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PROPAGATION OF FLEXURAL AND MEMBRANE WAVES
WITH FLUID LOADED NASTRAN PLATE AND SHELL ELEMENTS
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SUMMARY

This paper is concerned with modeling flexural and membrane type waves
existing in various subm.rged (or in vacuo) plate and/or shell finite element
models that are excited with steady state type harmonic loadings proporiioned
to e’¥t, Only thin walled plates and shells are treated wherein rotary inertia
and shear correction factors are not included. More specifically, the issue of
determining the shell or plate mesh size needed to represent the spatial dis-
tribution of the plate or shell response is of prime imporcance towards suc-
cessfully representing the solution to the problem at hand. To this end, a
procedure is presented for establishing guide 1ines for determining the mesh
size based on a simple test model that can be used for a variety of plate and
shell configurations such as, (1) cylindrical shells with water loading, (2)
cylindrical shells in vacuo, (3) plates with water loading, and (4) plates in
vacuo. The procedure for doing these four cases is given, with specific numer-
ical examples present only for the cylindrical shell case.

INTRODUZTION

This paper addresses the topic of modeling flexural waves and membrane
waves present in various types nf shell and plate type structural configura-
tions. The issue at hand is arriving at a simple procedure for determining a
mesh size adequate to represent the detaiis of the spatial response distribu-
tions necessary to achieve some desired level of accuracy. To be sure, it
would be too large an undertaking to answer this question for all possible
plate and shell configurations that may arise, however, the selected class of
thin walled cylindrical shells and flat plates are often the major building
blocks of a good deal of structures. Therefore, the paper will focus on these
two configurations, with the major emphasis on the cylindrical shell employing
CCONEAX elements with axisymmetrical loading. Physical problems with finite
length dimensions exhibit solution responses that often have the form of
standing wave patterns as a result of reflections from the shell boundaries.
Further, these solutions do not have a single clearly defined constant ampli-
tude traveling wave comporent as one would have, in say, an infinitely 1long
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shell or plate. A constant amplitude traveling wave (propa?ating in the x
direction at frequency w) response, R, of the form R = R,e! -Yxtut) s a desir-
able form to seek because the constant amplitude R, and associated spatial wave
TengthAy = 21/y can then be used as a measure for determining the ability of a
particular element to represent the desired wave propagation phenomenon. Devi-
ations of the finite element amplitude response from the exact response con-
stant R_ and/or deviatons of the finite element response phase angle period
from the exact spatial period can be used to judge the mesh refinement neces-
sary to achieve a desired level of accuracy. The thrust of this paper is not
to give a hard and fast rule for the number of elements per waveiength neces-
sary to achieve some desired level of accuracy, but rather to provide a proce-
dure for allowing one to establish his own level of accuracy. We take this
approach because ruiles of thumb are often dangerous, particularly in the area
of wave propagation in plate and shell structures. There are cases, for exam-
ple, in a plate or cylindrical shell where a cutoff point exists such that the
particular problem parameters (geometry, frequency, and physical constants)
result in a situation where there is no traveling wave. If the problem param-
eters happen to be such that the traveling wave root is close to the cut-off
point, a finer mesh size might be needed to properly represent the propagating
wave situation.

The symmetrically loaded (o independent loading) infinitely long cylinder
shell (with or without fluid external fluid present) is selected as the model
for examining flexural and membrane traveling waves (see Figure 1). This same
model can be used to treat all four plate and shell cases (with and without

water) discussed above. The plate cases can be realized by letting a + « and
the in vacuo cases achieved by setting the density of the fluid equal to zero.

SYMBOLS
a = radius of cylindrical shell (in)
¢ = fluid sourd speed (in/sec)
Cg = shear velocity = NG/og psi
Cp © in vacuo plate wave speed, JE/(oS(I-vZ)) (in/sec)

£

propagating wave phase velocity, ,/y
cf = in vacuo plate wave speed, Q/ hpswz/D (in/sec)
= plate modulus = Eh3/[12 (1 - v2)] of rigidity (1b/in)

harmonic frequency (Hz)

o - ©O O
]

= shear modulus of elasticity (psi)

(1 (1),
Hok ); Alt ) = Hankel Bessel functions of the first kind ord:r 0 and 1
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plate or shell thickness (in)

N<I' complex number

modified Bessel functions of order 0 and 1
w/c  acoustic wave number (in-1)

w/cfp in vacuo plate wave number (in-1)
w/c, in vacuo plate wave number (in-1)
finite element model length (in)

shell 1ine moment (1b/in/in)

axial Tine membrane force (1b/in)

fluid pressure (psi)

transverse shell line shear force (ib/in)
radial cylindrical coordinate (in)

time variable (sec)

axial motion of plate or shell (in)
amplitude of u (in)

radial motion of plate or shell (in)
amplitude of w (in)

plate coordinate direction normal to plate (in)
axial cylindrical coordinate variable (in)
wavelength of propagating wave

traveling wave number for z direction (in-1)
real part of vy

imaginary part of vy

= mass density of fluid (1b/sec2 in-4)

mass density ofstructure (1b/sec? in-4)

Poisson's ratio of structure
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FIGURE 1. FLEXURAL WAVE MODEL FOR SUBMERGED CYLINDRICAL

SHELL
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_ FIGURE 2. DEFORMATION AND EDGE LOAD NOTATION
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ANALYTICAL WAVELENGTH FORMULATION FOR
PLATES AND CYL.NDRICAL SHELLS

The analytical formulation employed for determining the exact relationship
for freely propagating waves in plate and cylindrical shell structures is
important for its own sake, however, the formulation also directly leads to the
procedure employed to set up the NASTRAN wavelength accuracy demonstration
models. Consequently, some of the important details of the development for the
freely propagating wave characteristics equation are given. The procedure
given will closely follow the one given in ref. 2, except that freely propagat-
ing rather than standing wave configurations are considered by changing the
axial vari;ation as a complex exponential variation in z rather than a cosine
variation.

