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CONSIDERATIONS ON THE LUBRICATION OF SPACECRAFT MECHANISMS

i.

by: H. Mervyn Briscoe* and Mike J. Todd**

INTRODUCTION

The wide variety of lubrication techniques now available to

spacecraft engineers very often makes the choice of an optimum process
for a specific application very difficult to select. The ever

increasing demand for the reduction of costs in spacecraft enqineering
has led to the unthinking application of commercial processes with the
minimum of either intellectual or practical justification and
sometimes disastrous results.

The purpose of the paper is, therefore, to try to focus space

tribology and to propose a number of precepts to guide designers in

its application. Of the many techniques available all, wit;_out

exception, have limitations in performance. Two European processes
will be discussed in more detail and their limitations identified.

Some performance results on a recently introduced liquid space
lubricant will be given.

2. APPLICATIONS AND REQUIREMENTS

Table I is a non-exhaustive list of important space mechanisms

with brief details of their lubrication needs in which four broad
types of application can be identified.

low speed sliding contact

high speed sliding contact

low speed roiling contact

high speed rollinq contact

For each of these there is a number of solutions but the

selection of the optimum will depend wholly on the physical details of

the mechanism. Which brings us to the first precept of space
tribology.

Precept 1 The optimum lubrication system for a space mechanism is

an integral part of the mechanism design and not a

process to be added when the design is complete.

Even today when space engineering is more than twenty years old
the precept is ignored. The authors have personally experienced two

instances during the past year where the lubrication system was
expected to make a poor design concept work.
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3. LUBRICANT CLASSIFICATION

They may be categorized as:

DRY

(a)
(b)
(c)

Dichalcoqenides (lamellar solids)

Solid lubricant composites and transfer film lubricants
Soft metals

LIQUID

(a) Hydrocarbon oils

(b) Synthetic oils

(c) Greases

It is quite impossible in a short paper to review all available

techniques and processes so the authors will concentrate on those

available in Europe and with which they are most familiar.

4. DRY LUBRICANTS

4.1 Dichalcogenides

These are a group of metal compounds which exhibit a lamellar

structure to which current theory attributes their good lubrication

properties. In fact only a limited number may be classed as

lubricants, amongst which are WS2, WSe2, MoS2, MoTe2, NbS2, NbSe2, and
TaSe2.

Of these MoS 2 has shown itself to have the best performance in a

space environment as a result of years of testing. It has good wear
characteristics, low friction and in general performs better in vacuum

than in moist air. Its coefficient of friction is load dependent,

although some recent work has introduced dispute on this point, and

ranges from 0.4 to lower than 0.1. There is a large literature on MoS 2
and ESA is funding a continuous bibliography on its applications to
space prepared by A.R. Lansdown. (Ref. 1-5).

MoS 2 may be applied in a number of ways and those of interest to

space engineers are reviewed briefly below.
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4.1.1 Bonded Films

A bewildering variety of bonded films has been invented, now more

than 100, but only a few of them have found general commercial

application. The binders may be organic or inorganic, heat cured or

simple air drying agents mostly based on cellulose. Some inorganic
binders based on ceramics require curing temperatures of 1000°C which

limits the materials to which they can be applied.

The thickness of a bonded film may commonly be of the order 1OHm

which is enough to degrade the precision of many high grade
mechanisms. The debris from the film may also lead to very erratic

torque, particularly in rolling bearings. The control of such
processes is very operator dependent which makes it difficult to

achieve consistently uniform results and tends to preclude their use
in critical mechanisms. The authors would not now use a bonded film in

an application where high precision was a requirement.

4.1.2 Burnished Films

A moderately adherent thin film of MoS 2 may be achieved by

burnishing onto a thoroughly degreased and clean metal surface.
Rubbing with chamois leather or a wire brush, or tumbling in a ball

mill are established methods of burnishing. It is difficult to achieve
consistent results even when the process is most carefully controlled,

but the process is readily acceptable for very simple sinqle operation

devices such as latches, hinge pins and pyrotechnics. It can be

applied to rolling bearings where the life is a few thousand
revolutions and loads are moderate. Running-in should be an integral

part of the process.

