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Abstract 

A q iscroscopic dynamical treatment of chemical systems comprising both 
light particles that require a quanta1 description and heavy ones that may be 
described adequately by classical mechanics has recently been presented 
[J. Chem. Phys. 78, 2240 (198311. The application of this “hemiquantal” 
method to the specific problem of the vibrational relaxation of a diatomic 
molecule embedded in a one-dimensional lattice is presented. The vectorization 
of a CYBER 205 algorithm which integrates the 103-104 simultaneous 
“hemiquantal” differential equations is examined with comments on opti- 
mization. Results of the simulations are briefly discussed. 

* 
David Ross Fellow 
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I. Introduction 

A microscopic dynamical description of a chemical system composed of both 

light particles that require a quanta1 description and heavy ones that may be 

described adequately by classical mechanics has been proposed recently [J. 

Chem. Phys. 78, 2240 (198311. The description consists of a self-consistent 

set of ’ ‘hemiqaantal’ ’ equations (HQE) arrived at by taking a partial classical 

limit of Heisenberg’s equations of motion for the system. In form, the EQE 

auuear to consist of Eeisenberg’s equations for the light particles coupled to 

Eamilton’s equations for the heavy particles. The coupling is self-consistent 

in that there is an instantaneous feedback between the light and heavy 

subsystems, with total energy and probability of presence of the quanta1 

subsystem being conserved. 

This paper will focus on the numerical solution of the HQE on the CYBEE 205 

for the special case of a diatomic molecule embedded in a cold, one-dimensional 

lattice. In Section II, we detail the model and specific form of the HQE, 

while the CYBER 205 algorithm and steps taken to optimize performance are 

included in Section III. Results of the simulations and some discussion of 

their physical significance are presented in Section IV. 

II. Model and Equations of Motion 

Figure 1 depicts the physical situation, i.e. a single diatomic molecule BC 

occupying a substitutional site in an otherwise pure one-dimensional lattice of 

atoms A; the end atoms of the lattice are assumed free. So that the normal 

modes of the lattice are known analytically, the mass of BC is taken to be 

equal to that of A. The heavy, classically behaving degrees of freedom are 

considered to be the displacements (ui) of the lattice atoms, including the 

86 



center of ~SSS of BC, from their oqoilibriam positions. Tho internal vibration 

(q) of BC is treated quantally aad, for eirplicity, as $ harmonic, two-state 

systom. We assumo that only nearost-neighbor atoms intoract with one another: 

A-A interactions aro harmonic; A-B and A-C interactions l ro approximated by 

Morse potentials. 

Under those conditions, the HQE take the form 

. 
cp 

-1 = -ia [eici(t) + 1 Vij(~“kwI)cjwl 

up = PiWrnA (1) 

. 
Pi(t) = - 5, lJ(Iuj(t)l) 

i 
+ 1 cjWckWF.. ((urn(t 

1Jk 
. 

Jk 

Hore ci is the occupation probability amplitodo for quanta1 state ii pi is the 

momentum conjugate to u.; 
1 

U is the harmonic part of tho potential, i.e. 

n-2 *1 

U = i 1) (ui+l - Ui12 + ) (ui+l - Ui121 # 

i=l i=n+l 

where N is the number of lattice atoms. F is the quanta1 force 

(2) 

defined by 

F ijk = a-Vij/hk (3) 

where 
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Vij(lukI) = CilV, + VAClj> , 

and the Morse potential VAB is explicitly 

%B = DAB(expI-aAB(ua-un-l + L - y,q)l-11 
2 

(4) 

(5) 

with a similar expression for V 
AC’ 

Since the ci are complex, the HQE consist of 2N+4 coupled first-order 

ordinary differential equations. Given initial conditions appropriate to the 

physical situation, we can integrate these numerically by standard techniques. 

Our principal problem now is to develop and optimize an algorithm appropriate 

to the CYBER 205. 

III. CYBJZR 205 Algorithm 

The HQE [Eqs. (l)] can be cast in terms of the vector differential equation 

i = f(X(t)), defined by 

. 
x1(t) = fl(Xl’ . . . . XnL x1(O) = xy , 

. . . . . . 
. 
x,(t) = fu(xl, . . . . x& x,(O) = x; . 

