[54] SIDELOOKING LASER ALTIMETER FOR A FLIGHT SIMULATOR

Inventor:
Larry D. Webster, San Jose, Calif.

Assignee:
The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, D.C.
Appl. No.: 234,224
[22] Filed:
Feb. 13, 1981
[51]
Int. Cl. ${ }^{3}$ \qquad G01C 3/10; G09B 9/08
U.S. Cl. 358/104; 358/109; 434/4; 434/38 Field of Search 434/4, 38; 356/1, 4;

References Cited

U.S. PATENT DOCUMENTS

3,183,295	5/1965	Myles 434/4
3,194,869	7/1965	Eisenberg 434/4
4,068,955	1/1978	Bodlaj :............................... 356/1
4,097,154	6/1978	Peters et al. 434/43
4,183,672	1/1980	aber et al. 356/4

FOREIGN PATENT DOCUMENTS
WO80/02455 11/1980 PCT Int'l Appl. $356 / 1$

Primary Examiner-S. C. Buczinski
Attorney, Agent, or Firm-Darrell G. Brekke; John R. Manning; Robert D. Marchant

[57]

ABSTRACT

The object of the invention is to provide an improved laser altimeter for a flight simulator which will allow measurement of the height of the simulator probe above the terrain directly below the probe tip.
A laser beam 22 is directed from the probe 13 at an angle θ to the horizontal to produce a beam spot 20 on the terrain. The angle θ that the laser beam 22 makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line 18 coaxial with the longitudinal axis of the probe 13. A television altimeter camera 30 observes the beam spot and has a raster line aligned with the plumb line 18. Spot detector circuit 26 coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line 18. An error signal is produced by computer 28 driving, via a servo motor 23, the laser beam optics so as to cause the beam spot to come into coincidence with the plumb line 18. At coincidence, computer 28 looks up in a table the altitude of the probe for the given angle θ and reads out the altitude to an altimeter readout 31.

11 Claims, 9 Drawing Figures

> Fig-7

Fig_8

SIDELOOKING LASER ALTIMETER FOR A FLIGHT SIMULATOR

ORIGIN OF THE INVENTION

The invention described herein was made by an employee of the U.S. Government and may be manufactured and used by or for the Government for Governmental purposes without the payment of any royalties thereon or therefor.

TECHNICAL FIELD

The technical field of the present invention relates in general to laser altimeters for flight simulators.

BACKGROUND ART

Heretofore a laser altimeter system has been proposed for determining the altitude of a flight simulation probe over a model board. Such a prior art system is disclosed in an article entitled, "Probe Protection In Camera/Model Visual Systems" appearing in the Proceedings of the 1980 Summer Computer Simulation Conference, Olympic Hotel, Seattle, Wash., Aug. 25-27, 1980.
In this system, a laser beam is directed vertically from the flight simulator TV camera probe along a side of the probe to strike a point on the model board radially displaced from a point directly below the center line of the probe, hereafter referred to as a plumb line. The incident beam produces a beam spot on the terrain of the model which is thence imaged onto a linear array sensor. As the height of the probe is varied, while holding the probe otherwise stationary, from a point of minimum altitude to a point of maximum altitude the beam spot traverses a vertical imaginary line focused onto the linear array sensor. The position of the imaged beam spot along the linear array sensor is representative of altitude. A major problem with this system is that the altitude being measured is not the altitude of the probe (altitude measured along the plumb line) but rather the altitude of the laser beam source which is displaced horizontally from the probe. The actual distance between the plumb line and the laser beam must be multiplied by the scale of the model. Error will be produced whenever the terrain elevation at the plumb line differs from the terrain elevation at the laser beam. For example, an appreciable error would exist if the plumb line was over a depression and the laser beam impinged on a hill, mountain or tall building.
Thus, it is desirable to obtain a probe height sensor which more accurately measures the height of the probe above the terrain directly below the probe.

[STATEMENT OF INVENTION] DISCLOSURE OF INVENTION

In the present invention, pilot altitude as represented by the distance h is measured by a technique that locates the point of intersection of the plumb line and the terrain (hereinafter known as the convergence point). A laser beam is directed from the probe at an angle to the plumb line and coaxial with the longitudinal axis of the probe. The point where the beam strikes the terrain is varied by changing the angle of the laser beam relative to the longitudinal axis of the probe so that the beam spot is brought to a point on the longitudinal axis of the probe where it intersects the terrain. A TV camera, carried from the probe views the region below the probe and has a predetermined linear detection region,
such as a raster line, coaxially aligned with the image of the plumb line. A detection circuit receives the output of the TV camera and determines the position of the laser dot in the raster. Using this information, a com5 puter determines the position of the beam spot relative to the plumb line. A resolver coupled to the laser beam angle control reads out the angular position θ of the laser beam to a computer. The computer looks up the height of the probe in a look up table for the angle θ of 10 the laser beam. The measured height is then read out to an altimeter and to a flight simulation monitor station. If the laser dot does not reside on the plumb line, a computer directs a stepper motor to relocate the beam such that the dot will reside on the plumb line. If the operagence poeam is unable to be relocated at the convertion, an alternative laser beam at a different angle around the probe is selected. Also, if the TV camera's view is blocked the computer selects an alternative TV camera.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic perspective view, partly in block diagram form, of an altimeter system for a flight simulator incorporating features of the present invention,

FIG. 2 is a longitudinal sectional view of the flight simulator probe and model board,