0f eventual interest is both the flexural wave and axial (membrane) wave-
lengths for plates (with and without water present) and for infinitely Tlong
cylindrical shells (with and without water present). This constitutes 2 x 2 x
2 = 8 different situations. However, we can treat the eight cases at the same
time by first treating the most complex case of the submerged infinitely cylin-
drical shell. By taking appropriate limits of this case (i.e., water density
+0or shell radius - ») we can recover the other cases of interest without
requiring any new analyses.

We start with the governing simplified thin wall shell field equations for
the cylindrical shell {(ref. 1) and corresponding wave equation for the external
fluid, namely

32u oW  5%u 1
%7 aa w0 W
p
3 h2 4 2
F5 PRt Iam AT cerc - Pl s (1WA)/(EN)
p r=a
. 2
vlp__c_lz_g_t_gzo (2)

subject to the usual boundary condition relation relating the pressure gradient
normal to the shell and the shell acceleration,

) 3w
3 | T 05 (3)
r=a

where u, w are the axial, and radial displacements of the shell (see Figure 2a
for positive sense); p is the pressure in the fluid; h the shell thickness; a
the radius of the cylindrical shell; r, z are the radial axial cylindrical
coordinates; E,v are Young's modulus and Pgisgon‘s ratio of the shell; ¢, is
the plate wave speed parameter ( NE/(o1-v2)) ); and c is the acoustic wave
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speed of the fluid. The shell equations (1) are for classical thin wall plate
and shell theory and do not have rotary inertia and shear correction factors
included. Consequently, the area of interest focused on herein will be in a
frequency range of w such that the above two methods correction factors are not
necessary. This point will be expanded upon later in the paper.

The 6 symmetrical shell motion representing propagating waves in the +z
direction are assumed to take the form

u=U ez gt

0
v=20 (no hoop motion) (4)
A el YZ oiut

where U, and W, are the yet to be determined wave amplitudes, and y is tle
propagating wave number. For outward going waves, the form of the pressure
solution identically satisfying the wave equation (2) is given by ref. 2,

p(r,z) = P Hg)(r.JEEj;iﬂ)ein o-iut -

which can be easily verified by direct substitution of equation (%) into equa-
tion (2), where Py is the yet unknown pressure amplitude, and H{N ) is the
Hankel, function of the first kind of order zero. A similar expression for p
with H§ ( ) (Hankel functions of the second kind) also satisfies the wave equa-
tion, but represents inward coming waves (when k& > Y2} or resulis in an ever
increasing exponential increasing pressure field with increating r when k2 < y2,
Neither of these situations corresponds to the physical problem at hand, thus
only the Hankel function of the first kind is retained.

The characteristic equation resulting in an interaction equation relatiug
the driving frequency w and admissible propagating wave numbers, 7y, is obtained
by substituting equations (4) and (5) into equation (1), subject to the bound-
ary condition {3): actually substituting equations (4) and (5) into condition
(3) leads to the relation between the surface motion amplitude W, and the pres-
sure amplitude Po> namely

R - (52)
Niiy?' 1Y (aN k27

Thus the resulting two linear equations in the W_, Uo coefficients is given by

Uy <‘g—; - y2> + w0<- %) = 0 (6)

p
(v 1, hz (1-v2)u?HY) (a NiZ—?)
U01 (?}D + wo [57'+ 7Y - (w/cp)2 - 0 0

EnNkZZ HY) (aNK2+y?)

The nontrivial solution is obtained by settingy the determinant of the

amplitude coefficients equal to zero resulting in (72)

2 2 - \j - 5

<(c%’ - Yz)[a%“ v - forep) - 4 g’ 4 r—z—f\kz ] (%) o

P Eh'fk-’--y?- Hp(a ke-y*") 1

for k2 > y2 3
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or in another equivalent form of
(7b)
2 2 2 2 2
W 2\| 1 h® 2 _ (1-v¥)a? Ky (aNy2-k? ) AN
cz - Y )ar oYt - (w/ep)? - + =0
(C )a 1z PY EnNTEKRT K, (aNY2-KT) (F)

for 2 > k2

where the Ko() and K3 () are modified Bessel functions and are related to the
Hankel functions by the identity

K, (0 = T4 pbax) (8)

Noting that the in vacuo flexural wave number, kf , formla for a plate is
given by P

kfp = _‘Qﬁw_ (9)

and the in vacuo membrane compressional wave number, kp, given by

- W W
kp = -(-:—p- = ————-—E———— (10)
N <l-v2§ps

and finally the acoustic wave number by

k=% (11)

where ¢ is the acoustic wave speed of the fluid medium; the characteristic
equation for the traveling wave number, non-dimensionalized with respect to the
acoustic wave number k, can algebraically be rewritten as

ﬁ) HY (ka 1-(%)2 ) )

. 2. ) 1 (%) (y/k)® ( s
(7401-t000°) e () 1= iy 8 e {7}
+ _(ily,v\’zka/k)z - 0 (12a)

For (%)‘ <1

W] L) KO (ka -1 )
((kp/k)2=(v/K)?) | 713 (‘Ek ’ (kg K)° kaJ(f)’q’Kl(kaE)E-l )

M ) i . (12b)
For({-) > 1
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The original dimensional form of the characteristic equation (7) depended on
the eight parameters h, u, E, v, p, psr s C, for the resulting wave numbery ;
however, the above equation (12} form only depends on the reduced number of 5
non-dimensional parameters, namely k,/k , ka, p/ps, a/h, and v for the result-
ing non-dimensional wave numbers y/K. The term (kgp/k) is not an independent
parameter since it can be expressed in terms of the other ones through the
relation

k , .
_EE.= (12)% NYKkp/k)(%)/(ka)' (13)

