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SUItZ_.ARY

This paper is a review of the noneSui'librium calculaaiJn te¢nniques developed

by various authors over tile past decade to predict heat fl,,--xes to the windward

siHe of the Space Shuttle orbiter. The results of these _echniques ace compared

with _easurements made on the first few flights of the Space Shuttlz. The aalcuia-

tiens attem_u ce ._ccount for finite rate =hemistry in the shock layer around the

vehicle and fer finite rate catalytic ato_ recombination on the thermal protection

materials- The tecLniques considered are the axisyr_metric viscous snock layer

method, three-dimensional (3-D) reacting Euler equation solutions coupled witi_

axis-var_etric analog boundary layer method, and a recently develoF ed _onequili-

brium 3-D viscous shock l_yer method.

The comparisons indicate a substantial influence of nomequilibri_m chenistry

on the heating to the relatively noncatalytic thermal prote:tiou tiles of the

orbiter. That is, the heat flux is much lower than if the flow were in equilibrium

or the tiles were fully catalytic. It is shown that all of the methods agree with the

measurements within about i0 to 30%, depending on the location, flight ce_dition,

and assumption about the catalytic recombination coefficients. None _[ the calcu-

lations could _red_ct the measurements uniformly over the entire windward center-

line for all fligat conditions- (Until now the 3-D viscous shock layer calculations

have only treated the noncatalytic wet1.)

It is noted that for a given flight condition the temperature measured on the

orbiter tended to increase from the second flight to the fifth flight. The cause

of this increase is _ot known, but it may be due to contamination of the surface,

causing an increase in catalycity, or to a decrease in emittance-

Nitrogen recombination was found to be significant early in the entry

especially in areas dominated by normal shock flow such as near the nose. This

makes knowing the nitrogen recombination phenomena important. Such phenomena will

be of more importance on an aerobrakinB orbital transfer vehicle which enters the

atmosphere at higher velocities-

It is concluded that the nonequi!ibrium methodologies ha_e significantly

enchanced the capability to predict the heat flux for high altitude reentry, but

some improvements are still required to improve the current accuracy-
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SYMBOLS

ALT

C

f

hT
k

_W

L

P

q
T

V

VINF freestream velocity

X axial distance from nose

Z geometric altitude

altitude

atom mass frnction

heat flux adjustment factors defined in eq. (2)

tutal enthalpy

Eoltzmann constant

catalytic recombination speed

length of vehicle

_as_ of ate_

pressure
heat flux

temperature

velocity ,,

Greek Symbols

E

Y

emittance

energy transfer catalytic combine:ion coefficient

Subscripts

FC fully catalytic

N nitrogen

0 oxygen
w wall

freestream

ref reference condition or property

i

IN_DUCYION

The Space Shuttle orbiter is a hype-rsonic glide reentry vehicle that spem_s

much of its entry time at relatively tenuous altitudes in which chemical noneq_ili-

brium predominates in the shock layer. Calculations have shown that both diss_'_cia-

tion ncnequilibriuml, 2 and recombination nonequilibrium exist I. The dissocia'_ed

nonequilibrium exists in the inviscid layer and the recombination nonequilihri-am

exists in the boundary layer. Verification of these phenome=a has not been

directly obtained; hcwcver, these phen_ena are inferred by comparing heat tramsfer

measurements with the reacting flowfie!_ results.

Although measurements of surface temperatures on the high temperature reusable

surface insulation (HRSI) tiles have been made at numerous locations on the

orbiter, this paper only addresses measurements on or near the windwarc centeriine

of the lower fuselage because predicticas of local flow conditions are much easier

to obLain in this region. The presence _f chemical nonequilibrium was made easier

to verify because the HRSI _ile glass cDating (RCG) is relatively noncatalytic with
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respect to atom recombination and the associated dissociation energy accommodation-

Also of great importance in demonstrating the nonequilibrium flow behavior is the

catalytic surface effects orbiter flight experiment of Stewart, Rakich, and

Lanfranco 3, whose initial results were reported in reference 4. Prior to the

flight experiments, predictions of the noncatalytic nature were reported in

references I, 2, and 3 based on flowfield computations and arc jet experiments.

Besides the results reported in reference 4 other calculations have been made for
the RCG coated tiles and compared with flight measurements. Scott and Derry 5 usec

the reacting flowfield/boundary layer method of reference 2 with measured enerBy

transfer catalytic recombination coefficients of reference 6 and compared th_se

predictions with flight measurements. Likewise, Shinn, Moss, and Si_monds 7 c_°-=Pu:

heat fluxes ,_ing an ax_symmetric reacting viscous shock layer code -,_ith the recom-
bination coefficients of reference 6 and showed better agreement with flight

measurements. Recently Kim. Swaminathan and Lewis 8 solved the 3-D viscous shock

layer equations for the Shuttle geometry, oa_d obtained encouraging results.

T_is paper critically evaluates the various flowfield predictions, comparing

the results of equilibrium and nonequilibrium flowfields coupled with reacting

axisy_metric analog boundary layer solutions and the results of viscous shoc_ lay_

solutions with flight temperature/heat flux measurements near the windward

centerline Eor the Shuttle flights STS-2, 3, and 5.

