-loops, ELLPACK storage, & 
CYBER 200 Fortran vector syntax used) 

151 



TABLE I: CHANGING SPARSE STORAGE 

(Iteration .Times in Seconds with H = l/64) 

Method Iterations 

(Natural Ordering) 

JACOBI CC 178 
JACOBI SI 362 
SOR 216 
SSOR CG 34 
SSOR SI 43 

(Red-Black Ordering) 

2.509 2.184 .262 
5.214 4.480 .580 
4.700 4.597 2,453 
1.976 1.788 .831 
1.791 1.682 ,970 

JACOBI CG 178 2.402 2.056 .268 
JACOBI SI 362 4.987 4.209 .590 
SOR 196 4.110 4.017, .523 
SSOR CC 341 20.327 18.472 2.177 
SSOR SI 196 7.734 6.690 .701 
RS CG 90 1.445 1.358 118 
RS SI 182 2.980 2.779 :223 

Scalar Modified Vector 
ITPACK Scalar ITPACK ITPACK 

152 



TABLE II: CHANGING PROBLEM SIZE 
(Number of.Iterations) 

Method H= l/l6 l/32 l/64 l/l28 l/256 

(Natural Ordering) 

JACOBI CG 49 94 178 330 629 
JACOBI SI 56 179 362 772 1372 
SOR 50 104 216 422 872 
SSOR CG 16 22 34 51 73 
SSOR SI 19 29 43 61 88 

(Red-Black Ordering) 

JACOBI CG 49 
JACOBI SI 56 
SOR 52 
SSOR CG 34 
SSOR SI 51 
RS CG 25 
RS SI 42 

94 
179 
1 O-1 
62 

107 

ii: 

178 330 629 
362 772 1372 
196 396 839 
341 1058 3061 
196 373 752 

90 167 321 
182 375 704 

153 



TABLE III: CHANGING PROBLEM SIZE 

(Iteration Time in Seconds) 

Method H= l/l6 

(Natural Ordering) 

JACOBI CG .OlO 
JACOBI SI .014 
SOR .035 
SSOR CG .027 
SSOR SI .029 

(Red-Black Ordering) 

JACOBI CG .OlO 
JACOBI SI .013 
SOR .Oll 
SSOR CC .018 
SSOR SI .021 
RS CG .006 
RS SI .008 

l/32 l/64 l/l28 l/256 

.040 .251 1.800 14.115 
,091 .560 4.196 28.741 
.292 2.446 19.828 164.940 
.133 .828 4.953 28.157 
. 163 . 967 5.583 32.249 

.041 

.091 

.066 

.075 
113 

:019 
.033 

.257 1.847 14.511 

.571 4.277 29.394 
,475 4.028 34.939 

2.105 25.779 302.712 
,663 4.452 36.053 
109 

:207 
.757 5.981 

1.557 11.881 

154 



COMMENTS ON TABLE I 

- Two versions of Scalar ITPACK were compared with the CYJ3ER 205 
version of Vector ITPACK 

- Mesh size H = l/64 used for all runs 

- Scalar ITPACK: unrolled DO-loops used in basic vector 
operations for increased optimization on scalar computers 

- Modified Scalar ITPACK: standard tight DO-loops used 

- Vector Fortran compiler recognizes tight loops as vectorizable 
but not unrolled loops 

- A slight increase in speed from Scalar to Modified Scalar 
version 

- Vector ITPACK uses tight loops, Fortran vector syntax, and a 
column-oriented sparse storage scheme 

- This data structure allows the matrix-vector product operation 
to vectorize to a great extent 

* Considerable improvement in performance from scalar to vector 
version of ITPACK * 

155 



COMMENTS ON TABLE II & III 

- These tables are results of using Vector ITPACK on the same 
problem with varying mesh sizes 

- The number of iterations increase as the problem size increase 

- Comparisons based on number of iterations misleading as to the 
best method! 

- On scalar computers, SOR with natural'orderlng is widely used 
while JACOBI is not but on vector computers . . . 