Roots of Characteristic Equation and Mode Shapes

The roots of the frequency equation (12) cover several special cases and
require further elaboration. The roots of interest for freely propagating
waves are those for whichy =y, is a real quantity, wherein the shell response
has arguments (see equation (4{) of the traveling wave form i(y.z - wt) and
corresponds to a wave propagating in the +z direction and the corresponding
wavelength is given by

A= (14)

r
Possibly, roots of the characteristic equation are complex (e.g., this could be
the case when employing equation (12a) due to the complex form of the Hankel
functions Hpl ) = gp( ) + i Y,( )). In these situations, the complex root can
be written in the form y = y, + iy; and substitution of this quantity into the
sf. 211 response equation (4), shows that the axial z response is proportional to
dYr*1¥iJZ = dYr’ €YiZ, Thus the solution amplitude would either reduce

{vyi > 0) or grow indefinitely (y; < 0) with z according to the sign of yj. The
wavelength of the reducing (or growing) fluxuations is still given by),. = 2n/y, .

The case of interest in the remainder of this paper is the one for which
there are freely propagating waves of constant amplitude. This situation will
result when (Y/k)2 > 1 wherein the modified Bessel functions K, and K; have
real arguments and consequently equation (12b) usually results in real roots
for y. The situation (Y/k)2 > 1 implies the acoustic wavelength A3 = 2m/k is
Tonger than the propagating wavelength,Xp =2 . vy,

For cylindrical shells, unlike the infinite plate, the axial membrane
force N,, will also result in a radial component of motion. Consequently, the
axial and radial motions for the membrane propagation or the flexural wave
propagation are coupled. In fact, the same characteristic equation (12b) can
be used to determine both the membrane and flexural propagating wave numbers
Yax»> Yfl- Whether a given root,Yy , corresponds to the membrane or flexural wave
can be established by examining the mode shape. More specifically, the ratio
of Ug/Wy can be solved from either of the two homogenous equations (6); upon
substituting the root, y, into say the first of equations (6) yields
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Yo _vya . uluk) e (15)
" (&7 ) <’\i‘)‘(;ﬁ) Jika)

Upon subsituting the y/k root in question into equation (15), the size of Ug
relative to Wy can be established, wherein IUO/Nol >> 1.0 implied a dominant
axial motion hence signifying a membrane propagating wave and |Uy/W,| << 1.0
implies a dominant radial motion hence signifying a flexural propagating wave.

Limiting Cases of General Characteristic Equation

Several limiting cases of the general characteristic equation (12b) not
only provide useful information by their own merit (i.e., the traveling wave
characteristic equation of a plate in fluid or air;or, the case of a cylinder in
air) but at the same time provide insight with regard to where (i.e., the range
of (y/k)) to search for the root. It is instructive to start with the simplest
case of an infinite flat plate in vacuo and build up to the more general case
of a submerged infinite cylinder.

e infinite plate in vacuo

This situation is realized by taking the 1imit as the fluid to structure
mass ratio goes to zero, p/pg > 0, and as the non-dimensional frequency param-
eters ka = ©, It is noted that ka > = can be realized by having the radius
a » o at a finite frequency w = k/c. Trus equation (12b) reduces to

k)] a

which by inspection has the roots

y=KkK and vy =kfp

p
Substituting y = kp into equations (6) shows that

b 1(0) + Wy + (vkp/=) =0

0 P

. 17)
U i(0) + W_ = [hn k4 12 - (w/c )2] =0 (
o T N7 kp/lZ - uicp)
thus, Wy = 0 and Uy is any constant, and hence this mode corresponds to pure
axial motion with no radial motion, thus indicating the y = k., root is for the
membrane traveling wave. Similarly, substituting y = kfp intg equations (6)
yields

0
,————/\"""\
Uy [wz/cp2 - k%p] + W, v (0) =0
U,i [0] + W, « [0] =0 (18)
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thus L = 0, and W, is any constant and hence corresponds to pure flexural
motion with no axial motion.

e infinite plate in fluid
This situation is similarly obtained by passing to the limit as a=* = in

equation (12b) and noting that (Ko (x)/K;(x)) > 1 as x> . Thus equation (12b)
reduces to

[Ck‘l) "(%)2} b (%2)" ' k(hf%)z,g)z-i ; ° 4

where again separate membrane traveling wavesand flexural traveling wavesresult
by separately equating the [ 1, and [ ], terms to zero in quation (19). Thus
by inspectionﬁ as in the in vacuo plate case,

il

is again a root for the membrane propagating wave and the root of

(£) (o)
ALY =0 (19a)
() T 2

provides the flexural wave root. It is noted that equation (19a) is algebrai-
cally equivalent to equation (7.10) of ref. 2. Upon inspecting equation (19a),
it is seen that the effect of the water presence is to make the v/k root a
larger value (i.e., the flexural wavelength is smaller) than what would have
been the caze in the absence of external water. Thus the water has no effect
on the membrane wave root, however the flexural wave root is effected and must
be solved numericaliy with some sort of root searchiny scheme.

e infinite in vacuo cylindrical shell

The characteristic equation is again obtained from the general (12b) case,
by passing to the 1imit as (p/pg) - 0, thus obtaining

f, 4 2.2
2 _ 2y s o k2 Y v =
(kb - Ila‘ ke ;1 (F;;) %] +--E;—- 0 (20)
which corresponds to a cubic equation in the desired y2 root and consequently
can be solved for exactly without resorting to 1 numerical root finder. Due to
the presence of the last term in equation (20), vy = kp is no longer the exact
root for the membrane traveling wave, however, the {vy /a)2 does not usually
shift the membrane wave number root very far from the plate solution, y = kpas
can be seen after solving for the exact roots of equation (20). Only positive
values for Y2 obtained from the cubic solution will correspond to freely propa-
gating waves. Although the exact membrane and flexural roots are coupled
through the last term in equation (20), an approximation of the root, say for
roughing out the mesh size needed, can be obtained from the approximations
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obtained after dropping the normally small (, y/a)2 term, hence

Y:k
for membrane wgves, and

4 1 - 1
e I

k
p
for flexural waves.