FIG. 3 is a schematic transverse sectional view, partly in block diagram form, of a portion of the structure of FIG. 2 taken along line 3-3 in the direction of the arrows,

FIG. 4 is a schematic side elevational view of the TV camera optics for beam spot detection,

FIG. 5 is a schematic block diagram of a laser altimeter system incorporating features of the present invention,

FIG. 6 is a logic flow diagram for the computer pro40 g gram for the system of the present invention, and
FIGS. 7, 8, and 9 are logic flow diagrams for subroutines of the computer program flow diagram depicted in FIG. 6.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1 there is shown a laser altimeter system 11 for a flight simulator and incorporating features of the present invention. The flight simulator system includes a model board $\mathbf{1 2}$ comprising a scale model of terrain over which simulated flights are to be conducted. The pilot sits in a cockpit, not shown, and views a television screen displaying a view seen through a probe 13 movable with respect to the terrain of the model board 12 in accordance with flight control commands given by the pilot over the aircraft controls. The probe 13 is carried from a gantry, not shown, disposed over the terrain of the model board 12. Relative movement in three orthogonal directions, X, Y, and Z is obtained between the probe and the model board. In some embodiments, the gantry moves relative to a stationary model board to provide movement in all three orthogonal directions, whereas, in other embodiments the model board is moved relative to the probe to simu5 late flight.

Referring now to FIG. 2, the optical system for the probe 13 is shown in greater detail. More particularly, the probe 13 includes an elongated barrel portion 14
projecting in the Z direction toward the model board. At the end or tip of the probe 15 there is a mirror 16 which projects a visual scene corresponding to that which would be seen by the pilot, up along the longitudinal axis of the probe barrel 14 to a TV camera 17. The scene picked up by the TV camera is then transmitted to and displayed on a cathode ray tube outside the windshield of the simulated aircraft. The altitude h of the simulated aircraft is that scale distance from the mirror 16 is taken along a plumb line 18 for the modeled terrain to a point of intersection of the plumb line with the terrain at 19.

Referring again to FIG. 1, a laser 21 is carried from a frame coupled to and movable with the probe 13. The laser directs a pencil-like beam 22 of monochromatic nondivergent radiation of visible wavelength onto the terrain below the probe 13 having been deflected by pitchable mirror 35 to produce a beam spot 20 on the terrain. A servo motor 23 is coupled to the mirror 35 in such a way as to vary the angle θ that the laser beam makes to the horizontal or XY plane of the model board 12. The laser beam is rotatable about an axis of revolution parallel to the horizontal XY plane and such beam being rotatable in a plane normal to said axis of revolution, such plane also containing the plumb line 18.

An altimeter TV camera optical system 30 is also carried from the probe frame. The altimeter TV camera system 30 includes some optics, not shown, and views the region of the model board directly below the probe 13. The TV camera optics are such that the point of intersection of plumb line 18 with the model board surface is within the view of the TV camera system 30 for all values of altitude h from minimum to maximum above the surface of the model board 12 .

A single raster line is made coincident with the plumb line $\mathbf{1 8}$ through appropriate mechanical alignment. An output from the altimeter TV camera 30 goes to a spot detector circuit 26 of the type similar to that disclosed in U.S. Pat. No. 3,320,360 issued May 16, 1967 entitled, "Television Tracking Error Detector", for determination of the location of the beam spot 20 relative to the plumb line 18.

The output of spot detector 26 is fed to a computer 28. This output consists of the raster line number and displacement along the raster line of all of the detected elements of the laser spot $\mathbf{2 0}$. The computer determines the location of the center of the laser spot 20 in the raster of the altimeter TV camera system $\mathbf{3 0}$. To be coincident with the end of the plumb line 18, the laser spot 20 must lie somewhere along the altimeter TV camera system raster line which was made coincident with the plumb line 18. The computer 28 compares the raster line number of the center of the laser spot 20 with the raster line number of the raster line which is coincident with the plumb line 18. If the two are equal then the laser spot 20 must be located on the terrain at the end of plumb line 18 where it intersects the terrain. The exact length of plumb line 18 may then be determined. If the two are not equal, the laser spot 20 is not located at the end of plumb line 18 where it intersects the terrain. An error signal is generated which causes servo driver 27 to reposition laser spot 20 until the two raster line numbers are equal. The computer 28 also receives the angle θ input from a resolver 29 mechanically coupled to the laser beam deflection system so that at the point of convergence of the beam spot 20 with the point of entry of the plumb line 18 into the terrain, the computer reads the θ angle and looks up, in its look up table,
the value of altitude corresponding to the given values of altitude for various values of θ as the probe is moved from a position of minimum altitude to maximum altitude over the model board.

Referring now to FIG. 3 there is shown the optical distribution system for deriving the various laser beams and for televising the beam spot 20 on the model board. The laser 21 is affixed to a probe frame member 32, and directs its output beam through first and second beam splitters 33 and 34. Beam splitter 33 is arranged to direct the reflected portion of the beam downward along the Z axis whereas the other half of the beam passes through the first beam splitter 33, to the second beam splitter 34 which serves to further divide the beam into a first beam directed parallel to the X axis and a second beam of equal amplitude directed along the Y axis. Each of the beams outputted from the second beam splitter 34 is directed onto a 45° angle mirror 35 for bending the respective beam by 90° toward the plumb line 18. Each of the mirrors is driven from a stepping servo motor 23 about respective axes of revolution. In one instance the axis of revolution is parallel to the X axis and in the other to the Y axis and both are in the XY plane so as to cause the beams to be rotated within respective planes which are perpendicular to the XY plane and each of which includes the plumb line 18. A θ angle resolver 29 is coupled to each of the motor-mirror drive trains for giving an output determinative of the angle θ.