4.1.3 Sputterin9

The most recent technique for applyinq MoS 2 films is by

sputtering, first developed by Spalvins and Przybyszewski at NASA
Lewis Research Centre. Since then a good deal of work on sputtered

MoS 2 in ball bearings has been reported in the USA, chiefly by
Spalvins (6) and by Christy and Barnett (7) and also in Europe by

Bergman (8). In Europe the process has been developed and refined both
at the Laboratoire Suisse de Recherches Horlogeres (LSRH) and at the

European Space Tribology Laboratory (ESTL) in the U.K.
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The very significant advantage to be gained by the process is the
achievement of a very thin, about Ipm, film stronqly adherent and of
controlled composition. However, it has been shownby ESTLthat the
performance of sputtered films varies widely depending upon the
sputtering technique and the stoichiometry of the film. During the
past two years films of MoS2 sputtered by LSRHand ESTLhave been
comparedfor performances in 42 mmdiameter ball bearings, preloaded
to 40N and run at 100 rpm. Results are discussed in para.4.4.

4.2 Solid Lubricant Composites and Transfer Film Lubricants

The number of polymer type materials falling under this heading
is now considerable and quite beyond the scope of this paper.

In practice only a very few are suitable for use in a space

environment and in Europe only PTFE, often filled with MoS 2 and
reinforced by glass fibre polyimide and polyacetal (e.g. Delrin) are

commonly used for their tribological properties. The disadvantages of
polymers in a space environment are:

Q

i

high coefficient of expansion

low load capability

high wear rate

limited dimensional stability

poor thermal conductivity

But these are balanced by the advantages of:

cheapness and simplicity
low coefficient of friction

low outgassing

The lubricating action of these polymers and composites may be by

the transfer of a film to the mating material or they may simply
provide wear resistant components, but the two actions should not be

confused. In consequence they may be used in space either as the base

material of one component of a rubbing pair, e.g. gears, or to provide

a transfer film to lubricate a roiling or sliding metal pair,
e.g. bail bearings.
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PTFE+ MoS2 + glass fibre has for manyyears been used as a cage
material in small, lightly loaded, ball bearings. This composite has
been studied in detail by Stevens and Todd (Ref.9). Loads must be
limited to ensure that the Hertzian contact stress does not exceed 1.2
x 103 MN/m2 at 20uC. The MoS2 appears to have the function of
preventing the transfer film of PTFEbecomingtoo thick. Failure is
usually by wear-out of the cage, creating large quantities of debris.
In oscillatory motion a build up of transfer film at the end of the
arc of travel leads to excessive torque peaks. In addition the
thickness of the transferred film can be dependent upon speed of
operation.

Both polyimide and polyaceta] have been used for lightly loaded
gears in a space environment running against stainless steel, titanium
or aluminium. Work in progress at ESTL, to be reported in the near
future, has shownthat Vespel, a polyimide, gives the lowest wear rate
of all polymers tested. Polyacetal filled with carbon fibre has also
been tested and shows lower wear rate than the unfilled polymer but
still greater than the polyimide. Maximum loads for all these

materials should be limited to 10 N/mm tooth width for gears of
module 1.

4.3 Soft Metals

It has long been known that the soft metals such as Ba, Au, Ag,

Pb, In and others are capable of providing lubricating films in
certain circumstances. In this paper we shall confine ourselves to the

use of lead in rolling bearings and gears in space. The work was
initiated by the Royal Aircraft Establishment in the UK in the 1960's

and a very extensive test programme was carried out by Marconi Space

and Defence Systems on 19 mm diameter bearings at 3000 rpm, some of

which ran for eleven years. The programme was extended by ESA to

bearings of 90 mm diameter running at 100 rpm and six pairs completed

more than 60,000 hours without failure. In all these tests the only

limitation was the wear debris from the lead bronze cage, and the

search for a better cage material is continuing.