MODELING FLEXURAL AND MEMBRANE WAVES WITH NASTRAN

A simplified model is needed for the determination of the necessary number
of elements per wavelength required to accurately model the membrane and/or
flexural freely propagating waves in NASTRAN type elements. The procedure used
here is to cut a segment (say at least one wavelength long) out of the infi-
nitely long model. At one cut of the model (call it the starting end "A"),
moments and forces existing in the freely propagating wave are applied explic-
itly; at the other end (call it the termination end "B"), an appropriate
absorbing boundary conditions is applied (dampers that relate shell edge veloc-
ities to edge moments and forces). The boundary absorbers implicitly apply the
appropriate amount of moment or force that would have been present internally
at that section of the shell. In theory, it would be possible to apply explic-
it appropriately phased mements and forces at the termination end as well, how-
ever, this is not done for two reasons. First, there is a certain amount of
phase angle drift (an amount beyond the expected termination phase of yL) that
exists as the wave propagates along the axis of the shell (or plate) and it is
not known a priori what the phase drift is so that the termination moments and
forces can't be appropriately adjusted; the application of boundary absorbers,
however, does not require any phase drift adjustment. Secondly, the implemen-
tation of the absorbers gives future insight on how to truncate finite element

1ells or plates in such a manner that large problems requiring premature model
termination can be made.

In Vacuo Cylindrical Shell
® determination of edge loadin3 moments and forces

The appropriate moments and forces at the starting end A can be .:termined
from the Relationsnips relating the shell motion u, w to the shell edge loads
NQ, A, M and 2-e given by the shell theory relations (ref. 1)

A 32w

_ A
My=D3m 0

- ndw A _ Eh U, W
i Mt amy () (21)
where the equation (21) moments and forces are line loads (i.e., loads per unit

circumferential arc length) obeying the shell sign convention of Figure 2a.
Upon substituting equations (4) into equations (21), it follows that
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A = _ .2 i(yz-wt) A, i .3 i(yz-wt)

Z v4D w el Q ivy?D wo e (22)
A Eh : i(yz-wt) |, v i(yz-wt)

Nz = [‘ v Uy e talk e

where the relation between U, and W, is governed by equation (15) for cylindri-
cal shells. For plates fa » m) Uy and Wy are independent, where for membrane
waves U, denotes the wave amp]1tude with Wy = 0 and for flexural waves Wp is
the wave amplitude with J, = 0.

Equations (22) are not in a form ready to use in NASTRAN CCONEAX elements
for three reasons: first, NASTRAN input is not in the usual line load form as
is the case with shell theory, but rather are total values wherein the li‘e
loads must be multiplied by 2ma; second, the finite elemeny type sign conven-
tion (like quantities at both ends of the member are positive in the same
sense) is different from the shell theory convention (e.g., compare Figures 2a
and 2b) and; third, NASTRAN has an e*1@t hardwired intc the code, consequently
an adJustment in the analytical solution is necessary to compensate for this
point, Specifically, a wave traveling in the +z direction also can be repre-
sented with an i(-yz + »t) type argument, thus by replacing y with -y and w
with -, in the analytical solutions will accomplish the corresponding correc-
tion. Thus accounting for all three compensations and also incorporating
equation (15), the NASTRAN loading for the cylindrical shell at the starting
cut A, evaluated at z = 0, is given by:

~A - 2 +i(ﬂt
M7 = 2ma y* D W, e NASTRAN
) ) cutTA
= 2ma v3 D W et Hiut mig;“g (23)
cylinder
A _ 27a w2V W +Hiwt
N7 = Satny (W‘ﬁ;)

where W, is any suitable displacement ampiitude factor that is selected by the
user, and vy fs the root directly from the appropriate frequency equation

(sign changes in y and  have already been compensated for in setting up equa-
tion (23)). The etiwt factors are of course omitted when entered data into

NASTRAN since this factor is automatically accounted for internal to the
program.

e determination of shell edge termination absorbers

The membrane or flexural wave incident upon the shell termination will
reflect from the end unless the appropriate boundary condition is inserted to
simulate the effect of having an infinitely long sheli. Here the appropriate
boundary absorber is developed for each of the three shell edge loads. Follow-
ing the same procedure used to setup equations (23), the internai moments and
forces at the termination end are given by
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63 - 272 v3 D e+1‘90° o ptint -ivl (24)
- +3900 . .

NB _ -2ma hypg wle 9 Uo e+1mt e-1yL

The equations (24) can be written in terms of velocity, by noting U= +iwu
W = iuw, dw/dx = 6 = (-iy)(iww) thus equations (24) become
~ -2 D /2 ~8  -2nay®l ~8 - .
W BR8N Gy WL TERAIEG ()
where the above forces are the forces on the shell edge B. Dampers attached to

the end of the shell would have an internal force or moment equal and opposite

to the value at the shell edge, thus the forces and moments internal to the
damper =»re given by

wﬁ=c9-(e) Q =Cy- ) W o=g - (W) (26)
where the damper values are given by
2 NASTRAN
Ce = 2‘(r:ra D CQ = ZTTaCDl_ CN = 2rah %CY CCONEAX (27‘
Y Y DAMPERS
where the propagation phase velocity, Cy» is defined by
o =% (28)

where Y is the root of the characteristic equation. In the case of a plate,
the same dampers can be used, ex~2pt the 2ra would be replaced by the width of
the plate (perpendicular to the direction of propagation) and appropriately
subdivided between the element termination nodes (two t=rmination nodes for

actual plate elements and one termination node for beam elements with a plane
strain correction on the Young's modulus).