The other half of the output of the first beam splitting mirror 33 is directed downward along the Z axis to a 45° mirror, not shown, which thence directs the beam parallel to the Y axis to a second 45° mirror 37 and thence parallel to the X axis to another 45° mirror 38 which thence directs the beam through a second beam splitting mirror 39 for splitting the beam into two equal components, one parallel to the Y axis and the other parallel to the X axis. The beams are then reflected off of respective 45° mirrors 35 driven from the stepping motors 23 which include resolvers 29 . Thus, the second beam produces a pair of beams directed onto the model board 12 which are orthogonal to each other and which are 180° displaced from the first pair of beams. The beams are rotatable in the XZ and YZ planes, such planes each including the plumb line 18 . The respective mirrors 35 are positioned such that their output beams will intersect the plumb line 18 at the point that the plumb line 18 intersects the surface of the model 12.

The orthogonality between each of the laser beams is not a requirement. For example, it could be three beams at 120° angular spacing from each other with the camera optics similarly angularly separated from each other by 120° and being spaced at 60° angles from each of the respective beams.

A pair of altimeter TV camera optics are carried from the probe frame structure 32 and are positioned at 180° intervals about an axis of revolution coaxial with the plumb line 18 and preferably at 45° angular spacing from the ZX or ZY planes but on the XY plane containing the respective laser beams. This positioning of the altimeter TV camera optics 30 permits viewing of the respective beam spot 20 at the plumb line 18, regardless of various buildings, hills, or trees or other obstructions in the terrain of the model board 12. In other words there is some combination of laser beam 22 and altimeter TV camera optics 30 which will permit viewing of the beam spot 20 at the plumb line 18 regardless of the obstructions represented by the terrain of the model 12, with the exception of a well or deep ravine. The laser
beams 22 which are not in use, i.e., three of the four are "parked" by rotating their respective mirrors 35 so as to project the beam spot 20 onto the probe body 41 or 42.
Referring now to FIG. 4 there is shown one of the optical systems 30 for each of the TV altimeter cameras. More particularly, a condensing lens 45 receives the light emanating from the beam spot 20 and focuses the image of the beam spot onto the entrance plane 46 of a light pipe 47 such as a fiber optics bundle. The bundle 47 may have a suitable length as of $3-5$ feet to bring the image of the beam spot 20 to a convenient location of the TV camera 50 , typically somewhere on the gantry. Another lens 48 receives the beam spot image at the output face of the light pipe 47 and converts the image into a beam of parallel light 49 which is thence directed through a narrow pass filter $\mathbf{5 1}$ having a pass band at the wavelength of the laser beam 22 so as to filter out undesired background illumination. The filtered beam is thence fed to a condensing lens 52 which focuses the beam spot image onto the receiving face of the TV camera 50 . The input face of the light pipe 46 is cut at the Scheimpflug angle, as described in U.S. Pat. No. 751,347 issued Feb. 2, 1904, so that the plumb line 18 of the probe is maintained in focus on the input face of the TV camera 50.

Referring now to FIG. 5 there is shown, in block diagram form, the laser altimeter system 11 of the present invention. The output beam 22 of the laser 21 is fed through an optical distribution system 40 as shown in FIG. 3. One of the output beams 22 is selected and directed onto the terrain of the model 12 under the probe 14. The beam spot image 20 is picked up by both of the camera optical systems 30. Their output video signals are fed to a multiplexer 55 . The computer 28 selects one or the other of the camera optic systems 30
and feeds a control signal to the multiplexer $\mathbf{5 5}$ for controlling which one of the camera optic systems 30 is utilized. The output of the multiplexer 55 is fed to the spot detector 26 which tracks the image of the beam spot $\mathbf{2 0}$ relative to the plumb line $\mathbf{1 8}$ which is inputted to the computer 28 and thence outputted to the motor driver 27 and respective motor 23. In a typical example, the computer 28 comprises a Motorola 6800 Exorcisor. The resolver 29 outputs the angle θ for the selected beam 22 to an analog-to-digital converter in the computer 28. When the computer 28 detects zero error, i.e., the beam spot is at the plumb line 18 , the computer 28 by its software looks up in a table the altitude corresponding to the respective angle θ and outputs that data via a digital-to-analog converter to a driver 56 which thence inputs it to the altimeters or other read out devices 31.

Referring now to FIG. 6, there is shown the logic flow chart for the software program for the computer 28. FIGS. 7-9 depict the logic flow charts for program subroutines, namely, MOTOR MOVEMENT, DATA FETCH, and SCAN, respectively. The program listing is shown in Appendix I, below.

One of the advantages of the laser altimeter system of the present invention for a flight simulator includes detecting the altitude of the probe above a position directly below the probe as opposed to a position displaced in the horizontal plane from the probe. This makes the concept inherently accurate. Secondly, the provision of angularly displaced laser beams 22 and camera optics 30 allows reading of the altitude regardless of the obstructions represented by features in the terrain which might otherwise obstruct viewing of the beam spot.

