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ABSTRACT

It was pointed out some time ago by Rosner, Tucker, and Vaiana that the

visible corona of the sun appears to be heated by direct dissipation of mag-

netic fields. The magnetic fields in the visible corona are tied at both ends

to the photosphere where the active convection continually rotates and shuffles

the footpoints in a random pattern. We have shown that the twisting and wrap-

ping of flux tubes about each other produce magnetic neutral sheets in a state

of dynamical nonequilibrium such that the current sheets become increasingly

concentrated with the passage of time. Dissipation of the high current densi-

ties takes place regardless of the high electrical conductivity of the fluid.

We suggest that the work done by the convection on the feet of the lines of

force at the surface of the sun goes directly (within a matter of 10-20 hours)

into heat in the corona. The rate of doing work seems adequate to supply the
necessary 10?ergs/cm2sec for the active corona.

The preceding paper, by Hollweg, on coronal heating by waves provides a

sufficient introduction to coronal heating for the purposes of the present

paper. Here we are interested in the heat supply to the active corona, com-

posed of x-ray loops and filaments emitting a total energy of the order of
107ergs/cmesec.

The convective motions in the photosphere supply a variety of magnetic

strains and fluid motions (MHD waves) to the solar corona, forming the basis

for the many ideas presently in vogue for coronal heating. Indeed, it would

be surprising if there was not some contribution from each of several classes

of waves. The problem is to establish the principal contribution, and that

brings us to the physics of the dissipation. The familiar viscous and resis-

tive effects yield characteristic dissipation times of |&/_ and |t/_in field

structures with a scale _ . Neither is adequate to provide significant dissipa-

tion of waves with scales of km or more. For instance, magnetic structures

with a scale of 103km decay in periods of I0 _ years. Evidently something more

effective than passive diffusion of magnetic structures and wave motions must

be operating universally in the corona. Something very much more effective!

Now it has been known for a couple of decades that the corona of the sun

is particularly hot and dense in regions of strong magnetic field. The UV and

x-ray observations in recent years have established just how close this relation

really is. Rosner, Tucker, and Vaiana (1978), summarizing the observations and

the implications of the theoretical models of coronal loops, conclude that, for

various reasons, all sources can be ignored except direct conversion of "static"

magnetic energy into thermal energy. They suggest that the visible corona is

entirely a magnetic creation, supported, confined, and heated directly by the

magnetic field. And that brings us firmly up against the problem of the dissi-

pation of magnetic fields in the highly conducting gases of the solar corona.
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Howcan magnetic energy be converted directly and rapidly into heat?

In view of the high electrical conductivity (d = i016-i017/sec) of the
coronal gas and the relatively weak fields (_ i0 2 gauss), the only known means

for converting magnetic energy directly into heat is through concentration of

the magnetic strain %/x6 (i.e. the electric current _ = _/_) Vx 8) into thin
sheets. One can estimate that the current sheet must have a thickness of i km

or less if the resistive tearing mode is effective, or if sufficient plasma

turbulence can be generated by an electron conduction velocity comparable to

the ion thermal velocity, or I m or less if it is necessary to drive the elec-

tron conduction velocity as high as the electron thermal velocity to achieve

the necessary dissipation. So consider why electric currents (i.e. the magnetic

strains) might concentrate into exceedingly thin sheets.

The usual state of affairs in the magnetic regions of the solar corona in-

volves re-entrant fields arching up from the photosphere into the corona over

dimensions of i03-i0 s km, with typical field strengths of 10 2 gauss. The fields

are rooted in the dense convecting gas of the photosphere which shuffles the

footpoints of the lines of force and causes the lines to wrap and wind about

their neighbors, as sketched in Figure I. The basic physics of the situation is

contained in the topology of the winding pattern of lines of force, which is

more easily treated in the straightened configuration sketched in Figure 2.

The principal field may be taken to be uniform with strength _o extending in the

z-direction from the anchor plane _ =-L to the anchor plane £ = + L . The

surfaces _ _ L represent the photosphere where the fluid shuffles about in

complex patterns, wrapping the lines of force around each other as sketched in

Fig. 2. So long as the scale Z of the shuffling is sufficiently small compared

to the length L of the lines, the field direction deviates but little from the

z-direction and the change in the field from the original uniform _o is small.
One can write

B = ezBo + b (i)

where _ _.