Submerged Cylindrical Shell
® determination of edge loading moments and forces
The appropriate moments and forces employed to drive the shell edg~ empioy
the same equation (23) formulas, except that the propagating wave number root, vy
must be determined from equations (12b)in this case.
e determination of shell edge termination dampers

Again equations (27) can be used, except that y as determined from equa-
tions (27) is employed.
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The appropriate fluid loading can be obtained by substituting equation

(5a) into (5) (and converting into the -iyz + wt form by lettingy = -y and
w = -w) to obtain

o(rrz) = 2o ? H) (rNPST) vz + et

— —I— (29)
N 1Y (aNKEoT)
Employing the large argument Bessel function approximations (ref. 5) of
o = Nz el 8 By = g (x)e 2 (30)
the equation (29) can be .ewritten for, |rNY2 - k2 | > 10.0, in the form
-(r/a-1)(aNy2-k?' . .
p(r,z) = Mo pu” e e V2 tlut (31)

NYZ-kZ" Nr/a
where equation (31} can be used as the enforced pressure at the face z = 0.
Equation (31) can also be used to drive plate models by first making a

change in variable r = x + a (where x is the outward distance measured from the

middie surface of the shell) and then appropriately passing to the limit as a+o
to obtain

_ 2 g% "J’Y-Z';k-21
p(x,2) = o pu €
NYTRT

e‘iYZ e+i(.|.)t (32)

e decermination of fluid loading on face z = L

On this face we chocose to absorb the incident pressure wave with an
absorber type boundary condition rather than load it explicitly with equation
(29) evaluated at z = L. This approach is consistent with the manner in which
the shell was terminated. The relationship between pressure and applied forces
in a finite element formulation is that the normal gradient of the pressure is
proportional to the finite clement model force. Therefore, the gradient of
g;gagg;gsyormal to the cut, z = L is needed and given by (with equation (5)i(+yz-wt)

£ ivp(r,2) (34)

and since for steady state problems,

3P ..
3t - ~lop
it follows
9P _ -y 9P - =Y §
7 o 3t-w P’ (35)
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is the boundary condition to employ along the vertical fluid cut z = L. For
direct acoustic fluid elements (ref. 6), the finite element nodal force is
related to the normal gradient by the relaticn

Fo [{N}T B, ds (36)

where [N] is the e'ement shape function. For lumped force applications, equa-
tion (36) is represented as, (where n' is the unit normal to the fluid and AA
is an appropriate amount of area surrounding the node at the point of the Fy,

application]

= Ap9P
Fn AAan' (37)

and upon substituting equation (35) intc (37) one obtains

= Y
F = A D (38)
and represents the nodal force on the fluid as being proportional to the pres-
sure time rate of change. Thus the internal force in a damper attached to the
node would te equal and opposite in value and given by

damp

F.

= aan LD
n "AAwp

where the dempar value would be

cP - DAy direct pressure method damper (39
d W (no analogy) for z = L face )

In the case of NASTRAN, the acoustic fluid is modeled by way of an analogy
which reduces the elasticity equations to the Helmholtz equation by way of
introducing dummy constants into the material matrix and allowing the displace-
ment variable, u,, occupy the pressure variable (see ref. 3 for details). The
analogy has been”adcpted herein, consequently, an additional factor of pc2
appears in equation (37), and consequently the frequency dependent NASTRAN
axial damper needs to be modified by this same factor and thusly equation (39)
is regkﬁgﬁbgy(yep]agin903+q»ﬁ¥e~yconvertstoNASTRANconvention;thisresu]tsin

the sa since signs cance
(P = DAY oc? NASTRAN (ref. 3) analogy damper (40)
d w for z = L face, withydirectly from

appropriate characteristic equation.
It is.noted, that so long as Yis a real quantity (e.g., characteristic root
equation for Y is obtained from equation (12b)), the termination condition in
the z direction is a pure damper. However, where Y is complex (e.g., root from
equation (12a)) substitution of vy into the equation (40) damper will result in
a complex damper. The real part can be treated as above, but the complex part
will end up looking like a resistance (spring) when combined with the +iy
appearing as a multiplier in the assembled damping matrix in NASTRAN. Thus,
the imaginar: part of the damper (if it is present) can be apptied as a nodal
spring whose spring constant is

NASTRAN analogy spring

isA(-y] 2) . 2 i (with yi directly from
- + = -
( (y~ Pc?) (+iw) = -0A pc y appropriate characteristic
192equation}
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wherein for decaying waves, Yl will be a positive number making the spring
constant positive.