The process used by MSDS Ltd. was vacuum deposition, which made film

thickness and adhesion difficult to control, so the Agency undertook

the development of an ion plating process at ESTL. (Ref.lO, 11, 12).
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The pre-eminent advantages of an ion plated film over a vacuum
deposited one are excellent adhesion and close control of thickness,
0.35 e 0.15_m at ESTL. At present only the races of the bearing are

plated and the film is transferred to the balls during the runninq-in

period in vacuum, which is an integral part of the process. Ion

plating of the balls is now possible but, for most applications seems

to offer little advantage.

Lead lubricated bearings are flying in the OTS and MARECS Solar

Array Drives and will fly in the SADs of ECS, EXOSAT, L-SAT and the
French SPOT. The bearings of the de-spin mechanism of GIOTTO, the

European Halley's Comet probe, will also be lead lubricated. The
selection of lead in this case was made to take advantage of its

immunity from torque changes due to temperature. The torque at -40°C

is virtually identical to that at room temperature in a well designed

system; a performance which no liquid lubricated bearing can equal.

Torque noise, however, will be higher than an equivalent liquid system
which was the reason for the final rejection of lead, and all other

dry film systems, for the Space Telescope Solar Array Drive, where
smoothness of operation is a prime requirement.

Lead lubricated bearings are finding application in scientific

instruments and lead lubricated ball screws are flying on Nimbus G.

A similar ball screw has performed very well at 4°K and demonstrated

the effectiveness of the process at cryogenic temperatures. Ion plated

lead is now being applied to gears although it operates better in a
rolling than in a sliding contact. Tests have shown it to be a very

effective lubricant for gears of nitrided steel on nitrided 440C steel

and it has been adopted for the gears of the L-SAT Solar Array Drive.

Most importantly the process has been fully established, codified and

documented at ESTL to ensure complete repeatability of film parameters

and friction and wear characteristics, and it is now offere_ as a

standard process routinely carried out.

The pros and cons for lead lubrication may be listed as:

Pro: - excellent adhesion

low, consistent and temperature-independent torque
very long life under vacuum

applicable to bearings, gears and ball screws
usable at cryogenic temperatures

Con: - flake wear debris from the lead bronze cage can cause

torque noise problems. ESTL is investigating alternative

materials for cages.

operation in air must be limited to fairly low speed and
short duration e.g. 105 revs.at 100 rpm for a 20mm ID

bearing.
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4.4 Bearin_ Torque Characteristics of Solid Lubricant Films in Vacuo.

With the aim of comparing levels of torque and of torque noise
from ball bearings under identical conditions, data from ESTL have

been assembled to show what is to be expected of the three most common
lubricants discussed above.

Table 2 shows the details of the method of lubricant application,
the associated cage material, the type, size and preloading of the

ball bearings used in this comparison. In all the tests an arbitrary
level of torque ten times the initial DC level was chosen to represent
torque "failure".

4.4.1 Torque Results

The histories of torque tests over 2 million revolutions (or
until torque failure, as defined above) are collected in Table 3. As a

comparison the result for an unlubricated, but degreased, bearing is
included. Very rapid failure is encountered.

The MoSp-sputtered bearings tended to start with a moderately
high torque _20 x 10-4 Nm) but it soon fell to a 6 -lf -4 Nm (at

40N preload) where it remained until usually a sudden steep rise and

torque failure. Films sputtered at ESTL and at LSRH Switzerland

exhibited broadly similar behaviour but bearing lives varied from
0.7 -3 x 106 revs for films sputtered at ESTL and from 2 3.66 x 106

revs for films sputtered at LSRH. The torque traces were some of the

smoothest that we have observed and we would now recommend sputtered

MoS 2 where low torque noise is important and the life requirement is
not above 105 revolutions, or equivalent rolled distance.