APPENDIX I

00360	00036 a	5043	\％	4F\％\％	A		Cly	ज1：\％	
$003 \% 0$	00007\％	\％046	20	E1\％	\％		EfA	Ftact	
00.380	00030，	0018	7\％	\％am	A	OUT1．．．fe	Clme	Cramam	
003\％0	00039\％	\％11］	\cdots	\％＂9	A		Cime	cris	＊Of rob mot pabses
00100	00090 A	6041：	\cdots	1 l	A		世\％	W1\％\％	Artaxay moror rja
00410	00esta	00\％1	E6	F＂F＇	$\stackrel{\mathrm{H}}{ }$		LDAA	（\％F\％	
004\％0		51\％	$1: 7$	1 FF 70	\cdots		STHA	HE\％ 0	
00100	00043A	50．6．	Es．	06	0		L．Dâm	\cdots	
00440	00044A	50.6	E\％	Eryd	A		STAA	\＄1F7 7	
00450	000¢5iA	504E	（1）	50 n ？	A	CO	dSE	COLEECT	CD GET DATA FFFOM UTDEO
00460	00046A	E06\％	（1：）	Wめ¢	A		． 150	Drst	GO CAl．．c Al．TTTLIDE：
00470	000A7A	506．1．	FE	5306	A		LDX	DOT	
00490	00040 A	\％064	37	0）	0		Ef：	gras	IS DOT（NOT）THEFE？
00490	00049 A	506	\％	5339	A		C．I．Fs	STEL	IFF DOT，CLEF＋NO DOTS
00500	00050 m	：069	8 C	000	A	FIT．．TEF	C\％X	\＃1．	
00510	000sida	506	27	ED） 50	\％：		EEER	CO	SYSTEM EFFFOR，TFIY ACAIN
$005 \% 0$	00003	W06\％	20	1.49			FREA	ruis	FUN SYSTEM WTHM ROCD DOT
0050	00053 A	$50 \% 0$	¢ 6	0 0．	A	STrat．	1．．．DAA	： 11	－OF＇CONSEQ NO DOT FASS
005150	00054	60\％	1：0	433	A		SUEA	¢res	
00550	$0005 \mathrm{SW} \%$	\％0\％	$\%$	$05: 3$	0		EEEO	SEM	NO DOT TWICE？
00560	00056A	50%	\％	\％939	A		TNC	STEL	ACK ONE NO BOT FASE
00570	000：\％a	50\％A	20	1）＂： 50	\％：		ERA	Co	
00560	000\％SA	\％0\％	\％1＂	999	A	BW＋${ }^{\text {d }}$ ）	C． F	GTE1．	CAFM OF NO BOT FASSES
0050	000：59a	50\％\％	10	Wiフ9	A		」SF	HUNT	GO HUNT FOE MISGINS DCIT
00600	00060 A	6082	20	D）$\%$ ： 0			ERA	GO	nEETEAT AND TEY AGmTM
00610	0006 a	\％001	E\％	5000	A	FUN	$\mathrm{Cl} \cdot \mathrm{X}$	Core	FASTEF LTNE：STAE：TEGT
00620	0006天A	608\％	2	$0 \mathrm{C}: 0$	9		Bta	8ET1．	CONVEFGENT？
00650	00063 a	woos	Q6	01	A		1．DAA	： 11	FUT STABIE：FTT HEFE
00640	00064a	wode	E0	ש33\％	A		GUEA	STalme	
00650	0006 ¢\％	\％08ए	$\%$	0109			EEG	DFTVE	Ws dot rat corv？
00660	00066A	W000	7 C	W3， 0	A		INC	STmEme	ACK NOT CONU FASE
00670	00067 m	\％09\％	20	C650			EKA	00	FEETURE And TEY AGmin
00680	0006\％A	w0\％6	习F	53\％	$\stackrel{\text { A }}{ }$	SEI	C1，	STAEIE	
00690	000696	50\％\％	口1		的		USK	DTET	CALC DTST FOF Al．tIM
00700	000709	60\％1：	20	EF： 0	E－		Era	00	WETSEN MND FFOCESE ABAXN
$00 \% 10$	000710	50\％	EO	500	A	DFCUE	SE＇	MOUE：	
007\％0	000\％	W0¢0	20	E950	E：		EFA	0	Ferumo mid fewmocese