To treat the simplest case, consider static equilibrium of the magnetic

field B in an incompressible medium of uniform density_ , so that the total

pressure in the fluid can be written __/Qq _ , and the equation for equilibrium
reduces to

4n_P = _GTxS,)xB. (2)

Write _= _o +_p • It is then a simple matter to show that equilibrium

far removed (>)_) from the boundaries _ _ • L is possible only for

_b/_ = O (Parker, 1972, 1979, pp. 359-391; Yu, 1973; Rosner and

Knobloch, 1982). That is to say, the winding pattern of the lines of force

must be invariant along the uniform field _Q in the z-direction. If this con-

dition is not satisfied, one finds that the resulting dynamical nonequilibrium

takes the form of localized neutral point reconnection at various locations

throughout the field where the topology of the winding pattern changes. In
other words, the nonequilibrium involves the formation of current sheets whose

thickness declines with the passage of time until dissipation, of one form or

another, becomes important. The transverse components of b that cause the

nonequilibrium are then "eaten" away by the dissipation at a rate _ cm/sec,
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Fig. i: A sketch of the field above a

bipolar magnetic region, illustrating

the wrapping of the lines

about their neighbors.

i

Fig. 2: A straightened field in which the

lines of force wrap in irregular patterns

about their neighbors.
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where

VA/NM IIz _ U _<, V A /_n N_ (3)

in order of magnitude (Parker, 1957, 1979, pp. 392-439; Petschek, 1964) where

VA is the characteristic Alfven speed computed in the transverse field _ ,

and N_ is the effective magnetic Reynolds number |VA/_ . . The resistive

diffusion coefficient _ may or may not be enhanced by plasma turbulence, and

a local resistive tearing mode may become operative depending upon local con-
ditions.

One recognizes that the random shuffling of the footpoints of the coronal

fields must introduce transverse components b whose topology varies along the

field, causing that part of _ to be dissipated directly into heat through the

familiar neutral point reconnection.

It can also be shown that any tube of flux that is displaced and misaligned

relative to its neighbors is dissipated through unlimited decrease of the trans-

verse dimension (Parker, 1981a,b).

But what about the transverse field that is invariant along B_ , i.e.
_f_2 _ O ? Such fields are composed of twisted flux tubes that

extend uniformly from _ = - L to _ = + L • The equilibrium conditions are
well known. With _'_ = O one writes

s,, = ÷ =
Substituting into (2) yields the conditions

P= P = B, (A)
so that

&
P+ B,/8 = FCA)

where _" is an arbitrary function of its argument.

then required to satisfy the field equation

v'A+4 r'(A) =o.

(4)

(5)

The vector potential is

(6)

The fluid pressure is uniform along each line of force so that P is controlled

at the boundaries Z =_L . There are generally infinitely many solutions to

(6) for any reasonable choice of the arbitrary pressure function _(A), and

there are infinitely many reasonable choices for F'(_) , so solutions to (6)

cover many field configurations. It is a curious fact, however, that all such

solutions possess special symmetries that are generally not honored in

nature. In fact, there is generally no equilibrium among more than two close-

packed twisted flux tubes, and then only if they are of opposite twist. Three

or more close packed twisted tubes produce neutral point reconnection (called

coalescence of islands in laboratory plasmas) which reduces the transverse field

toward two opposite twisted tubes across the entire xy-plane (Parker, 1983a,

c), which we will explain in a moment.

Altogether it follows that the transverse field introduced by the shuffling

and rotation of the footpoints is dissipated directly, through neutral point

reconnection, into heat, whatever the topology of _, invariant or otherwise.

That is to say, the formation of thin current sheets is a natural consequence of
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the dynamical nonequilibrium of the field.

It follows that the heat input to the corona is equal to the average rate
at which the convection in the photosphere does work on the footpoints of the
magnetic field. Unfortunately the rate at which the convection does work on the
field is not easy to estimate, but it is generally believed to be as large as
the 10?ergs/cm2sec required for active coronal regions (Sturrock and Uchida,
1981; Parker, 1983b). Rememberingthat the field is composedof isolated in-
tense flux tubes of some1600 gauss at the photosphere, consider an active re-
gion where the meanfield is 102 gauss, so that approximately one sixteenth of
the area of the photosphere is occupied by flux tubes of 1600 gauss. If the
transverse componentin the meanfield is, say, 20 gauss, then the transverse
field in the concentrated flux tube is of the order of 80 gauss. The transverse
Maxwell stress is then 8_J4_ _ 10_dynes/cmz in the concentrated tube at
the photosphere. If such a stress acts against fluid velocities of the order of
200m/sec, the rate at which work is done on the field is 2xl0Sergs/cmZsec.
This occurs over one sixteenth of the area, so the meanrate at which work is
done is approximately 107ergs/cmZsec.

It would seem, therefore, that the visible corona can be understood as a
direct consequenceof the shuffling and rotation of the solar magnetic field in
the photospheric convection, through the general dynamical nonequilibrium of the
resulting distorted magnetic field. Wepresume that this is generally the case
in all stars where a magnetic field extends into a tenuous atmosphere from a
dense convecting surface below. The dynamical nonequilibrium (i.e. the neutral
point reconnection) goes sufficiently rapidly in the tenuous atmosphere, where
VA is large, that the work done on the field by the convection is converted
directly into heat. The x-ray corona, then, is the magnetic offspring of sur-
face convection.