- Most efficient method on the CYBER 205: 

JACOBI CG method when natural ordering 0 used 

RS CG when red-black ordering is used 

156 



SCALAR ITPACK vs. VECTOR ITPACK 

- Total time for each method is not significantly greater than 
the iteration time in the,vector version (this was not the case 
in the scalar version) 

- Only N additional workspace locations required for the vector 
version over the scalar version 

Faster scaling and permuting of the system with the 
column-oriented sparse storage scheme 

- Improved performance of the SSOR methods with the red-black 
ordering in the vector version in spite of the greater number of 
iterations 

157 



A PRE-CONDITIONED CONJUGATE GRADIENT PACKAGE 

Thomas C. OPPe ’ a graduate student atUT Austin, is working on 
a package which allows flexibility in the choice of basic 
methods and acceleration schemes. 

The package has been designed to make the addition of further 
preconditionings and acceleration schemes easy. 

Particular attention has been paid to the choice of matrix 
storage schemes with a view to maximizing vectorizability. 

Features of Package: 

- Conjugate Gradient Acceleration 

- Pre-conditioning matrix Q (Jacobi, Symmetric Successive 
Overrelaxation, Reduced System, Incomplete Cholesky, Modified 
Incomplete Cholesky, Neumann Polynomial, Parameterized 
Polynomials, Other pre conditionings planned such as Incomplete 
Block Cyclic Reduction) 

- Realistic Stopping Tests 

- Automatic estimation of iteration parameters with adaptive 
procedures 

- Two possible data structures allowed 

158 



DATA STRUCTURES 

Data structures which allow vectorizatlon to varying degree: 

EXAMPLE: 

4 -1 -2 
A= -1 4 0 

-2 0 4 
0 -2 -1 

0 
-2 
-1 
4 

ELLPACK Data Structure: 

4 -1 -2 
COEF = 4 -2 -1 

4 -1 -2 
4 -2 -1 

1 2 3 

:2 4 1 
3 4 1 
4 2 3 I 

- matrix-vector product vectorizes with the use of gathering 
routines 

JCOEF = 

- operations such as forward (back) substitutions using lower 
(upper) triangular matrices do not vectorize 

DIAGONAL Data Structure: 

4 -1 -2 JCOEF = (0, 1, 2) 
COEF = 4 0 -2 

4 -1 * 
4 * * 

- the matrix-vector product operation vectorizes without the use 
of gathering routines 

-. operations such as forward (back) substitution and 
factorizations vectorize to some extent 

159 



REFERENCES 

David R. Kincaid, John R., Respess, David M. Young, and Roger 
G. Grimes, "ALGORITHM 586 ITPACK 2C: A FORTRAN Package for 
Solving Large Sparse Linear Systems by Adaptive Accelerated 
Iterative Methods", ACM Transactions on Mathematical Software, 
Vol. 8, No. 3, September 1982. 

David R. Kincaid, Tom Oppe, and David M. Young, "Adapting 
ITPACK Routines for Use on Vector Computers," Report CNA-177, 
Center for Numerical Analysis, University of Texas at Austin, 
TX, August 1982. (In the Proceedings of the 1982 Symposium on 
CYBER 205 Applications, Institute for Computational Studies at 
Colorado State University, Fort Collins, CO.) 

David R. Kincaid and Thomas C. OPPe n "ITPACK on 
Supercomputers", Report CNA-178, Center for Numerical Analysis, 
University of Texas at Austin, TX, September 1982. (To appear 
in the Proceedings of the InterAmerican Workshop on Numerical 
Methods, Springer-Verlag, NY.) 

David R. Kincaid and David M. Young, Jr., .",The ITPACK Project: 
Past, Present, and Future", Report CNA-180, Center for Numerical 
Analysis, University of Texas at Austin, TX, March 1983. (To 
appear in ELLIPTIC PROBLEM SOLVERS II, Academic Press, NY.) 

160 