00\％30	000\％93	600%	フF	595	A	conmer	ClF	l data	INTMAAMEE DATA mbe＇s
00740	000\％年年	\％0A5	71：	ए\％	A		C1．．た	1．．．）ATA－1．	
00750	00076a	W0in	水	59%	A		Clik	DDATA	
00760	00076人	Funt：	下1	\％996	A		Cl	DDATAm 1	
$007 \% 0$	000\％7a	Enat：	入1：	\％rol	\cdots		CLF	cound 1.	
00700	00078A	w01：	710	ए？\％	A		CれF	TUMEI	
00790	00079 a	501：4	翟	90\％	A		ClF：	COUPT：	
00 soc	00090A	\％0\％\％	$1: 6$	1550	4		I．．D）AA	WF50	
00810	00001A	E0M	86	do	A		LIDMA	W190	
00 co	0008 令	601\％	${ }^{\square}$	E1\％	A		STAA	जF\％？	STAET Hamwate kummme
00890	00003A	508	Qc	F＂	A		1．．1．）AA	atwr	¢rowe Tarmer
00940	90034A	w0：1	F6	区F\％	A	Inraz	1．．うかt：	56eme	CHEK FOF DOT TATEEXUFT
00860	00030 ab	．j0\％1	\％	39	F		EMX	FEAO	TF SEE DOT，EROD Data
00950	0006¢¢	\％ocs	FFF	6003	A		GTX	Dumpiy	
00 c 0	0006% a	50c\％	FIF	6003	A		six	dumimy	
00890	00089月	Sncr	FT	61）	A		STx	dummy	
00950	00099 A	Eoct	1F	Fos	A		STX	dumity	
00900	00090 a	core	FF	6 W03	A		six	dumity	
00910	00091A	\％00\％	1F	छヵठ	A		srx	D．）minir	
00920	00092 A	W0193	FF：	कण\％	A		stx	Dutimir	
00530	00093 m	\％ODE	FF\％	\％03	A		stx	Dunimy	
00940	0000920	5u\％e	FF	590	A		5 st	Dupix	
$00 \% 50$	00096	W011	17.	6，50	A		Stx	Dusimy	
00960	000868	\％01： 4	「F：	ऊ\％\％	A		stx	Dumitio	
00970	0009% A	E01，	FF	603	A		stx	Duminy	
00980	000\％6n	501\％	1 F	\％）	A		STX	DuImi	
00990	0009 a	\＃un	1 F	\％）3	A		Stx	Dujoty	
0.1000	00100 a	G0F\％	7 C	6n1	A		Tre	count 1	：OF NO DOT LOOES
01.010	00101 A	\％01 3	$1: 1$	60．	A		Curat	Count 1	\＃F\％LOMFs？
$01.0 \% 0$	$0010 \times$	5018	26	CO			ExE：	Mre	FEETHEN AND TREY AGAMM
0.1030	001059	\％018	WE	0000	A		L． $\mathrm{D} \times \mathrm{X}$	\＃10	
01090	0010ヶA	：01\％：	「1：	506	A		STx	DOT	NO DOT FICOMO
01.050	0010 wa	क01E	39				NTS		EFTHEN TO MATM FFOG
01069	0010%	Cor	\％	E\％s	A	FWna	ClF：	465	STOF HAmDNAE：SYSTEm
$010 \% 0$	001．0\％	W1\％	1：6	19\％	A	CHECK	1．D．DA	1上F\％	
01080	1010¢	510\％	84	20	\cdots		Finson	田京め0	CHECK EUFFER NOT Eraty
$010 \% 0$	0010\％A	\％1．07	\geqslant	3a 51	43		EEO	DCENTF	Alll DATA XN，GET CNTF
03100	00110%	610%	Q	1.0	\cdots		$1 . \mathrm{Dam}$	： 81510	
01110	00.114	\％105：	1：7	घF\％\％	A		STAA	\＄FF\％\％	
01.1×0	0011%	＂W16＂	E6	E1： 90	\cdots		IDMA	1FF\％ 40	QET WTDTH AND URFACK
01130	00113 A	W11	16				TAE		
01140	（1011盛	以1\％		10	0		ANDA	Wffor	MAEK OTHEF TMEO
0.150	00915	$\because 114$					L．Sma		