. Equation (40) can equally be applied to plate mode! problems, upon proper]
1nterp;%ting AA. quatly PP P ' P s upon properly

e determination of fluid loading on outer face r = r,

Here on the outer radial fluid face, the boundary condition is developed just
as in the previous case, except that now the gradient has to be taken in the
direction of the outward normal (n' = r). Thus operating on equation (29) with
o )/ r and then employing the equation (30) large argument relations, the
following result is obtained

%;L_ x -Nv2ok? 'p(r,z) (41)
Unlike equation (34), this result does not have a factor i relating the gradi-
ent of p and p itself, consequently, upon substition of equaiion (41) into

equation (37), one obtains

F, = -0A NYZ-kZ p (842)

and represents the nodal force on the fluid as being proportional to the pres-
sure. Thus the internal force in a spring attached to the node would be equal
and opposite in value and is given by

F'S1pg = +AA ,'Y2-k2 p

where the spring constant value would be

direct pressure method spring

p _ %
KP = aANy2-k2 (no analogy) for r = r face (43)
and in the case of employing the ref. 3 pressure analogy, the counterpart of

equation (43) is

kP = M pct NYZkZ" NASTRAN (ref. 3) analogy (44)
spring for r = r, face

When y is a root of equation (12b) (y2 > k2), equation (44) implies a real
spring is all that is needed. However, when v2 < kZ, and equation (12a) is
employed, the roots, y, are, in general, complex which implies that equation
(44) will have a real and imaginary part. The real part of KP is still a
spring, however the imaginary portion can be converted into a damper by divid-
ing the imaginary part coefficient (not including i) of equation (44) by w (to
compensate for the ( multiplied in by the complex stiffness formation).

Equation (44) can equally be applied to plate model problems,upon appropri-
ately interpreting AA.
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Limitations of Membrane and Flexural Wave Modeling

The scope of this study is limited to a driving frequency region where the
influence of plate rotary inertia and shear deformation on the flexural motions
are not important. In fact, this is the limitation of the propagating wave-
length formulas given earlier. The ability of NASTRAN to account for these
higher order effects is a topic all in itself and will not be addressed in this
paper wherein stiffness and mass formulations along the lines given in ref. 7
must be considered.

Although we are interes*ed in both plate and shell propagating waves, the
classical plate theory (CPT) can provide insight with regard to the point at
which theabove mentioned correction factors are needed. The CPT is defined
here as the special case of equation (1) with a > . Midlin's classical paper
(ref. 4) provides a guideline for when the characteristic wave equations pre-
sented herein no longer predicts the proper waves number roots, y. As pointed
out in ref. 4, the exact elasticity solution to the same problem shows that CPT
can predict the correct flexural wave numbers when the corresponding 27 /vy
wavelengths are long in comparison with the thickness of the plate. As the
wavelength gets smaller, the exact elasticity solution traveling wave phase
velocity (w/y), has as its upper limit, the velocity of the Rayleigh surface
wave. Hence the CPT cannot be expected to give good results for the wave num-
bers, y, as the driving frequencies get increasingly large. Reference 4 pro-
vides a plot of propagating phase velocity = w/y {non-dimensionalized with
respect to the shear wave velocity ¢g = N Ghg ) versus the plate thickness
(non-dimensionalized with respect to the flexural wavei2ngth, 27/ y for a fixed
Poisson's ratio (v= 0.5) and is reproduced here as Figure 3. The CPT -*raight
line plot, curve II, is nothing more than equation (9) rewritten in the form

-h e (44a)
¢s Ay Np(1-v)
and is compared against curve 1, the exact elasticity solution. Curves III,
IV, and V are different combinations of adding rotary intericr and shear cor-
rection factors. Figure 3 suggests that the shear correction acdition has the
biggest impact on correcting the CPT case. The shear thickness parameter 72,
in the NASTRAN CCONEAX elements appears to attempt to account for shear
effects, however, this point has not been pursued with regard to attempting to
make NASTRAN propagate flexural waves for h/AY > 0.15

I

The results in Figure 3 suggest that a h/'\Y (plate thickness-to-flexural
wavelength ratic) of limit of 0.15 be maintained, i.e.,

{‘;s 0.15 (45)
or equivalently,

h

£ 20,15 (45a)

where vy is the flexural wave number root of the problem at hand. The Timit
given by equation (45a) employed Figure 3 which is a plot based on a fixed
Poisson's ratio (i.e., v = 0.5), The guideline formula can still be used for
other vaiues of Poisson's ratio due to the weak dependence of the plots on v .
In fact, for the common case of v= 0.3, a value of h/\, = 0.15 implies a
cY/cS ordinate of 0.4598 for the CPT case and a value of 0.4032 in the exact

194



D

LASSICAL THEORY ¢ SHEAR CORRECTION

\I -EXACT SOLUTION OF
3-DIMENSIONAL EQUATIONS

FLEXURAL PHASE VELOCITY/SHEAR
WAVE VELOCITY

+ ROTATORY INERTIA
AND SHEAR counccnau

09534

CY/Cs

A A i
[}) 10 [E}

I 1
20 23 30

h/Ay =+ (THICKNESS/FLEXURAL WAVE LENGTH)

FIGURE 3. DEVIATION OF THIMN WALL PLATE THEORY
FROM EXACT THEORY

ol

ro =4, 32*

3_(:/-

w

CCONEAXI
ELEMENT

Ly 22

4 Yj:fiif\§¥SSHELLTEPMINA TYPICAL AXIAL
’r—' 21 TION DAMPERS FLUID
DAMPER Ejt/—-
LJ[JEJE%
00000

oon0n

Cogon
a0
C
]
e
sees
8

’/
A
‘G"""“irﬁ‘
me: @B
oor QU
D Bégé
|
O
0
0 -
cjt][] (]
[J aag
88
[3
gotccatd

-

%888““88@ Gy vCA'L

DRIVEN ON z=0 CUT
CTRAPAX

NODE NUMBZRING PATTERN) ELEMENT
FIGURE 4. FINITE ELEMENT MESH (20-ELEMENT SHELL)

i
l
‘ (STARTING POINT OF
i
r

195

_ FLUID AND SHELL \\_

———= ORIGINAL PAGE (3
OF POOR QUALITY

LAST NODE
462

RAPIAL FLUID
ING

- 3'2"

2



theory case. However, for v = 0.5, a h/), = 0.15 implies a CY/CS ordinate of
0.5441 in the CPT case and a value of 0.4329 in the exact theory case (computed
from equation (40) of ref. 4). Thus, illustrating the Figure 3 v = 0.5 case is
an extreme case (e.g., 17.5% deviaton for v = 0.5 compared to 14.0% for v =
0.3) with regard to the point at which CPT deviates from the exact theory.