The ion-plated, lead-filmed bearings exhibit reasonably steady DC
(average) torque but there is considerable fluctuation in the

peak-to peak torque. This latter is defined here as the maximum total

swing of torque either side of zero during slow rotation of the
bearings in two opposite directions. This bi-directional check of the

torque was carried out at regular intervals in these tests. For the

lead film there is no effect of a previous run at lOON preload on the
torque. None of the lead bearings failed by the above criterion. The

PTFE-composite caged bearings were considerably more erratic in their

average torque than the lead filmed bearings and the torque was prone

to rise quite suddenly over a few thousand revolutions and as quickly
to subside. Nevertheless, the peak-to-peak amplitudes of torque were
|ess than those of the ion-plated lead, as Table 3 shows. There was a
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discernable effect of previous running at low load (i.e. below

critical stress) upon the torque in the 250N run (above critical).

The bearings run immediately at 250N showed high DC torque initially
but this gradually reduced with time. Such initial high torque was
absent if the bearings had been run at sub-critical stress beforehand

but there were still periods of high torque during the run. For these
bearings lOON preload caused the critical Hertzian stress.

It is appropriate to complete this section with the second
precept of space tribology:

Precept 2:
In designing a space mechanism avoid making its
operation dependent upon close control of the
coefficient of friction.

5. LIQUID LUBRICANTS

The use of liquid lubricants in space is not new and it is fair

to say that all early American satellites relied upon it. Ball Bros.

were the leaders in the field in the USA and the move to dry
lubrication has been slow. In Europe we went strongly for dry

lubricated systems, largely driven by the success Of the lead system,
but also because their advantages were clear.

In consequence liqui_ systems in Europe have received less

attention but have not been ignored. A de-spin system which has been

running under test in vacuum at ESTL for more than 7 years is liquid
lubricated. The Solar Array Drive for Space Telescope, the Instrument

Pointing System and the bearings of the Antenna PoSnting Mechanism on
L-SAT, all have liquid lubricated bearings.

5.1 Hydrocarbon Oils

In Europe BP Ltd (U.K) developed, at the request of RAE, two
space oils with very low vapour pressure.

BP 110 is a very fine cut natural hydrocarbon with a claimed

vapour pressure of 10-10 torr or lower at room temperature.

BP 135 is a synthetic tri-ester with a higher viscosity index
than BP 110.

|
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BP. Ltd. further developed two greases upon these oils but of

quite different formulation from normal greases. (Ref.13).

The thickener is based on an oleophilic graphite-lead composite
capable of forming stable semi-solid structures on dispersion in a

suitable base fluid. The proportion of thickener is 17%, which is
unusually high, but it also provides a marked improvement in the

extreme pressure and boundary lubricating properties.

The use of graphite in a space environment is very unusual since

it is well known that graphite in a wholly dry atmosphere acts as an
abrasive. In the case of the BP greases the special method of

preparing the graphite to render it oleophilic makes it operate in a
vacuum environment very satisfactorily.

Both of these oils have been subjected to extensive testing over

the past seven years and the BP 110 and its grease BP 2110, have been
shown to give longer bearing lives in vacuum than competitive

lubricants. In most tests BP 135 has not equalled the life achieved by

BP 110 but has given good results for many applications, and is

useful where its higher viscosity index may be an advantage.

At ESTL a de-spin mechanism has been running at 60 rp.m. under
thermal vacuum conditions for seven years without any change in
performance. Lubrication is achieved by a small quantity (about 5%
fill) of BP 2110 grease in each bearing combined with Nylasint oil
stores charged with BP ii0 oil. The thermal conditions in the chamber
are maintained at 20:C whilst the shaft of the mechanism is driven
between -5°C and + 45°C. The performance of this mechanism has been

excellent with no change in any operating parameter except a small
rise in motor current attributable to magnet deterioration.

5.2 S_nthetic Oils

In general, synthetic fluids usable as space lubricants fail into
two broad categories:-

silicones

fluorinated polyethers.