01950	0019以A	－1cFer	FIF＇	E3F1	A		STX	LOCA	GTORE MEREOE IOCATMON
01960	100196A	5101	E：S	53：2	A		IDAA	$\operatorname{LoCA}+1$	D． F ．SUETR FOF DONE：TEST
0.1970	001\％\％A	61．154	180	ש＂\％0	a		ठu：a	x＋x\％dot	1．8\％SuETRACr
01980	00198A	510%	E	53\％4	n		GTAm	DTFF＋1	CTORE： $1 . \mathrm{SE}$ FESUMT
01990	100195A	－1DA	1：6	W世，	－		1．DAM	LOCA	
02000	00200A	5100	E2	5，	9		SECA	INFIN	
02010	00201．${ }^{\text {a }}$	Wxto	E\％	G3E3	A		STAA	ox\％	STOEE MEE RECunt
02020	00202A	51 C	FE：	59	ค		I．IDX	DIFF：	CHECK צF DONE
02030	00203A	W1ÉS	？C	11．	178		EME：	DrE：	TF NO DOT，DrE：
02040	002\％ 0 A	E1F6	7F\％	EF70	A		Clat	qEFF\％ 0	MOUE MIFFOF TO INFFINTY
02050	00205A	GIEE	0 I				NOF：		
02060	00206 A	51%	0.				NOF：		
02070	0020\％A	W1：0	0.				NOT：		
02000	00208A	51 Em	01				NOF－		
02090	00209a	GTEF	01.				Nal\％	：	
02100	00210A	51F0	01				NOF＊		
02110	002．11A	S1F\％ 1	01.				NOF：		
02120	00212A	51F\％	86	A¢	ค		I．DAA		
02130	00213A	\％11：4	E，	1 FF 70	A		STAA	W以下\％0	Mour：Markok
021130	00217A	517%	20	C6 61	EF		ERA	manty	FETUFN AND LOOK FOF DOT
02150	00\％1\％A	\％1－9	86	$3{ }^{\text {F }}$	A	DKE	1．DAA	\＃\＃3F	
02160	00216会	51．E：	E7	F1FE	A		GTAA	EK	
$021 \% 0$	0021\％	ज1re	01			EK	NOF：		
02190	0021．9A	E1FF	39			，Jutife：	Fis		
02190	00210					＊＊＊＊＊＊	＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊W＊＊
02200	$002 \% 0$					＊	MIFFOR：	OUE（AD， 11	T）Sumbuttrie：＊＊
02 L 10	00221					＊＊＊＊	＊＊＊＊＊＊＊	＊＊＊＊»＊ж＊＊	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
08200	$0 ¢ 3 \mathrm{Sa}$	\％60	F：S	TT0 01	A	MOण：：	1．DAA	Conver 1	D．F．StEre Foment．O．C．
0×290	0日天刀大a	003	1：0	536%	A		SuEA	DOT＋］	1．O．C．＝－ITNES OFF CENTEF
02×40		506	$1: 7$	$\because 64$	A		Stma	$1.00+1$	STOFE L．．se restn T
09 sec		\％0\％	1\％	5090	\cdots		L．DAA	COR	
0×260	00\％26a	\％＞0C	1：＇	ツ3D	A		SECA	Dor	MGE SUETFACT
$022 \% 0$	00\％27a	以20F	E	ज，${ }^{\text {a }}$	\cdots		STAM	1 mo	STOFE MSE RESULT
02260	－12\％	\％21\％	9	女re	A		Cliki	MM	CIEAR MCTOR MOUEAENT VAIS
02% ¢0	0029a	994	FE	凸ा＂	0		L．IDX	1.00	
02000	00230A	5213	$\because 7$	\％	9		EFQ	GOEC\％	NO MOUE TF CORUEEREEAT
02950	002mbo	521．0	क\％	01203	0		$\mathrm{CF} \times$	\＃1，1f0	
023×0	00×3	\％20	77	3A	\％		EFEC	GOEC\％	STGTEM EFWOE FTLTEE
0×930	003%		F1：	ज．3ा3	A		1．．1） 1	L． 00.	GET LOC FOR Effinch
62940	00\％3年	\％\％	1：	15：	\％		EMT：	MソO\％	SF\％LOC NES，MOUE DOT UF：
02560	00xswio	\％r：\％	E．	20	4	MODA	1．．1）	\＃120	
0×60	002¢6A	220	$1: \%$	¢木：	0		STAA	rim	
03s\％0	002．\％A	5\％9	［19	Wre：	\therefore		WFe	Clicmu	\cdots
02580	00238m	万＂80	析	1 F	A		Climb	W1：7\％	
02990	00\％9\％A	\％\％下	01				NOF：		
$0 \% 400$	00\％c40a	6200	01.				WOF：		
02410	002． 1 A	\％31	01				NOF：		
02420	00\％4\％A	＂\％3？	0.1				NOM：		
0×880	00\％404	\％29	01				NOF－		
0 0， 4140	002．44A	\％24	（1） 1				NOF：		
02450	00246%	\％2\％	0 I				NOF		
02460		W36	$1: 6$	छा：	\hat{A}		1DMA	M19	GEr MOTOF MOLEMENT
mrapo	00297	\％\％9	17	ET70	，	．	Stan	WEr\％o	
0×100	102490	\％2\％	\cdots	We99	A		dill：	¢\％\％以	
02480	90¢4¢A	65F	1：5	5\％4	$\stackrel{\text { a }}{ }$	Tuば，	1．．İ¢\％	$1.00+1$	
02500	00350A	524\％	． 40				NEGOA		
02510	002wa	$5 \% 48$	E	55^{51}	A		©TmA	$1.00+1$	AESOLUTE VAhtue OF LOC
0260	00\％\％	6\％ 6	$F 0$	ज\％	A		JSF	Clcimy	
02530	00\％994	W949	7\％	1 FP	0		Cff	1EF\％0	
03E40	00\％\％4	＂910	01				ग\％\％		
00^{2} \％ 0	00\％क5\％	\％40	01				NHF		
02650	002\％6A	\％ $\mathrm{m}^{\text {a }}$	（1）				N15：		
02070	00 $0^{3} \mathrm{~F}$	\％年	01				NOF：		
0 0．00	002．69a	फ毋ए0	01				NOF：		
02500	002\％9a	サッら1	（1）				NOF：		
02600	002650	6\％\％	01				NOF：		
0261.0	00261A	\％\％	ec	\％\％	A		lomit	MM	CET MOTOK MOUEMENT
$026 \% 0$	00\％6ハA	5\％66	E＇	EF\％ 0	A		ETAM	15170	GTOFEE IN MOTOF F－IA
026830	002\％69	\％\％：9	99			6OECK	$\mathrm{Fr} \mathrm{S}^{\text {a }}$		
02690	002694	以2\％a	1 m	FFas	A	Drer	1．DAA	9FFOC	
02680		\％ツ\％	0.1				Nos：		－vor
02660	00266A	\％＂\％	F\％	FFOCO	A		L．I．x	¢EFOE	EET MTFFOFE VOL TACE
025\％ 0	0026\％		HF	\％ry	A		STX	MTEm	STOFE TRN MRFFORE AD
0¢680	00\％68＾	694	1\％	W\％ 0	A		1．D⿵冂	MEmbot	D．F．ADD MIFFROR A／D FFLUS
02690	00269\％	W6\％7	65	FF：	A		abor		USFF 《ESAS FOR TAEYE，
02700	002\％0ヶ	5969	E	53F？	A		STfun	T0F\％\％\％	STOFE：LSE IM TAELLE OFFSET
02710	0027 A	6960	E\％	\％उसF	A		I．IDAA	MXFAD	
02720	002\％ 2 A	\％安原	99	03	4		ODCA	4	MESP Arom
02×10	0027ヵ）	－6＞	B 7	WF	A		STAm	romemer	STOFE MES TN TAELE OFFSET