But now let us go back to the assertion that close-packed twisted flux
tubes generally have no static equilibrium, in spite of the variety of solutions
to (6). The problem with the solutions to (6) is most readily demonstrated by
considering a solution to (6). To treat the simplest case, suppose that

c + k'A z.

where C and _ are constants. Then (6) becomes

V'A+ Zk'A --o.
The solution

(7)

represents close packed flux tubes of opposite twist arranged in a checkerboard

pattern. The projection of the lines of force on the xy-plane is given by

A(_7) = constant, sketched in Figure 3. Note that each twisted tube would be

circular in cross-section were it not squashed into a square cross-section by

the pressure of its four neighbors, all with opposite twist to the tube in ques-

tion. Each tube presses hardest against its neighbors at the middle of each

face, of course. The pressure rC_is constant along each line of force, so the

pressure around the boundary of each cell is uniform. Hence, the deformation

into a square cross-section is carried out, not by the uniform pressure F_,

but by the pressure of the transverse field ( B_, 87).
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Fi$. 3: The projection of the regular field (8) onto the xy-plane

showing the regular checkerboard pattern of opposite twisting.
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Fi$. 4: The same projection as shown in Fig. 3 with

one cell reversed so that it is surrounded by current

sheets (heavy lines).



Nowconsider what would happen if a flux tube were replaced by a tube of
opposite twist, as sketched in Figure 4. It would then be surrounded by four
neighbors with the same twist as itself, with the result that the transverse
field (8_, _ ) changes sign abruptly across each commonboundary. Nothing
else but the sign of (8_,6_) is changed, of course, so that the equilibrium
condition (6) is satisfied everywhere except perhaps at the boundaries. Need-
less to say, the reversed tube is squashed into a square cross-section by the
extra pressure exerted by its neighbors on each of its four faces. But that
pressure is not transferred across the boundary by the transverse field because
the transverse field passes through zero as it changes sign across the boundary.
Hence, the extra pressure can only devolve upon the fluid, causing the fluid
pressure to be larger near the middle of each face. The higher pressure near
the middle of each face squeezes the fluid out from between the opposite fields
on either side of the boundary, expelling the fluid along the boundary into the
region around the vertices. It is just the familiar neutral point reconnection
scenario, of course, leading to coalescence of the transverse fields of neighbor-
ing tubes, as sketched in Figure 5.

The general principle is that no tubes with the samesense of twist can be
in equilibrium where they are pressed together over a commonboundary of finite
length. The equilibrium solutions to (6) surround each cell with cells of op-
posite twist, permitting contact of cells with the sametwist only at point
vertices. The fact is that in nature the twisted tubes are formed to sizes and
strengths that generally do not pack together with the necessary delicate bal-
ance at their vertices. They tend to mash together to form commonboundaries
instead of commonpoints, as sketched in Figure 6. And even if we imagine the
unlikely situation that all tubes have the samesize and strength, all neatly
assembled in an alternate checkerboard pattern as sketched in Figure 3, we
should be aware that they would soon slip into the lower energy state of hexa-
gonal close packing, in which all vertices involve three, rather than four,
cells. Whenever three cells are packed together, at least two have the same
sense of twisting, providing neutral point reconnection on at least one of the
three commonboundaries.

To express the problem in different terms, consider the commonvertex of
three close-packed flux tubes. At least two of the tubes must have the same

sense of twist, with the result that they undergo neutral point reconnection on

their common boundary. The reconnection can be avoided, of course, if a fourth

flux tube with opposite twist is pressed in between the two with the same twist.

The difficulty is that the fourth tube must be pressed in between with just

enough force that it extends to the common vertex. If it fails to press in all

the way to the vertex, the two tubes with the same twist still have a common

boundary, with its nonequilibrium neutral point reconnection. On the other hand,

if it presses a little too far, then it finds itself with a common boundary with

the third of the original three flux tubes, which has the same sense of twist as

the fourth, and again there is nonequilibrium. The vertices shown in Fig. 6 il-

lustrate this problem, where the four-way junctions of cells are in fact made up

of two three-way junctions or vertices because the pressures in the four partic-

ipating flux tubes generally do not balance perfectly to meet only at a point

vertex. The fourfold (or sixfold, etc.) vertex necessary for equilibrium is

something that is achieved only in mathematical constructions, never in physical

constructions by chaotic nature.
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The general absence of equilibrium for any close-packed collection of

twisted flux tubes of various strengths and sizes can be demonstrated in more

formal ways (Parker, 1983c,d,e). The present qualitative description is design-

ed to illustrate how the neutral point reconnection comes about. The basic fact

is that any close-packed wrapping of fields leads directly to neutral point re-

connection until the field is reduced to no more than two invariant tubes of

opposite twist. We suggest that this general dynamical nonequilibrium of mag-

netic fields is the basic source of heating in the active stellar corona.

The net result is that the work done by the fluid in shuffling the footpoints

goes more or less directly into heat in the fluid above.
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