In the comparisons with flight heat flux measurements there is concern with

two basic aspects of the predictions, the flowfield methodology and the surface

catalytic recombination phenomena. The first aspect can be subdivided into

dynamical and geometrical characteristics, and thermophysical properties and gas

phase chemical reaction kinetics. The second aspect can be subdivided into wall
recombination rates of the basic ther=al protection material, contamination issues=

and knowledge gained from the catalytic surface effects experiment. All of t_ese

aspects are interrelated and the Shuttle flight does not provide an experiment in

which each aspect tan'De controlled independently. Numerical simulation is capab3__

of single parameter variation, but confirmation of the results is difficult 5ecau6_-

of flight complexities and _nknowns; particularly, there is no =easurement of the

ci:emical composition of the flow. This paper considers flowfield chemical co_posi-

tion effects (equilibrlumvs nonequilibrium), methods of solution (two-layer

approaches and viscous shock layer approaches), and surface catalytic recomblna-

tion rates, and it touches on possible contamination on the surface. The issues

incomplete chemical energy accommodation of catalytlcally-formed excited species

and subsequent quenching are not explored.

COMPUTATIONAL METHODS AND THEIR APPLICATION

Five computational methods are considered here which are subdivided into

applications of those methods, which are further subdivided into particular cases.

These cas_s are summarized in Table i.

The first two methods are axisymmetric viscous shock layer methc-ds of Moss 9

and Miner and Lewis 10 The next two are _wo-layer approaches. Rakich and

Lanfranco 2 treated the 3-D reacting inviscid flowfield and used thc results for

reacting boundary layer edge conditions. Goodrich et al. II solved the equilibrium
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3-3 inviscid case and used their results as edge conditions £or equilibrium

bo_--adary layer solutions. The fifth method is the 3-D nonequilibrium viscous shoc_

layar method of Kim, Swaminathan and Lewis 8.

Shinn, Mess and Simm,Jnds 7 applied the Moss 9 method with variable wall recom-

bi=ation coefficients to the Shuttle orbiter b_ approximating the Shuttle geometry

with hyperboleids of revolution f'itted by Zoby 12. They presented cases for various

times in the orbiter entr 7 and conci_ded the following. The Shuttle flight data

in,!cares the shock layer flow is appreciably in nonequilibrium down to an altitude

of _0 km. Scott's extr_poiated recombination rates 6 used in their viscous shock

layer calculations result in good agreement with flight data forward: but not aft,

on the vehicle. Better agreement afz is obtained if kwO _ i00 cm/sec is used. The
t_erature of the surface during enzry is 80 to 200 K less than if it were fully

ca-=_alytic.

Gupta, Moss, Simmonds and Shinn 13 si_i_ar4y applied the Moss 9 method with

various recombination coefficients and for a range of angle of attack of the

orbiter. They found that a _.5° variation in a_gle of attack does not affect the

non._equilibrlum heating appreciably at 75 and at 48 km altitudes. The temperature

de_mdence of the oxygen recombination rate is not as steep as an extrapolation of

St=it's 6 data indicates. _'%ey conclQded that a value of kwO = 200 cm/sec seems to

yield better agreement with the flight measurement of heat flux at certain

locations and flight regimes. A 49% reduction in heating due to nonequilibrium

effects was noted in the nose region at X/L = 0.025 and 75 km altitude. Nonequilih--

ri_m, effects on the heating are not significant below about 65 km even though the

fl_ may not be in equilibrium, indicating that equilibrium boundary layer methods

or heating correlations of the type suggested by Rakich et al. 4 may be useful.

The _ethod of Rakich and Lanframco 2 was applied by Rakich, Stewart and

La=franco 4 to calibrate the results of an approximate method that uses equilibrium

normml shock isentropic boundary layer edge conditions in lieu of the reacting

variable entropy edge conditions. This approximate method was then used to infer

kwo of the reaction cured glass (RCG)-coated high temperature reusable surface

inmzlation (HRSI) tiles and to infer kwo of the Iron-cobalt-chromia spinel (C742)

coa_-ing used in the catalytia surface effects flight experiment tiles. They

inferred that kwo = 80 cm/sec and a_sumed that kwN = 0.3 kwO for RCG at Tw of abou_
LIfO K. Their catalytic surface effe_t-------s'experiment.:emonstrated that the flow _s

indeed in chemical nonequilibrium. Rakich's method was also used by Scott 5 with

te=gerature dependent recombination coefficients inferred from arc jet measure-
metes.6,14 He used the reacting boundary layer code BLIMPK developed by Bartlett

_n_ Kendall 15 and extended by Tong, Buckingham and Morse I_. This method resulted

in higher heating than measured on the nose of the orbiter, but tended to predict

or _nderpredict the heating on the midbody. These results are presented here for

c_m_arison with other results.

Reacting boundary layer calculazions were made with equilibrium edge

c_r'_d[tions provided by Goodrich et ai. II along with different wall recombination

as_-mptions. These results are presented here.

Miner and LeWis!0 axisymmetric, reacting viscous shock-layer code was applied

with various catalytic wall assumptions and those results are likewise presented

here.
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The fifth cc_aputational method considered herein for nonequilibrium flow

calculations applied to the Space Shuttle was presented by Kim, Swa_inatha= and

Lewis 8. That re:ent paper addressed the windw=-rd side of the Space Shuttl_,

applyi_ the 3-D _onequilibrium shock laye= method with noncatalyti= boundary
conditions. Their windward centerline results for two points in the STS-2 traje=-

tory are presente_ here.

MEASU._E_r_NTS OF N_T T_L-X TO SHUT'ZLE

Surface temperature measurements of several instrumented HRSI :iles, distri-

buted along the lcwer surface of the orbiter, are considered in this paper. The

flights :onsidere_ are STS-2, 3, a_d to a limited extent STS-5. Trajectory
information was obtained from acceleration measurements on the orbiter and from

atmosphere models calibratedby atmospheric soqcnd-i=_s. The resulting best

estimated trajectories (BET) were obtained from the Johnson Space Center, Mission

Planning and Analysi_ Division. Heat fluxes were inferre_ from the measured

temperatures by c_mputing the corrected radiati_n equilibrium heat flux

q = 1.06_ _Tw 4 f (I)

The factor 1.06 accounts for the fact that the thermocouples lie about 0.38 ---

beneath the surface coating and for conduction __n the tile. This factor was

obtained from the method of Williams and Curry 17 who inferred heat fluxes frum

temperatures using an inverse thermal math model formulation*. Over the range of

time in the trajectory and temperatures considered in this paper, _ =orrection

factor of 1.06 is accurate to within 2 or 3 percent.