1．56a
MBDA
sini
I．DAA
和以
STMA
1 Biti
ADM，
छTम合
（I）X
BT
f1． 161
1
1
\therefore

 029400029

 03030003030 5\％O

 031700031% जै
 $031 \% 0$（103196 कणF1［\％Wुस

 05240 0（3，$\% 4 A$ 以

 03300 00330日 $0306 \% 0$（1）
 $\begin{array}{lll}033 \% 0 & 0033 \\ 036 & 01 \% & 1 \%\end{array}$

 03450 00345A 53？D ES 日1．
 03470 00377A 5332 1 ：
 0349000349 A 53639 0350000350 A W3\％ 0002 0351000351 A 5300001 ． 000

03530 00553A 5305： $03540 \quad 00354 \mathrm{~A}$ ： F 350 $035500035 \mathrm{FA} 5 \mathrm{5y}$ 03560 003EめA 5301 0357000357 M 502 03580 003玉8A 5303 0359000559 F 505 $0360000360 \mathrm{O}=306$ $0361000361 \mathrm{~A} 5 \mathrm{5OB}$ $036200036 \% \mathrm{~A}=30 \mathrm{~A}$ 0363000363 A 530\％ $03640 \quad 00364 \mathrm{~A}$－300 0365000365 m 50\％ 03660003660 E3F1 0367000367 m ． 5 ³ 0368000368 A ． 535 $0369000369 \mathrm{~A} 5 \% 7$ $03700 \quad 00370 \mathrm{~A}$ 5BF9 03710 0037は 5ふएЕ 03720 0037スA WBFD $0.37300037 \mathrm{3m} 5 \mathrm{5m}$ $03740 \quad 00374 \mathrm{~A}$ ज1． 0375000375 A 5 BF 0376000376 G जुए 03770 00377A 53F＂ $03780 \quad 00378 \mathrm{~A}$ 与3F8 03790 00379A 5ЗFA 0380000380 ค G3FC． 39 0381000381
TOTAL FRFORG 00000 $-\cdots 0000$

00 IE	A	WDMTA	Firse	30
0035	A	lmata	HME：	60
0036	A	dDemta	FME：	60
000.1	A	coundr 1.	Fims：	1
0001	A	inlmme 1.	EME	1
0002	A	D．Uminiy	FME：	2
000 J	A	counsr：	FME：	J．
0002	A	DOY	FWM：	2
0002	A	IITME：	FME：	2
0002	A	Mmx．	FME：	2
0001.	A	wDCost	F：ME：	1.
0002	A	ZENO	FME：	2
0002	A	INFIN	RME：	2
000%	A	LOCA	FME	2
0002	A	DTFF	FME：	2
0002	A	TEMFP1．	FME：	2
000%	A	TADD	FiME：	2
0002	A	EFt	Fime：	2
000%	A	EF\％	FME：	2
0002	A	EFWOR	FME：	2
0002	A	MEXAD	Fime：	2
000%	A	Torsey	FME：	2
0002	A	Loc：	FME：	2
0001	A	M ${ }^{\text {M }}$	Fime：	1.
0002	A	TEMF\％＇2	Fime	2
0002	A	TEME3	Fur：	2
0002	ค	Trscum	FMM：	2
		FETU	FTS	
			END	

16

wTDTH OF dot data RASTEF LTME \＃DATA DIGFI．．ACEMENT DATA ：$:$ OF COLIEET FASSES

DUMMY TIME FPD VAFE． ＊：OF LTNES WITH A GOOD DOT IOCATION OF DOT CENTEF TEMF GTOFE FOR DOT CEENTEF GAME AS ABOUE．
\＃：OFF LTNES W／A COOD DOT MMFEOF VOL TACE：D DTST＝0
 CUFWENT VOLTAGE OF MEFFOF DTFF EETW LOCA AND GOAL TEMF：FEG FOK MOU＇T CALC TAELE ADOFESS
SYSTEM EFWOR UAF 1 SYSTEM ERFOR UAF 2 FEEUL．TANT GYGTEM FFROR MXEFOR VAI TAGE FORE DTST TAELE OFFSET（ETAS） \＃OF LIMES OFF CONUEFTEE MOTOE MOUEMENY
TEME FEC FOE DIST CALC TEMF WEG FOE DTST CAl．E． AL TMMEER OUTFLT UOLTAGE