In the early years of space many silicones were tried as space

lubricants with widely different results. Their advantages are a high
viscosity-index, good thermal stability and fair to good lubricating

properties, but their volatility in space environment may not be

significantly better than some hydrocarbon oils, and their surface
creep characteristics are notoriously bad.
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Silicones in space have nowbeen displaced by perfluoralkylethers
such as the Krytox and Fomblin fluids. However, the lubricating
properties of these fluids are not general and only someof them have
found application in space. In someapplications such as sliprings
they can lead to excessive wear rates and the formation of polymers.
Howeverused in the right application th@y can g_ve excellent
performance and their extremely low (10"11 - 10-lj torr) vapour
pressures at roomtemperature makesthem most attractive for
mechanismswith critical cleanliness requirements.

5.2.1 Fomblin Z25

Probably the most significant addition to space lubricants is a
polyfluoralkylether manufacturered by Montedison in Milan called

Fomblin Z25. The Fomblin Y series of fluids has been well known in the

vacuum industry for many years but the introduction of Fomblin Z,
which has a different chemical structure, was somethinq of a

breakthrough for space lubrication. The fluid has the very high

viscosi_ index of 345 and a vapour pressure that is certainly below
5 x 10-±L torr at room temperature. It is the only oil known to the

authors which passes the Agency's material out-gassing test, givinq
TML/RML % 0.01/0.01 and cvcM% 0.00.

The Bray Oil Co. in the USA have for several years distilled the
Italian raw stock to make Bray 815Z, which has been flown on a number

of USA satellites mostly in the form of a PTFE thickened grease,

Bray 3L38RP, and will fly in Space Telescope in the solar array
development mechanism.

During the last two years the fluid has been subjected to
numerous tests at ESTL.

Bearings of two different conformities are being run at speeds of
20, 100, 200 and 1400 rpm. Full elasto-hydrodynamic lubrication is

achieved at about 250 rpm. In the case oF low conformity bearings at
1400 rpm the torque reduces suddenly and torque noise increases after

a short time indicating the onset of starvation conditions. A black

deposit has been observed in these bearings which has been identified

as a polymer. In initial tests the high conformity bearings at
1400 rpm were accidentally contaminated with a hydrocarbon oil which

resulted in a good performance but a milky deposit. Repeat tests with

rigorously pre-cleaned cages are showing similar deterioration in

average torque and torque noise. This work will be fully reported when
complete.
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The load carrying capacity of the fluid tested on the Falex
machine is very good, giving a failure load in excess of 15,500N
(3500 Ib).

In pin and disc tests to evaluate its boundary lubricating
properties it has performed equally with KG80 and BP 110 for wear
rate and coefficient of friction. (Ref.lO).

The conclusion to date is that its use is acceptable in low speed
applications where boundary lubrication is required and in Europe it
is currently being applied to the bearings of IPS, SpaceTelescope
Solar Array Drive and the L-SAT Antenna Pointing Mechanism.

For the present the oil should not be used in sliprings where it
may increase the wear rate and can lead to complete failure by the
formation of debris.

The grease 3L38RPhas been used in small gear boxes but data on
permissable tooth loading, shear breakdownor polymer formation is
very limited.

Future use of the oil under conditions of EHDlubrication is
dependent upon the results of the ongoing test programmeat ESTL, the
objective of which is to determine the limits of its range of
application. Its use in optical instruments is not excluded but has
yet to be demonstrated by valid test.

Before any application of this oil to a space mechanismis
contemplated it is strongly advised to seek the guidance of ESTLwho
has carried out most of the relevant work.

6. THE CODIFICATION OF SPACE LUBRICANT SYSTEMS & PROCESSES

The behaviour of any tribological systems is governed by a large

number of factors, many of which are difficult to control. Material

properties, both macro and micro, surface condition, presence of micro

quantities of contaminants, system geometry, soeed, load, duty cycle

are only some of the variables. In consequence any lubrication process

to be acceptable for space must be subject to the following precepts:-

29
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Precept 3: - Any lubrication process used for space application
must be fully codified and documented to ensure

consistent repeatability of performance.