When comparing the measurements of one flight v_ith another or when comparing

calculations with measurements it is necessary to adjust the heat fluxes to account
for differences in freestream conditions. Since the hypersonic stagnation point

heating is approximately proportional to (O/Pref) I/2 (V/Vref) 3 all points were

corrected by the ratio of that factor for the two freestream condit!-_.s, i.e.,

f = ( p_/P_ref)I/2 (V./V_ref)3 (2)

The flight BET and the flight heating rates are used as reference conditions when

flight measurements are compared with calculatioos. The heat fluxes are then pre-
sented in absolute units as obtained from equation (i). The factor f is probably

accurate to within +--3%as verified by a comparisoo of calculations using the Miner

and Lewis I0 code. All the comparisons were made for an angle of attack of about &O

degrees.

To determine the consistency from flight to flight the bottom center!ine heat

flux measurements for STS-2, 3, and 5 are compared at three different times in the

flights as shown in Figures I, 2, and 3, re3pectively. %Yne correspoadlng free-

stream conditions are given in Table 2. It is seen that the flight-to-flight

repeatability is about 15-30% _nd the standard deviation about the mean at each X/L

* The author is grateful to S. D. Williams of Lockheed Emgineering and Management

Services, Co. for :alculating the heat flux for this determination.
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is about+--10%.TheSTS-2heat fluxes are consistently lower than the other two

flights at almost all locations. The reason for this is not understood, but i: may
he related to a change in catalycity resulting from contamination of the surfaze or

to a change in emittance. The heating rate correction for the_e cases is no larger

than 5% as seen in Table 2. The measuremen_ at X/L = 0.695 se,_n_ anomalously l_w

and therefore, it may be a bad measurement. .'[herather large discrepancy in the

measurement for STE-2 compared with the other two flights at X/L = 0 14 also is not
understood.

SHUTTLE CENTERLINE PRESSURES

Pressure measurements during the time of high heating on the orbiter were

obtained only during 5TS-3 and 5. These measurements normalized by P_V_ 2 are

presented in figure & along with values ca!culdt_d by three methods. It is seen

that the flight-to-flight repeatability is very good at almost all locations. The

pressure decreases very rapidly in the forward 10Z of the vehicle then remains

almost constant from X/L of 0.1 to 0.4, rising slightly at X/L _ 0.8. The 3-D

flowfield calculations of Rakich and Lanfranco2 and Goodrich et el. !I agree with the

measurements within about 5Z except in the vicinity of X/L = 0.I where the calcula-

tions are about 23% higher than the _easurements. Likewise, the calculations using

the Miner and LewislO code agree within about 5% except at X/L = 0.I, where the

agreement is within about 9%. The large discrepancy at X/L = 0.I may result from

an experimental error due to a negative bias of unknown amountlS. The instrument-

ation and signal processing of the pressure measurements only result in positive

readings. The exist_ae of a negative bias was indicated by a measurement that did

not exceed zero until a time later than expected for the flight condition. See

reference 18. If the error associated with the negative b_s is snail, then the

calculations appear to be in error a_ X/L = 0.1. Although _ direct comparison of

the geometries has not been _ade, it is possible that the geometry descriptions in

the flowfield codes do not adequately describe the vehicle as actually built;

otherwise these codes do not adequately handle the rapid expansion around the nose,
overpredicting the pressure (and heat flux) near X/L = O.l.

NEAT FLUX COMPARISONS

In the following =omparisons the author has used the results of others and in

some cases has used the method of others to make present calcula=ions. In these

case_ the author is responsible for auy error or misapplication of the method, no=
the developers of the methods.

Equilibrium and Nonequilibrium - Two Layer Methods

it has been show= in the past that the heat flux predicted by equilibrium

calculations and by reacting calculations with a fully catalytic wall are approxi-

mately equal. To verify this for the two boundary layer methods cosidered here

comparisons are made between equilibrium results of Goodrich et el. II and'the

results obtained using the Rakich and Lanfranco 2 method. The freestream cenditions

are given in Table 3. In figure 5 the Goodrich equilibrium prediction is compare_

with two nonequilibri,r_ boundary layer cases with fully catalytic walls. (Fully
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catalytic here meansYO= _ = l, vis-a-vis k w = _ or COw = CNw = 0.) lhe edge

conditions in the latter two cases are Goodrich equilibri,_ and Rakich and

Lanfranco nonequilibrium. Given the same edge conditions it is seen that the

equilibrium boundary layer calculation is about 15% lower than the all-nonequili-

brium calculation over the entire length of the vehicle. Evidently, t_e transport

of chemical en,,rgy by Jiffusion is more efficient in this case than via conversion

of chemical energy to thermal energy hicn is then transported to the wall via

ccnd,xction. The opposite result was obtaine_ by Shinn et al. 7 who found the equiiib-

ril_ viscous shock layer resulted in higher heating than the equilibrium catalytic

wall nonequ_libriun ca_e.