Thus, to test inequality (45a), one simply employs the appropriate charac-
teristic equation developed (e.g., equation (12b)) and after obtaining the
flexural wave -oot Y, verify whether in equation (45a) is satisfied.

Comments on Mass Matrix

The issue of an appropriate mass matrix for dynamics problems has 1long
been a topic of discussion in the literature on finite elements. Here we take
the simpliest approach, namely that of a diagonal lumped mass matrix for the
shell. Upon employing the lumped approach, for say CCONAX elements, NASTRAN
generates zero valued rotary inertia mass matrix contributions. To fill this
void, the work by ref. 8 was employed wherein the suggested diagonal rotary
inertia terms at a node would be given by

ep2 2
_ mSL 1 h
L = =1 [10*(2)] (46)
for the single element contribution at a rotation degree-of-freedom node where
mé is the total mass of the element, £ is the element length, h the element
thickness. Thus end point nodes with one element framing into the node employs

equation (46) once and internal nodes with two elements framing into the same
node applys equation (46) twice.

DEMONSTRATION PROBLEMS

A series of limited, yet fully representative, demonstration problems are
presented here to illustrate the use of the procedures aiscussed in the theo-
retical section. First an in vacuo cylindrical shell is treated employing three
different mesh distributions. Secondly, the same shell (employing the finer
mesh distribution) is solved with external water present. All solutions are
obtained with COSMIC SOL-8 employing the VAX computer version of NASTRAN.

In Vacuo Cylinder Example

An infinite cylindrical shell is excited and is propagating a constant
amplitude harmonic wave in the plus z direction. The shell (shown in Figure 1)
is cut at points A and B and is modeled as a 3.2 inch long,20 element CCONEAX
finite element model shown in Figure 4 (in the in vacuo case considered here,
the fluid is omitted in the model). The point A (incident side of the shell)
js driven with equations (23) and is terminated with three boundary dampers
sized according to equations (27). The problem parameters correspond to the
following data
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a=40.0" , h

0.20" , E = 154,149.39 psi

(47)
v=0.3  , pg=0.000048, = 9749.99 rad/sec

wherein the corresponding wave number roots to the characteristic equation (20)
are given by

¥y = 0.163949685 for the membrane root

and (48)
vy = 1.67707302 for the flexural wave root

hence the membrane wavelength is 12.566 inches and the flexural wavelength is
3.7465 inches.

® flexural wave example

The shell termination dampers at cut B are computed vpon substitution of
the equation (48) flexural wave root into equations (27) to obtain

Cy = 4.8819909 CQ = 13.7309605 CN = 14.0269417 (49)

and the shell edge forces, for an arbitrarily selected driven amplitude of
Wo = 1.0 x 1076, at the driver cut end A are obtained by substituting the flex-
ural wave root into equations (23) to obtain (supressing the exponential time
factorwhere dampers are installed with DMIG cards ):

Mh = 7.9827681 x 10-2 QA = 0.1338768 ein/2

Nb = 6.175285 x 10-4

(50)
The rotary inertia mass entries are computed with equation (46). The corre-
sponding NASTRAN input is given in Figure 5 for reference purposes. The exact
solution is a constant amplitude displacement wave varying as

w = No e](-yz * Mt)

Consequently, the exact solution is easy to plot and is simply a constant mag-
nitude radial displacement of magnitude Wy = 1 x 10-6 and whose phase angle
rolls off linearly with z and reploting with spatial period 2n/y. The exact
solution versus the NASTRAN solution is given in Figure 6 and shows good
agreement between the exact solution and the corresponding NASTRAN solution.
Since the model element spacing is 0.16 inches, the solution model is a 23%
element per wavelength case. In order to investigate the influence of mesh
size on solution accuracy, the same 3.2 inch model was run for two coarser
meshes; one having 5 elements and the other having only 3 elements. The same
dampers and edge loads are reapplied to the coarser models. The resulting
solutions are shown in Figure 7 and as can be seen, the quality of the solution
(i.e., the ability of the cylindrical shell to propagate flexural waves) has
degraded over the finer mesh example, particularly for the three element shell.
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® membrane wave example

Again, the 20 element model is considered, except in this case, we propa-
gate a membrane wave along the +z direction of the same cylindrical shell con-
sidered for the flexural wave example. The procedure is exactly the same here,
except that the membrane root (first of equations {48)) is employed to compute
the shell termination dampers and driving moments and forces. Thus, substitut-
ing the membrane root into equations (27) and (23), the model dampers and edge
loads are in this case:

Co = 0.4772607  Cp = 0.012828529  Cy = 143.484479
and

F‘é = 7.6290549 x 10-4 QA = 1.2507811 x 10-4 ¢in/2

N = -29.909871

The solution response for the dominant axial motion is plotted in Figure 8 and
is non-dimensionalized with respect to the, Ug, axial wave amplitude magnitude
(by equation (15), | Up| = 21.37985 x 10-6 when W, = 1.0 x 10-6). The radial
deflection, non-dimensionalized with respect to W,, is given in Figure 9. The
quality of the solution is seen to be very accurate, as would be expected since
the wavelength is substantially longer than the flexural wave example (e.g.,
(27/.0163949)/0.16 = 239% elements per wavelength.