5171 ADD1．	0015300155%
5005 ETAS	$00013 * 0028900292$

```
5LFE EK 00216 00217%
510% CHECK 0010%%0013%
```



```
5OA% COLEECT 0004% 000/3*001.65 00189
5000 CONU 00009%0006: 002?2 002%%%
53D. COUNTJ. 0007% 00%00 0010% 005%6%
53D5 COUNT2 00079 001.50 001.35 00138 00.359*
51.43 DCENTF 001.09 001.56%
5395 DDATA 000%% 000%6 00130 00.134 00.14% 0005%%
GF% DIE 0020% 002,5*
ESES DIFF 001.72 00175 00176 00:98 00201 00202 00367%
G13E DTSAE: 00119 00136*
5%FDTST 00046 00069 00264*
5%)6 [OT 00047 00104 00147 00150 00151.00155 0015% 00164 001.90 00223 00%26 00360*
5090 DFETVE 0006% 0007!%
#303 DUMMY 00086 00087 00089 00089 00090 00091.00092 100093 00094 00095 00096 00097
5%9 EF1 002%% 0000% 00315 00318 00370%
53FE EF, 00314 0031% 00317 003%1%
SBED EFFOK 00317 003%0 003%1 00%%%
5069 FTLTEF 000E0%
5037 FLAGG 00031*00037
5%94 FF.AG.1 00284 002%%%
505E GO 0004%x00051.000%% 00060 0006% 000%0 000%%
5255 BOECK 00230 00232 00248 8026.3%
5.79 HLNT 000E9 00159%
SBDF TNFIN 001.60 0019% 01%00 00065%
5%A TNSOUT 0030S 00506 0000% 00%%9*
50C1 JMF゙2 000034*00102?
513E JMF4 00121 001%%*
5xFF JumF 0016% 00191 00210%
G%1A tARGE 00030 003%6%
505% LDATA 00073 00074 00124 0012% 001.40 003%4*
500& L.gmu 00012*003%%
G310 LCST 00331%
G%)| LTNE 00141 0014% 00148 000%1*
5%3 LOC 0022& 00%2% 002%9 00293 00249 00251 00324 003%5*
5E1 LOCA 0016% 00170 0017% 0019% 00196 0019% 00366*
```



```
$,31 movk系 00100x
F5DA MinX 00143 10036%*
5003 MDF隹 00011%0103%*
6,3 आ1% 00%% (11%名%
```

```
S1EF MINFIN 001%7 00189*0021.4
SBEF MIFAD 00267 00268 00271. 00373*
53F5 MM 00228 00236 00246 00261 00332 00334 00337 00339 00341 00343 00346 00348
5200 MOUE 00376* 0071002ハ2*
G2,24 MUDN 00235%
F23F MUUF 00234 00249%
5185 MZERO 00163*001883
53[): NUME:1. 00078 003%7%
5048 OUTLOF 00033 00038*
SOFFF FEEAD 00085 00106%
53FC FETL 00330%
5084 FiUN 000%2 00061%*
G07C SEND 000E5 000EG*
5095 SET1 00062 000683*
532D SMALLL 00326 0034%%
500% SMMU 00010%00325
5070 STA1 00048 00053*
533A STAELLE 00038 00064 00006 00068 00352*
5339 STEL 00039 00049 00054 00056 00058 00351.*
S3E:Y TADOD 00.369*
GBEES TEMF1 00SGO%
ESFG TEMF2 002E@ 0026@ 00%90 00291 00293 00295 00298 00301 00305 00377%
53F8 TEMF3 002%% 00300 00302 00304 00373*
G3F1. TOFSET 00270 00273 00274 00275 00276 002%7 00278 00279 00280 002.82 00283 00374*
5337 UAFET 00350%
533E: WDATA 00353*
EBDC WDCNT 00139 00144 00146 00363*
G300 ZEF:O 00162 00171. 00174 00364%
```

I claim:

1. In a method for determining the altitude of a flight simulator probe moving relative to and above the terrain of a flight simulator model wherein the imaginary line extending from the probe in a direction normal to the model is characterized as the probe plumb line, the steps of:
directing a pencil-like beam of radiation from said probe onto the model keeping said beam within a plane containing said probe plumb line to produce a beam spot on said model;
detecting the location of said beam spot relative to two orthogonal coordinates with a detector situated remote from said probe plumb line and having a linear sensitivity zone optically aligned with said probe plumb line;
varying the angular orientation of the beam within 4 said probe plumb line plane and relative to a reference plane so as to cause said beam spot to impinge on the model site intersected by said probe plumb line;
determining the angular orientation of the beam rela- 50 tive to said reference plane; and
utilizing the determined angular orientation of said beam to determine the altitude of said probe over the terrain of the model.
2. The method of claim 1 including the step of, direct- 55 ing a second beam of radiation onto the terrain of the model from a position on the probe angularly spaced from the position of the first beam taken about an axis of revolution generally coaxially of said probe plumb line; and detecting the second beam spot when said first beam spot is obstructed by the terrain from reaching the intersection of the model and the probe plumb line.
3. The method of claim 1 wherein said beam of radiation is a beam of monochromatic, collimated light.
4. The method of claim 1 wherein the step of detecting the beam spot includes the step of directing a beam spot image through a light pipe on a path between the beam spot and the detector. controls the motion of the probe relative to the terrain of a model while viewing said model via a video monitor on said probe:
means for directing a pencil-like beam of radiation from the probe onto the terrain of the model to produce a beam spot on the model where the beam impinges on the model, an imaginary line extending from said probe normal to said model being known as the probe plumb line;
means supported by said probe for detecting the location of said beam impingement on said model, said means being remote from said probe plumb line, being two-dimensionally sensitive, and having a linear sensitivity zone in optical alignment with said probe plumb line;
servo means coupled to said beam directing means and said detecting means for varying the angular direction of the beam in a plane containing the probe plumb line and maintaining the beam spot on the model at the site where the probe plumb line intersects the model;
means for determining the angular orientation of the beam relative to a reference plane; and
means for utilizing the determined angular orientation of said beam to determine the distance between said probe and said model measured along said probe plumb line.
5. The apparatus of claim 6 including:
means for directing a second beam of radiation onto the terrain of the model from a position on the probe angularly spaced from the position of the first beam taken about an axis of revolution generally coaxial of said probe plumb line; and
means for detecting the second beam spot when said first beam spot is obstructed by the terrain from
reaching the model site intersected by the probe plumb line.
6. The apparatus of claim 6 wherein said means for directing a pencil-like beam of radiation includes means for directing a pencil-like beam of monochromatic, collimated light.
7. The apparatus of claim 6 including light pipe means
for directing an image of said beam spot to said detecting means.
8. The apparatus of claim 7 including beam splitter means for splitting off a portion of said first beam to 5 produce said second beam.
9. The apparatus of claim 6 wherein said detecting means includes a video camera.

* * * * *