The comparison of the react_n_ boundary layer with equilibrium edge conditions

_,ersu_ reacting edge conditions indicates that on tile nose the_e is very little

difference between the two cases, whereas on the midfuselag@ che nonequilibrium

edge conditions results in about 15% lower heating, lhe nonequilibrium edge case

with a fully catalytic wall is very close to the all equ_i_rihm calculatLcn aft of

X/L = 0.2. The latter agreement does not s=em from the flow approaching

equilibrium downstream because the equilibrium nitrogen atom concentration both at

the edge and in boundary layer is greater than the nonequilibrium concentration by

a factor of about 1.3 in this case. Moreover, it was sho',m in reference I that the

boundary layer is virtually frozen.

comparison ef the axiss_rmetric reacting viscous shock layer method of Miner

and Lewis I0 and the reacting two-layer approach of Rakich and Lanfr_nco 2 is made in

figure 6 where the n_nequilibrium boundary layer result for a fully catalytic wall

lies above the viscous shock layer results by about 20% on the nose. Agreement

improves to within about 11% at X/L = 0.55. The effect of edge conditions is about

10% or less everywhere for a fully catalytic walk. The results for a ncncatalytic

wall are given in figure 7 wi_ere it is seen that the boundary layer heat fl_:: _s

about 30% greater than the wscous _hock laye= heating on the nose, but improves to

about 10% at X/L = 0.55. Agreement of the reacting viscous shock layer results and

the reacting boundary layer with equilibrium edge conditions is within abcat 10%

everywhere along the body. The equilibrium edge condition results fall below the

nonequilibrium results on the nose, but they are very close farther aft.

-Attention is now turned to a comparison of the axisy_etric viscous shock

layer method of Moss 9 as applied by Shinn et el. 7, and the two-layer method of

Rakich and Lanfranco 2 applied here for a lower velocity and altitude situation.

It is seen in figure 8a that the axisymmetric nonequilibrium vi3cous shock-layer

with equilibrium catalytic w_ll (ECW) and the equilibrium "riscous shock layer agree

quite well (within about 5%). They also agree quite well with the Goodrich II

equilibrium two-layer result. It is seen that the fully catalytic conequilibrium

two-layer results are greater by about 10-20% which is the same as noted for case

I. Agreement in iiBure 8b for the noncatalytic case is worse than the two-layer

results, beirg about 20-40% higher than the axisymmetric viscous shock layer
results of Shinn et al. 7 an_ present results using the Miner and Lewis I0 co_e. The

latter results seem to indicate that heat transfer by atom diffusion is more

important in the viscous shock layer. This is consistent w_th the somewhat higher

degree of dissociation, especially the nitrogen, associated with the viscous shock

layer calculation. The reason for the differences in atom f'_ction in the two

methods is not understood since the reaction r_tes used in both methods were

essentially the same.
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The recent 3-D ncnequilibrium viscous shock layer results with a noncata!ytic
wall arc also giv:_n in figure 8b. The heat flux at X/I = 0.! _s closer to the

axisyr._etric VSL resultq, but does not decrease as rapidly -ownstrea._. In [a_t,

ta_ 3-D results are hightr than tile tro-layer results aft of :4/L = 0.2. The

chemical reacti,_n model ]9 in all the methods is virtually t-e same, (except ions

are neglected in the Rakich and Lanfranco method). Therefore, the differetlcas seen

are most likely due to differences in the com_utatic;_al method or the geometry.

Comparison of Measured and Calcul:_e_ Hpz: Flux

Attention is now turned to'_ard a zompariron of the calculated h=._t fl_x and

the measured values along the lower surface c,:nterline The comparison i_ a_ _wo

times in each of two flights. The >articular times were s:iected t, match the

v_1_,;, and density, as closely as practicaole to the conditions used in the bound-

ar_y layer predictions for cases 460 and 65.] in Table 3. It ---asnot possi1-ie to
W.@

simultaneously match both velocity and densit,/. The result__.-g l',a_tflux:_,s were

adjusted for the mismatch by the factor f of equation (2). As mentioneJ earlie-

the measured heat fluxes were inferred from the measured t__-_peratures asing
equation (1) where £ = 0.85.

Several choices of catalytic recombination coefficient; were used as wall

boundary conditions for the two layer and the axi'symmetric _hock layer calcula-

tions. The energy tran_f_:_r catalytic recombination coefficients for nitrogen _nd

oxygen recombination on the RCG tile coating are presented in fiBure_ 9 and I0,

respectively_ The coefficients presented are those found in references 6, 7, and

12. In those cases where a catalytic speed kw wa_ _iven the recombination

coefficient is plotted as a dashed line, the length of which indicates the tempera-

ture range over which kw was used,, where

F

, q " kw _ 2 rm/kT

It is seen in figure 9 that the inferred values of k_N of referen:e 4 are e 1 to

0.2 times the v_lues of reference 6. This lack of al.reemen_ is not surprising

since k_ N was assumed to be 0.3 times _;O in reference 4. The values of kwo (see

figure I0) of references 4. and 6 a_ree within expurfmental accuracy at the higher

temperature range. At Io r temperatures kwO = 80 cm/sec is about a factor of

1.5 to 8 higher than the extrapolation of reference 6, depending on temperature.

Extrapolating to such a low teaperat_re could be inaccurate, but the extra-

po]ation is generally consistent with other recombination measurements (see figure

6 of reference 4). Since the temperatures measured on the Shuttle fell mostly in

the lower temperature range 900-1100 K, the p_edictions of heat flux usin_ the
kwo = 80 am/set would result in higher heating except on the nose or e_rlier in

time where the nitrogen carries a larger part ef the dissociation energy.