The vector X can be written as 

(6) 

x= [C,U,Pl where, for example, 

c = [Cl, c2, c3, c41 . (7) 
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From experience, we have found the HQE extremely well-behaved. Therefore, they 

can be handled with a relatively simple differential equation solver. We 

employ the familiar fourth-order Rungo-Kutta algorithm (RX41 which, for our 

case, is summarized by the following equations: 

K1 = T f (X1 

K2 = T f(X + K,/2) 

=3 = T f(X + K2/2) (8) 

K4 = T f(X + K3) 

X[(n+l)Tl = X(nT) + (K1+K4)/6 + (K2+K3)/3 

where T is an appropriately chosen time step. Our choice of RK4 is guided by 

several considerations; it is quite stable, self-starting and easily coded for 

the CYBER 205. In addition, we need no direct method of estimating truncation 

error since we can calculate total energy and probability of the system as a 

check. Eventually , the RK4 algorithm will be used to calculate input values 

for a more sophisticated predictor-corrector routine. 

Since our simulations require widely varying amounts of memory, we would 

like to assign storage at execution time. Clearly, the vector pipelines are 

used more efficiently if the entire derivative vector is manipulated at once. 

If we are to deal almost exclusively on the dynamic stack, we need a method of 

parsing the vector X into subvectors C,U,P which can then be handled 

independently. This “breaking up’ ’ is accomplished by building descriptors 

using SHIFT and OR operations on an integer equivalenced to a descriptor which 

points to an area in dynamic space. The subroutine BREAKLIP is presented in the 

Appendix. This routine allows the RK4 mainline to allocate storage dynamically 

while permitting the derivative routine to access each subvector individually. 
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We now concentrate on the vector fun&ion subprogram that calculates the 

derivative f (X1. In our model, the four probability amplitudes must be 

accessed individually each time the function is called. Rather than waste a 

vector instruction to storo the sabvector C in a temporary array, it is faster 

and more convenient to use the following sequence of hardware calls to load 

them directly into registers: 

ASSIGN TEMP, C 

CALL QBLOD (TBMP,, Cl) 

CALL Q8IX(TEMP, 64) 

CALL QSLOD(TEMP,, CZ), etc. 

The constants needed to calculate the potential and force functions -are 

computed in advance and passed via labeled common. By roviewing an assembly 

listing of the program, oao can minimize the number of loads necessary to 
. 

access those constants. The ovaluatioa of U is easily done by a vector 

multiplication with a stored reciprocal mass. 

i can be conveniently calculated by evaluating tho derivative of a fully 

harmonic potent ial U’ . Thus wo have 

- gu U’(iUjH 
i 

= k(-2ui+ui-l+ui+i) where 

U 0 = u 1 ’ UN+1 = UN’ 

which can be effected by two vector additions and two vector multiplications as 

follows: 
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-$$mljl) = UTEMP(l;N) = K*(-2.*UTRbR’(l;N) + UTlWP(O;N) + UTEMP(2;N)) 

whoro UTEMP is a temporary array sot to the current values of U. Finally, 6 is 

obtained by replacing the n-l, n, and n+l elements of UTEMP by the proper 

values reflecting the Morse potentials at the diatomic. To accomplish this, it 

is necessary to access the five displacements (ui, i = n-2, n+2}. Altornative- 

lY, descriptors could be built to define the necessary vectors on U and the 

values stored in UTRMP. In this case, hardware calls would be required to set 

the first and last elements of UTEMP, to access the five elements of U around 

un, and to store values in the three middle positions. 

The conservation of total energy and probability gives us two necessary 

criteria to check the accuracy of the numerical solution. The total energy’ is 

given by 

E= UW]) + P*P/(2mA) 

+ lco12eo + lol12e 1 

+ lco12voo + 2Re{co+c )V 1 10 + “l’2Vll 

while total probability is simply 

P = Icol2 + lc112. 

(10) 

(11) 

which must remain unity. These checks were made every 1000 iterations using 

values calculated in the first pass through the derivative routine. To 

calculate U’ [Eq. (911, the following code is used: 
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ASSIGN TRW, .DYN. N-l 

TEMP= Q~VDELT(U;TEMP) 

EU= (K/2) l Q8SDOT(TEMP,TEMP). 

In Table I, sample iteration times and estimates of floating point 

operations per second aro given. The timings are for loops without I/O or 

accuracy checks. The results of several simulations are presented in the next 

Section. 

IV. Results of Simulations 

Our simulations all take the diatomic to be in its excited state and the 

lattice to be at OK initially. This means that all elements of X(0) are zero, 

except the real component of cl(G), which is unity. The time stop size is ;Ol 

2, where o is the transition frequency of the diatomic. The quantity of 

principal 2 interest here is Ic,l , the probability of the diatomic being 

excited. The physical constants for the system, which are chosen roughly to 

mimic EC1 in Ar, are listed in Table 2. The only variable quantifies are w and 

N. The transition frequency is chosen low in order to observe relaxation on 

the time-scale of the simulation. 