Precept 4: - The lubricant used must be approved and validated

for space to a recognised specification and must
be source traceable.

Precept 5: - The test programme to determine the performance of

the lubrication system must reproduce all the

operational conditions of duty cycle, environment
and life that it will experience in the
application.

The use of a commercial system for a space application is

acceptable only if it fulfils these three precepts. The Agency has
issued a guide to the preparation of process procedures. (Ref.14).

7. CONCLUSION

In attempting to cover the whole field of space lubrication in a

short paper the authors have set themselves an impossible task. Much

relevant and important detail has had to be omitted. But the purpose

of the paper is to provide a useful brief overall view which will, it
is hoped, give the non-specialist a picture of a highly complex

subject, and some guidance in the choice and application of a
lubricant in spacecraft mechanisms.
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rAVPLICATION

Momentum
Wheels

Solar Array
Drive

Antenna

Pointing
Mechanism

,,i

Inst rument

Pointing
ISystems

De-Spin
Mechanism

DUTY

Continuous Rotation at

3000-4500 rpm.

Continuous rotation at

1-16 revs. per day

Slow intermittent

operation over small

angle and occasional

fast tracking

Slow intermittent
operation over small
angle, very high
precision

Continuous operation

at 15-60 rp.m.

TABLE 1.

LIFE ENVIRONMENT

7-10 yrs Closed low

pressure He

7-i0 yrs

7-10 yrs

LUB. REQUIREMENTS

Space exposed
Thermal

-40°C to +65"C

Liquid:

Maintenance of a controlled

flow of lubricant into EHL

zone to achieve low and

consistent torque.
Low wear rate.

Space exposed solid or liquid:

Thermal Boundary lubrication with

-400C to +65°C consistent torque. No

contaminat ion, moderate
load, corrosion protection.

Solid or liquid:

Boundary lubrication with

consistent torque. No

contamination. Moderate to

high load capacity,
corrosion protect ion

i-4 weeks Space exposed iLiquid:

5 yrs Thermal Boundary lubrication with

storage -20"C to +60"C low and consistent torque. No

contamination. Hiqh load cap-
acity, corrosion protection

, _. _.. ,,

7-10 yrs Space exposed ISolid or liquid,

Thermal controlled quantity of oil

-40°C to +65"C or grease. Low and consist-

ent torque over temperature

range. Low wear rate,
corrosion protect ion.
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APPLICATION

Solar Array

(Hold down points

and latches)

Focussing Mechani._m

Filter wheels,

shutters, beam

splitters etc.
m

Slip rings and
brushes

Gears

I ABLE I (cont.)

DUTY

Deploy and retract

Intermittant

operation cycles
10000 to 100000

Intermittant

operation

10.000 - 20.000 cycles

LIFE

50

oper-
ations

7-10 yrs

7-10 yrs

ENVIRONMENT

Space exposed
Thermal -60"C to -80"C

iLaunch vibration loads

Space exposed
Thermal O'C to 20°C

Space exposed
Thermal 0"C to 20°C

LUB. REQUIREMENTS

Dry. High load capability,
good fretting resistance

Dry. Low and consistent

friction. Absolute freedom

from contamination. Low wear

rate. Corrosion protected.

Dry or liquid.Low and Abso-
lute freedom from contamin-

ation.Corrosion protection.

I) Low speed
continuous

7-10 yrs Sgace exposed Dry.Low and consistent
friction. Absolute freedom

from contamination. Low and

consistent electrical noise.

2) High speed
intermittent

I) Intermittent

operation

1000 Cycles

2) Continuous

operation

7-10 yrs

7-10 yrs

In space

7-10 yrs

Thermal -40"C to +65uC

Space exposed

Thermal -40"C to +65"C

II n

Dry or liquid,low wear rate,
low electrical noise

Dry or liquid. Low and
consistent-friction. No
contamination

Dry or liquid. Low wear and

low friction.No contamination
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rAPPLICATION

Rotating
Scanner

DUTY

Continuous

operation

operation at
15-60 rpm.