A comparison is made in figures II-14 between the measurements and several

calculations for STS-2 and 3 at Lwo times in the trajectories. The measurements

are near the bottom centerline of the vehicle except for a few points tha= are _bout

i.3 m off the centerline, This comparison between the calcu]a"_ns _[,d tbe measure-

ments is typical fo_ all times and both flights, in the hig:_e. :l:itud÷ cases

(figures II and 13) the viscous shook layer methuds with the :emoerature dependent
values 6 of O and fN yield better agreement for X/L < 0.3. _ne _o la[:er _ethod

with kwo = 80 cm/sec also agrees with the measurements at X/i _ 9.5. _t the lower
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altitude (figures 12 and 14) the two-layer methods yield better agreement for

X/L > 0.2.

In the higher altitude cases (figures ].! and 13), the eonequilibrium

axisymmetric viscous shock layer methods with _he tem-_rature dependent YO and YN'

yield good agreement at X/L< 0 3 and the nonequilibrium two layer method with

kwO = 80 cm/sec and kwN = 24 cm/sec yields good agreement for X/L <0.5. For the
lower altitude case this two-layer approach yields better a_reemee_ for X,'L >0.2

than the axisymmetric viscous shock Layer method_. The nozequilibrium two-layer

method using temperature dependent Y0 and YN results are about 30% higher than the

measurements on the nose area for all cases presented here, but the agreement

improves toward the mid-vehicle and at i_-_cr altitude. It is apparent _hat the

two-layer approach predicts higher heat fluxes for given wall boundary conditions
than the viscous shock layer approaches. This may be due _n,p_rt to the VSL h_ving

a slightly higher level of dissociation as well as to differences in the flowfield

dynamics.

In comparing the 3-D nonequilibrium calculat_.ons of Kim, Swaminathan and

Lewis 3 with other nonc_talytic predictions, one sees that the heat flux does not

decrease as rapidly down the vehicle as do the axisymmetric viscous shock layer

calculations and the two layer calculations. This indicates a possible influence

of geometry and cross flow that is more adequately accounted for in the 3-D viscous

shock layer model. In figures II and 12 the 3-D viscous shock _ayer results of
reference 8 tend toward better agreement with the measurements than the other

calculations aft of X/L = 0.6. This 3--D approach should be further investigated

with appropriate finite rate recombination coefficients.

The increase in measured heat flux above the calculations on aft half of the

vehicle and especially for the later flight may also have acher explanations. The

increase could be due to increasing recombination rates, bt_t that would be incon-

sistent with the measurements on the forward part of the vehicle unless the _ft is

contaminated with a catalytic materi_l. This is possible because the adhesive used

to bond tiles to the structure contains various metal oxides, particularly iron

oxide which is known to be _,_ghly catalytic.

The two-layer methods have been used to calibrate faster and more flexible

codes to provide heat fluxes and other p£operties over a wider range of conditions

than for which the two-layer methods were applied. The nonequi[ibrium resul=s of

Rakich _nd Lanfranco 2 have been used by Rakich, Stewart and Lanfranco 4 a_d by Sco_5

an_ Derry 5. One of the weaknesses of these applications i_ the inability to

properly account for variations in the flowfield chemical cmmposition as parameters
•uch as the angle o_ attack, frees_ream de'sit7 and velocity differ from the few.

cases a_ailable from the 3-D Euler solutions. The axisy_netric shock layer codes

have the advantage that they are mere flexible in running cases because of their fast

commutation _ime. Gupta eta!. 13 investigated the influence of small variations in

angle of attack on the nunequilibrium heating and iound the influence on heat flux

to be small A larger percentage variation was observed for lower velocities.

This may be due te greater temperature'_ensitivity of the level of oxygen, dissocia-.

tion at lower temperatures r_sing in the lower altitude case. Small changes in the

component cf velocity normal to the shock wave associated with the change in angle
of attack result in temperature changes in a range in which the oxygen dissociation

is very sensitive. However, since the general sensitivity of absolute heat flnx to

angle of attack is small, the approximations made in references 4 and 17 should not
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be very significant in this regard.

The disadvantage of the axisy_netric viscous shock layer methods is that they

are only capable of handling bodies of revolution and they rely on angle of attack

simulation via changing the body profile. Cross flow or transverse body curvat,re
is therefore quite limited. Fortunately, for the present work this has not been a

strong limitation but it may explain why there is disagreement with measurements on
the aft of the vehicle.

The 3-D viscous shock layer approach does away with those approximations, but

_uffers from the requirement of a shock shape as input (as do the axisymmetric

viscous shock layer solutions). The 3-D version has only receatly been developed

and will require further work to compare with measurements before its adequacy will
be known. .

The 3-D inviacid solution method coupled with boundary layer solutions

requires very much computer time to obtain the inviscid flowfield and requires

assumptions about how far into the inviscid flow from the body to go to obtain

boundary layer edge conditions. Choosing the boundary layer edge Loo far into the

lower entropy flowfield will result in heating predictions that are too high. This

may be the reason that the two-layer methods predicted higher results than the _

axisyam_etric viscous shock layer method for the noncatalytic case at X/L>0.02 and

for the fully catalytic case at 0.02 <X/L <0.2. The noncatalytic case is more

sensitive to the dissociation level which is higher in the flow from the normal
shock region.

Inferring catalytic recombination rates from the flight measurements is made

difficult for several reasons. First, the flowfield is composed of oxygen and

nitrogen atom_ in varying amounts according to the vehicle trajectory and location

on the vehicle. If one chooses a lower velocity condition where very little

nitrogen is dissociated then it may be possible to infer P_O" However, we have

seen a flight-to-flight measurement uncertainty of at least 15% and p_ediction-to-

prediction variation of the same magnitude. Heating uncertainties of this

magnitude result in kw uncertainties on the orde_ of a factor of 5 (s_e reference

13). Therefore, such a procedure should be used with great caution. This

illustrates the need for careful ground experiments, or great fidelity in the flight

heat flux calculations to obtain accurate recombination coefficients. The ground

measurements of Scott6,14, as with any ground measurements, require either precise

heat flux calculations and/or a reliable reference surface with which to compare

the heating. Even then accurate results are difficult. Fortunately only

moderately accurate recombination coefficients are required to calculate reasonably
accurate heating rates.