Submerged Cylinder Example (Flexural Wave)

Again, the same 20 element cylindrical shell is considered, except here,
the shell is submerged in water (external water only where ¢ = 60,000. 1in/sec
and p= 0.000096). Substituting the equation (47) parameters into equation
(7b), and solving for the wave number roots, it is found that

Y = 0.164124528 for the membrane root
and (51)
Y = 2.51631787 for the flexural root.

Comparing the second of equations (51) to the in vacuo wave number, it is noted
that the presence of the fluid shortened the wavelength by a factor of=x2/3.
Substituting the flexural root into equations (27) and (23), the model dampers
and edge loads (for a Wy = 1 x 10-6 shell amplitude) are given by

Cg = 7.32505101 CQ 46.3811654 , Cy = 9.34867391

and

ﬁé = 0.179713448 , aA = 0.452216160 ein/2

VA

Nz

In addition, the z = L boundary cut damper is given through equation (40), the

r= rq = 43.2 inch fluid boundary spring by equation (44) and the z = 0 pres-
re

su oading by equation (31). The pressure values are enforced by applying
the stiff spring approach, where the stiff spring constant is sized to be 1000

2.7283602 x 10-4

"

200



.,

Iu/UO[, N ~DIMENSIONAL AXTAL SHELL DISPLACEMENT

Wﬂ'ﬂ? -

Iw/NOI, NUN-DIMENSIONA. RADIAL SHELL DISPLACEMENT

2.000000 ~ 3600
1.000000- ORIGINAL PCGAEW% * NASTRAN PHASE
OF POOR Q & NASTRAN AMPLITUDE

1. 600000

MEMBRANE WAVE
1.e00000-{ | PROPAGATION IN

20 ELEMERT MODEL
1.200000
1.000000 e o S S Y U W G W S S Sy G G S\ ,_1800

EXACT SOLUTION
0.800000+ AMPLITUDE
©0.500000-
o.tmw
0.2 EXACT SOLUTION PHASE
0. L L T 1 4 r L T T 00
.00 9.0t .02 9.8 0.0 0.08 .87 8.00 .00 9.'¢

(2/)y), AXIAL COORDINATE NON-DIMENSIONALIZED BY MEMBRANE WAVE LENGTH
FIGURE 8. AXIAL SHELL OISPLACEMENT VS. AXIAL COORDINATE (FINE MESH)

2. 000000 360°

@

1.500000-
L_ EXACT SOLUTION PHASE

1. 500000

MEMBRANE WAVE
PROPAGATION IN

1.sooone{ | ZUFLEMERT MODEL

1.200000

"‘““*""‘“"“‘“““—““;“"“‘“"—‘“—*‘H — 180°

\ EXACT SOLUTION AMPLITUDE

S.800000
0. 600000~
* NASTRAN PHASE
9. 4080001 A NASTRAN AMPLITUDE
6. 2000001
 000000- T Y T T Y T Y Y - 00
0.00 0.0 e.02 (R 1) 0.0e 0.08 0.07 0.08 0.00 0.10

(2/) ), AXIAL COORDINATE NON-DIMENSIONALIZED BY MEMBRAUE WAVE LENGTH
FIGURE 9. RADIAL SHELL DISPLACEMENT VS. AXIAL COORDINATE (FINE MESH)

201

PHASE ANGLL OF u (DEGREES)

PHASE ANGLE UF w (DEGREES)

v-a-mw,m_-m_,_w., e et Emes G AAAARRRn dcib 4 e EMRAS TR L e m ot o W - -



B S

o e

W

times the regular pressure element stiffnesses and the applied force is the
pressure times the stiff spring. The actual data input is shown in Figure 10,
where the obvious repetitive pattern to the numbering system of Figure 4, per-
mits us to leave out most of the grid coordinate cards, element cards, and
fluid-to-structure DMIG connection cards while leaving behind representative
examples of each kind. The resulting response for the radial deflection is
plotted in Fiaure 11 and the corresponding pressure in the fluid (at the sur-
face of the structure) is plotted in Figure 12, Both the deformation and pres-
sure are seen to track the exact solution closely. A graphical representation
of the entire pressure field amplitude is shown in Figure 13 through employing
the PATRAN fringe color plotting feature. Plotting data in this fashion shows
bands of data having the same magnitude spread, as a single color. Narrow
bands at the surface spreading outward radially to increasingly wider bands
show the exponential type decay in the pressure field.

CONCLUDING REMARKS

The results in this paper demonstrate a procedure by which the NASTRAN
computer program can be employed to check the ability of the NASTRAN program to
model membrane and flexural waves existing in both in vacuo and submerged
cylindrical shells and flat plates. The study is 1imited to a range of fre-
quencies where rotary inertia and shear correction factors are not necessary to
model the corresponding wave propagation. For the demonstration problems con-
sidered, the wave propagation ability of the elements considered appears to
fall off rapidly, once lessthan 6 elements per wavelength are considered. For
example, in the 6 element per flexural wavelength problem, the worse nodal
point magnitude was in error by 12 % for the radial deflection, whereas the
error was 36.7% for the 3% element per wavelength example. It is recommended
that the user make his own test with regard to mesh fineness necessary to
achieve a particular level of accuracy. For example, when the propagating wave
root is in the neighborhood of a cutoff frequency (i.e., a condition where no
propagating wave exists), finer meshes than experineced in the demonstration
considered in this paper may be needed. For most cases experienced by the
authors, however, 10 elements per wavelength appears to provide good results
for properly modeling the wave propagation for flexure and membrane waves in
the kinds of elements considered herein.
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|w/No], NON-DIMENSIONAL RADIAL SHELL DISPLACEMENT

|p/Pg|, NON-DIMENSIONAL FLUID PRESSURE (at r = a)
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