Booms I) Deploy only

2) Deploy and
retract.

Solar Array I) Deploy only
(Hinges)

2) Deploy and
retract.

Antenna Deploy only
Deployment

TABLE I. (cont.)

LIFE

7-I'0yrs

50

operations

100

operations

after long

space stay

20
roperations

50

operations

after long

space stay

,2o:so
o_erations

ENVIRONMENT

Space exposed
Thermal

-O'C - 2O°C

Space expoosed
-40"C to +65"C

!Space exposed

Launch vibration
loads

Space exposed
Thermal

-60°C to +80C

Space exposed
Thermal

-60°C to +80C

Space exposed
Thermal

-60°C to +80°C

LUB. REQUIREMENTS

m.

Solid or liquid, controlled

quantity of oil or grease.

Low and consistent torque.
Absolute freedom from

contamination.

Dry:

Consistent friction over

temperature range

Dry:

Consistent friction over

temperature range and life.
No contamination.

Dry.Consistent friction over

temp.range.

Dry or liquid. Consistent

friction over temp.range

for long life required.
No contamination.

Dry.Consistent friction over

temperature range.
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Solid Lubricant

PTFE film

MoS 2

Pb

O .jlNAL PAG 
OF. POOR QUALITY.

TABLE 2

LUBRICANTS AND BEARING DATA

LUBRICANTS

Cage Material

PTFE/glass fibre/MoS 2

composite (commercially
evailable).

Method of Application

Film formed by trans-

fer from the cage

during bearing
rotation.

1% C11% Cr steel

(EN31), machined

and ground

RF sputtered film

approx. 0.5 micron
thickness

All bearing
components sputter

coated.

11% Pb tin bronze

cast alloy
(Commercially available)

BEARING DATA

Type of bearing
Size

Contact angle
No. of balls
Ball diameter

Bali conformity
Precision

Axial preloads used

Raceways ion°pl ated
with lead to
thickness between

0.2-0. 5 pm
Balls not coated

angular contact

20mm ID, 42mm OD
15"

10

7.14mm

1.14
ABEC 7 or 9

4ON, lOON and 250N

34
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Table 3.

-Lubricant

-NONE

(DEGREASED)

SPUTTERED

MoS 2

ION-PLATED

LEAD

PTFE-

COMPOSITE
CAGE

ORIGINAL PACE I_J

OF POOR QUALITY

Torque Results From Bearing Tests (All Bearings

Completed 2 x lO6 Revs at I00-600 RPM Unless Stated).

Axial

Preload

40N

40N

m,

40N

lOON

250N

(After lOON)

250N

(No run-in)

40N

lOON

(After 4ON)

Range of

Average tgrque
(NmxlO -4)

12 - 43

6 10

(20 initally)

16 - 26

40 - 50

100 -180

80 -160

6 - 50

I0 - 60

50 -500

40 -500

250N

(After 40/
lOON)

250N

(No run-in)

Range of

Peak-to-peak

torque
(Nmx 10-4)

I"()5- 144

50 - 100

(up to 220
initially)

Remarks

Torque failure
after 1,340

revs

Low DC torque

noise,but

torque fail-
ures between
0.7 and

3.6 x 106revs.

8O - 150

150 - 45O

4OO -1100

500 -1300

34 - 160

75 - 250

25O -1050

150 - 700

NO TORQUE

DC torque
steadier than

for PTFE but

peak-to-peak

torque (noise)

greater

NO TORQUE

_below

limit

-Stress at
limit

(ix106 revs

only)
-Stress above

limit.Periods

of high DC

torque.
-Stress above
limit. Init-

ially high D(

torque.

* Bearinn lives with MoS2 -sputtered film varied from 0.7 to 3 x 106 revs

for films:sputtered at ESTL to 3.6 x 106 revs for films from LSRH,

Switzerland.
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