To ascertain the nitrogen recombination coefficients from flight measurements

is almost impossible without knowledge of the coefficients for oxygen because the

oxygen atom is always an important species in the flow whenever there is any nitro-

gen dissociated. If the flowfield and kwO were known accurately as a function of

T w then it might be possible to infer kwN.

Heating to Highly Catalytic Tiles

Attention is now turned to the results of the Ames Research Center's catalytic

surface effects orbiter experiment3, 4. Not only did this very significant

874

.P

I

I

(



"I

experiment demonstrate the noncatalyt[c nature of the RCG coated tiles, but it also

may Bive some clues as to the variation of dissociation in the boundary layer and

the wall recomhination rates. On STS-2 two tiles were nainted with a highly cata-

lytlc materlal, iron-cobalt-chromia spinel (C742), developed by Stewaru et al. 3 at

the Ames Research Center. The predicted and measured heat fluxes in the vicinity

of the _o C752-coated til_ on the bottom centerline of the orbiter during STS-2

reentry are given in figures 15 and 16. The measurements were obtained at

475 sec after 122 km altitude was reached. At the forward location near the nose,

the two-layer calculation u_ing the ,nethod and recombination rates of Rakich e_ el. 4

yields the best agreement with the measurements. This should be the case because

the recombination coefficients were inferred from the measurements at this location

and approximate entry time. Also _hown is the same calculation but using

recombination coefficients obtained from arc jet measurements 6'14- As see in

figure ]5, (the forward location), the increase io heat flux on the C_42_coated

tile is larger for the Rakich recombination rates than for the recombination rates

of references 6 and 14, even though the latter rates for C742 are larger. The

reason fur _:,is behavior is that, due to the higher RCG recombination rates of

reference 6, the boundary layer _s depleted of atomic nitrogen and oxygen so that

when the flow reaches the C742-coated tile there is not as much chemical energy

available for transfer to the highly catalytic tile. A similaw behavior is seen at

X/L = 0.4 in figure 16. Since the recombination rates of references 6 and 14

increase with temperature, the upstream edge of the C742-coated tile sees a high

heat _lux that decreases rapidly because of depletion of atoms in the boundary

layer and this lead to further reduction in recombination rate along the tile as

the temperature decreases.

The agreement between the axisymmetric viscous shock layer method and the

boundary layer method is not very good on the C742-coated tiles. The heat flux

drops much more rapidly, possibly because of more rapid depletion of atoms in the

boundary layeL than the boundary layer method predicts. There also seems, to be

some sensitivity of the heat flux distribution along the tile to the streamw[se

nodal spacing used in the calculation.

CONCLUDING REMARKS

This paper has attempted to evaluate the current state-of-the-art nonequili-

brium flow tools applied to the Space Shuttle. From this discussion the importance

of nouequilibrium phenomena to the Space Shuttle reentry heating has been assessed.

Since the inception of the design of the Space Shuttle over fourteen years ago

there have been developments in the heat flux prediction methodologies. Initially

nonequilibrium and surface catalysis effects were ignored. Ihis led to a design

that exceeded the requirements in many areas, but also resulted in an added ma=gzn

of safety in other areas that proved beneficial.

It was found that the heat fluxes _easured on the windward centerline of the

orbiter tended to increase from flight to flight. Roughly, a 20% change _as noted

from STS-2 to 5 at most of the thermocouple locations, indicating changes in

surface properties such as emittance or catalycity.

The nonequilibrium heat flux methods that have been developed and the

catalycity measurements obtained over the past decade have improved the prediction
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capability from a 20 to 100% overpredictlon for an assumed fully catalytic surface

material to an accuracy of about i0 to 30% for nearly noneatalytic materials, e.g.,

the RCG coating on H_SI. These methed_ are the two-layer inviscid 3-D reacting

flowfield coupled with the reacting beundary layer, and the reacting vis:ous shock

layer solutions. The application of these methods may result in less :eliance on

wind tunnel measurements which cannot simulate the high enthalpy reacting flows

associated with orbital reentry. Indeed the ca|culations are necessary for such a
simulation.

As the comparisons of the predictions with the measurements from the Space

Shuttle flight tests have shown, we are now in a position of refining the predic-

tion techniques and determining those phenomena that will be of significance for

the design of future reentry vehicles such as an aerobraking orbital _an_fer
vehicle (AOTV).

Although nonequilibrium calculation techniques using finite rate catalycity

wall boundary conditions has significantly improved the prediction capability, none

of the _ethods yields good agreement uniformly for all locations and freestream

condiEions. This points to the need for further refinement in these methods. The

3-D viscou; approaches in particular should be pursued since the trends of the

heating _rofiles tend to be better than for the other methods.

Nit.'_gen recombination is seen to be a very important phenomenon, particularly

on the no_c. and elsewhere at the higher velocities. This means that the accuracy

of the nitreg,_ recombination coefficients is important to the heat flux predic-

tions in those _reas. SinGe the AOTV enters the atmosphere at higher speeds and

remains at highe- altitudes where nonequilibrium flow dominates, the nitrogen gas

and surface reactions wil! be especially important.

876

J

s

$



I °

2.

3Q.

4.

5.

6.

7.

8.

9.

10.

11.