Figure 1 displays plots of 1~11~ versus time for a sampling of simulations. 

Frames (a)-(c) demonstrate the effect of increasing the diatomic’s transition 

frequency w, (cm -l) holding the number of lattice atoms fixed. It appears that 

the rate of loss of energy from the diatomic increases with increasing 

frequency up to a point. In fact, frame (c) suggests that the diatomic evolves 

to a metastable state in which it loses no further energy. To. test this 

hypothesis, we increased the number of lattice atoms to N = 2000. The result, 

shown in frame (f), bears this notion out. For purposes of comparison, we 
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include a simulation for a smaller lattice (N = 200). Hero wo seo the of foot 

of a pulse, which bounces back and forth, interfering with the monotonic 

relaxation of the diatomic. 

V. Conclusion 

These simulations represent the first application of a now description of 

the dynamics of chemical processes. Most previous approaches employ long-time 

asymptotic approximations, in which the coupling between the subsystems is weak 

and the decay is therefore very slow on the time scale of molecular motions 

(lo-%). The advancement of ultrafast laser spectroscopy now allows chemists 

to monitor directly fast relaxation processes (10-12s). In this regime, the 

coupling is more signif icant, and accurately solving the equations of motion 

becomes crucial. The HQE can be used for this purpose. However, any practical 

implementation will require a vector processor, such as the CYBEB 205. Our 

calculations would be essentially impossible on Par due University’s 

6500/6500/6600 system, for exampl‘e. The calculations would take SO-100 times 

longer, even if the storage for the vectors were available. 

The main feature of our CYBER 205 algorithm is a mainline that assigns 

storage at execution time. The vector function subprogram that evaluates the 

derivative can access the subvectors individually while the mainline processes 

the entire vector. This is accomplished by building the appropriate 

descriptors using the BREAJLlJP subroutine (see Appendix). 

Some preliminary results were presented in Section IV. Future research 

will deal with the actual mechanism of energy exchange between the two 

subsystems. Also planned are some N-state models with applications in surface 

chemistry. 
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Table I. Increase of calculation speed with increase 

of number of equations 

Equations Iteration Time Mega FLOPS 

24 .157 ms 6.1 

204 .204 ms 22.8 

a04 .256 ms 37.9 

2004 .671 ms 69.3 

4004 1.19 ms 77.7 

10004 2.75 ms 83.8 

20003 5.37 ms 85.6 
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Table II. Parameters of model system 

DAB 

aAB 

k 

mB 

9.25 I lo-l5 ergs 
DAC 

1 .a3 x 10’ CIII-~ 
aAC 

a14 ergs/cm' 
"A 

1.67 x 1O-24 g 
mC 

=: 1.24 I 10 -14 ergs 

= 1.66 -1 x 10' cm 

= 6.64 x 1O-23 g 

= 5.88 x 10’~~ g 
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Appendix 

SUBROUTINE BREAKUP(X,NSUB,LENSUB,DESSUB,NDIM) 

IMPLICIT INTEGER(A-Z) 

BREARUP- TAXES ADESCRIPTOR (X) AND RANUFACTURES OTHER 

DESCRIPTORS [DESSUB(N)] THAT POINT TO SUBVECTORS OF 

LENGTHS LENSUB WHICH CORPRISE THE VECTOR POINTED 

TO BY X 

ARGUMENTS: 

X- DESCRIPTOR To BE 'BROXEN UP' 

NSUB- NUMBER OF SUBVECTORS 

LENSUB- ARRAY CONTAINING THE SUBVECTGR LENGTHS 

DESSUB- ARRAY CONTAINING THE RESULTING DESCRIPTORS 

NDIM- DIMENSION OF LENSUB AND DESSUB 

DESCRIPTOR D,X,DESSUB(NDIM) 

DIMENSION LENSUB(NDIM) 

EQUIVALENCE (D,DTERP) 

ASSIGN D,X 

ADD= SHIFT( SHIFT( DTEMP,16 ), -16) 

DO 100 N=l,NSUB 

LENG'lU= SHIFT( LENSUB( ) 

DTEMP= OR( ADD,LENGTH ) 

ASSIGN DESSUB(N),D 

ADD= ADD + 64*LENSUB(N) 

CONTINUE 

RETURN 

END 
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Figure 2. Plots of probability of finding diatomic in the excited 
state versus time for a selection of simulations of the system defined 
by parameters of Table 2. Time is in units of 0.18 picoseconds. 
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