REFERENCES

Scott, C. D., "Space Shuttle Laminar Heating with Fib.ire-Rate Catalytic Recom-

bination," Thermophysics of Atmospheric Entr2, P_ogress in Astronautics

and Aeronautics, Vol. 77, edited by T. E. Hort,:n, AIAA, New York, 1982,
pp. 273-289.

Rakich, J. V. and La, franco, M. J., "Numerical Computation of Space Shuttle

Laminar Heating and Surface Streamlines," Journal of Spaeecraf_!t and
, , O ORockets Vol. 14 May 1977, pp. 265-.7_.

Stewart, D. A., Rakich, J. V. and Lanfranco, M. J., "Catalytic Surface Effects

Experiment on the Space Shuttle," in ThermophTsics of Atmospheric Entry,

Vol. 82 of Progress in Astronautics and Aeronautics, 1982, T. E. Hor°t_n,.
Editor, pp. 248-272.

Rakich, J. V., Stewart, D. A. and Lanfranco, M. J., "Results of a Flight

Environment on the Catalytic Efficiency of the Space Shuttle Heat Shield,"

AIAA Paper 82-0944, AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and

Heat Transfer Conference, June 7-11, 1982, St. Louis, MO.

Scott, C. D. and Derry, S. M., "Catalytic Recombination and the Space Shuttle

Heating," AIAA Paper B2-0841, AIAA/ASME 3rd Joint Thermophysics, Fluids,

Plasma and Heat Transfer Conference, June 7-11, 1982, St. Louis, MO.

Scott, C. D., "Catalytic Recombination of Oxygen and Nitrogen in High Tempera-

ture Reusable Surface Insulation," in Aerothermodynamics and Planetary
Entry, edited by A. L. Crosbie, Vol. 77 of Progress in Astronautics and

Aeronautics, 1981, pp. 192-212.

Shinn, J. L., Moss, J. N. and Simmonds, A. L., "Viscous-Shock-Layer Heating

Analysis for the Shuttle Windward Plane with Surface Finite Catalytic Re-

combination Rates," AIAA Paper 82-0842, AIAA/ASME 3rd Joint Thermophysics

Fluids, Plasma and Heat Transfer Conference, June 7-ii, 1982, St. Louis,
MO.

Kim, M. D., Swaminathan, S. and Lewis, C. H., "Three-Dimensional Nonequili-

brium Viscous Shock Layer Flows Over the Space Shuttle Orbiter," AIAA

Paper 83-0487, AIAA 21st Aerospace Sciences Meeting, January 10-18, 1983,
Reno, N_.

Moss, J. N., "Reacting Viscous Shock-Layer Solutions with Multicomponent

Diffusion and Mass Injection," NASA Tk R-411, June 1974.

Miner, E. W. and Lewis, C. H., "Hypersonic Ionizing Air Viscous Shock-L_yer

Flows Over Nonanalytical Blunt Bodies," NASA CR-2550, .May 1975.

Goodrich, W. D., Li, C. P., Houston, C. K., Chin, P. B. and Olmedo, L.,

"Numerical Computations of Orbiter Flowfields and Laminar Heating Rates,"

Journal of Spacecraft and Rockets, Vol. 14, Hay 1977, pp. 257-264.

877

ii

i-

!

i.



12.

13.

14.

15.

16.

17.

18.

]9.

Zoby, E. V., "Analysis of STS-2 Experimental Heating Rates and Trazsitim

Data,'" AIAA/ASME 3rd Joint Thermophysics Fluids, Plasma and Heat Transfer
Transfer Conference, June 7-11, 1982, St. Louis, MO.

Oupta, R. N., Moss, J. H., Si_-mnonds, .%. L., Shinn, J. L. and Zoby, E. V.,

"Space Shuttle Heating Analysis with Variation in Angle-of-Attazk an_

Surface Condition," AI_% Faper 83-0486, AlMA 21_t Aerospace S:ience_ Meet-
ing, January 10-13, 1983, Reno, h_'.

Scott, C. D., "Catalytic Recombination of Nitrogen and Oxygen on iron-C_:alt-

Chromic Spinel," AIAA PaFer $3-0585, January 1983, Reno, NV.

Bartlett, E. P. and Kendall, R. M., "An Analysis of [_e Coupled Ch=--micaily Re-

acting Boundary Layer and Charring Ablator, Pt. III: Nonsimilar Soiu&ion

of the Multicomponent Laminar Boundary Layer by an Integral Matrix Me:nod "
NASA CR-1062, June 1968.

TonB N., Buckingham, A C. and Morse H. L , " " " •' • , . Nonequlllbrlum Chemas_ry lound-

cry Layer Integral Matrix Procedure," NASA CR-134039; July 1975.

Williams, S. D. and Curry, D. M., "An Analytical and Experimental Szudy i=r

Surface Heat Flux Determination," Journal of Spacecraft and Rockets, 7oi.
14, No. I0, October 1977, pp. 632-637.

Bradley p. F. Siemers,ip M., III and Weilmuenster K I , "An at;o_ nF
" " - , • • Evalu .......

Space Shuttle Orbiter _orvard fuselage Surface Pressures: Comparison _-ith

Wind Tunnel and Theoretical Predictions," Ai_A Paper 83-0119, AZA.A 2i_=

Aerospace Sciences Neet[ng, January 10-13, iq83, Reno, NV.

Blottner, F. G., "Nonequilib=ium Laminar _ounda_y-Layer Flow of lonlzed Air,"
Ceneral Electric Report R64SD56, November 1964.

I
I

I

i
!

!

!

I
J

878



TABLE 1 - _ETHODS ._D APPLICATIONS PRESENTED IN PLOTS

10

Ii

12

13

14

15

16

Application Method AFplication Wall Flow Field

No. Boundary

Cond£tion

Moss 9 Shinn, et al _ "Scott 6_ VSL + 3ooeq.

" " ECW* "

" " Noncat a. "

" " Equilib. VSL Equilib.

Miner & Present Scott 6 VSL Reacting

Lewis I0

" " Fully Cata. "
J

" " Noncat_. "

Goodrich, Goodrich, Equillb. 3-D Inviscld

et al II et al II Equilib.

Rakich. Present Fully Cata. 3-D Inviscid

et al _ Noneq.

,, ,, Scott 6 -

" " " NOflcata. 01

Goodrich, " Fully cata. "

et a111

,, , Scott6 ,,"

" _ Noncata. "

Pakich. m Rakich. "

eC al _ et al _

Kim, et a114 Kim,et al Noncata. 3-D VSL

Noneq.

Boundary Layer

Edge Chem;stry

Condition of 3.L.

s/A s/A

e! iw

CF iJ

;| ID

E! iw

Equillb. Equilib.

Noneq. Noneq.

_! wB

Q

Equilib. "

n i|

H I|

Noneq. "

N/A N/A

_7

r

* ECW = Equilibrium Catalytic Wall

+ VSL = Viscous Shock-Layer

-o
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OF POOR QUALrl'Y

TABLE 2 - FREESTREAM CONDITIONS c FOR CORRESPONDING

HEAT FLUX MEASUREMENTS

time b V. P. _ [a E %- O=V.2

Flight sec lu=Isec kg/_3 de; k._ .4J/k h kPa

STS-2 &75 7.16 ,412.& 40.37 l.O00 7_.7 25._ 2.!:

700 5.57 .807,_ :).99 1,000 70.2 216 3._

10c0 _.55 .402-3 40.56 1,300 57.2 2_._ _.]5

ST5-3 400 7.29 .394-4 40.02 1.033 75.1 :5__ 2._9

700 6.29 ,113-3 39.58 1.037 6B.2 L?,a _.-6

960 4.5g .417-3 40.72 1.032 57.6 ia.5 8.75

_T$-5 400 7.]7 .408-4 40.0S .998 74.9 25.7 2.09

700 6.19 .Ib4-3 40.71 ,950 61.9 !9.2 3,99

950 &.56 .441-3 39.19 1,026 54.0 !0.4 9.!_

a f " (_/Oref) 1/2 (V/V ref) 3

b Ti=e from entry interface

c Best Estimated Trajectory

Factor used _O adjust heat _uI relative ::

$T$-2 condition, based on StaGnation poin:

theory.

(Z - 122 k=)

TABLE 3 - FREESTREAM CONDITIONS FOR CALCULATIONS

Case No. I l 2 460 a

Merhod BL VSL BL V_

Velocity, k_/s 7.62 7.62 6.ill& 7.20

Attitude, km 75.0 75.0 68.9 75.0"

Angle-of-Attack. deg 41.4 41.4 40.2 40.0

Density, ,,glm 3 3.795-5 3.974-5 9.28-5 3.B1-5

Total Enthalpy, HJ/k; 29.0 29.0 21.3 25.9

Temperature, K 197. 197. 221. 198.

Stagnation Point Pressure, kPa 2.20 2.31 4.10 1.9_

N'le Radius, [] 0.814 1.342 0.814 1.276

Hyperbo[oid angle b. deg _1.2 40.75

Lewis No. in Shock Layer

Present Calc_lationJ l.O l._

Reference II 1.4 I._

Reference 16 1.4 1.4

650 a

VSL

6.73

71.3

39 ._

6.8_5

22.6

205.

3.09

1.2_3

40.20

1.0

l._.

These f=eestream condizions are the smue as the one in reference "

for STS-2 ti=es correspc,_di_g to the case number a_d the same as .ales 2 and 3

in refereuce 8.

b Not applicable co ]-D _$L.
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SHUTTLE CENTERLINE HEAT FLUX

REFER[NCE IS STS-2 VINF=7.16 km/S ALT=74.7 km
.OF. POOR QUALITy
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Figure i.- Measured radiation equilibriu_ heat fluxes near

wl_dward centerline of orbiter. Altitude = 74.7 km.

SHUTTLE CENTERLINE HEAT FLUX
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Figure 2.- Measured radiation equilibrium heat fluxes near

windward centerline of orbiter. Altitude = 70.2 km.
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SHUTTLECENTErlUNEHEATFLUX
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Figure 3.- Measured radiation equilibrium heat fluxes near

windward centerline of orbiter. Altitude = 57,2 km.
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Figure 4.- Measured and calculated pressures on centerline of orbiter.
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Figure 5.- Comparison of eqttilibriu_, a_d zmne_ilibrium boumdary

layer calculations with fully Ka-_lytlc wall.
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Figure 7.- Comparison of nonequ-ilibriu_, axisTmmetric

viscous shock layer wi:h two-layer calculations
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sHUTTLE CENTERLINE HEAT FLUX
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(a) Comparison of axisymmetric ,-_iscous shock layer and

two-layer calculations for STS _2 650-sec case.
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CATALYTIC ENERGY
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Figure 9.- Energy transfer catalytic =eco_ination coelficien=

for nitrogen on RCG-coated HR3I.
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Figure 13.- Comparison of calculated and measured Shlttle heat

fluxes for STS-3. t = 400 see.
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Figure 14.- Comparison of calculated and measured Shuttle heat

fluxes for STS-3. t = 700 sec.
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Figure 15.- Heat fluxes on C742-coated tile at _/L = 0.163

for STS-2. t = 650 sec.
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Figure 16.- Heat fluxes on C742-coated tile at X/L = 0.40

for STS-2. t = 650 sec.
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