Т

METALLIC ALLOY STABILITY STUDIES

George C. Firth Lockheed-Georgia Company Marietta, Georgia An investigation into the dimensional stability of candidate cryogenic wind tunnel model materials was initiated due to the distortion of an airfoil model during testing in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Testing of more sophisticated "stepped" specimens will provide a basis for more conclusive comparisons.

Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

2-D AIRFOIL

DISTORTION MECHANISMS

 METALLURGICAL TRANSFORMATION
O AUSTENITIC TO MARTENSITIC (15-5 PH, 17-4 PH)

|`__.

REDISTRIBUTION OF FABRICATION STRESSES
O INFLUENCED BY GRAIN SIZE

STRESS EFFECTS ON MARTENSITIC PHASE TRANSFORMATION IN AN ANSI 304L STAINLESS STEEL*

^{*}From R. L. Tober, Materials for Cryogenic Wind Tunnel Testing, National Bureau of Standards, NBSIR 79-1624, 1980, p. 27.

BASIC DIMENSIONAL STABILITY SPECIMEN

3. ____

DIMENSIONAL STABILITY WEDGE

COMPARISON OF CONVENTIONAL MACHINING (WORK INDUCED STRESSES) vs WIRE ELECTRO-DISCHARGE MACHINING (HEAT AFFECTED ZONE)

	Deviation after three cryogenic cycles			
Airtoil, material, design	Upper surface		Lower surface	
1027 airfoil, 347 stainless steel, brazed coverplate	high _low total	+0.0008 -0.0016 0.0024	high low total	+0.0011 -0.0007 0.0018
0014 airfoil, 15-5 stainless steel, bonded coverplate	high low total	+0.0061 -0.0019 0.0080	high low total	+0.0020 -0.0071 0.0091
65-213 airfoil, 13-8 stainless steel, tongue and groove	high Iow total	+0.0011 -0.0005 0.0016	high low total	+0.0009 -0.0001 0.0010
5/8-in. by 5-in. by 8-in. sample, NITRONIC 40 stainless steel, tongue and groove	high low total	+0.0005 -0.0003 0.0008	high low total	+0.0000 -0.0005 0.0005

WARPING OF 2-D AIRFOILS OF VARIOUS MATERIALS AND DESIGNS

DISTORTION AFTER CRYO CYCLING

NITRONIC 40 (TONGUE IN GROOVE) SIMULATED AIRFOIL	0019		
15-5 PH (H 1025) (E.B.W. COVER PLATE) 67 SUPERCRITICAL AIRFOIL	.0023		
		DEVIATION FROM ABSOLUTE FLAT	
		BEFORE	AFTER
•NITRONIC 40 FLAT SPECIMEN (BONDED COVER PLATE)	.0012	.0013	.0004
VASCOMAX 200 A	0002	0003	0004
ANSCOLUNE 200 H	10002	.0005	.0004
VASCOMAX 200 B	.0005	.0013	.0011
VASCOMAX 200 A (SIMULATED AIRFOIL)	.0010		
	0000		
CUSIOM 450 (1 x 6)	.0009		
•ERROR IN MEASUREMENT			
SPECIMEN REPROCESSED	.0007		
12 NI SPECIMENS (.23 x 3 x 3)	.001		

STEPPED DIMENSIONAL STABILITY SPECIMEN

SPECIMEN ORIENTATION

ĥ

MATERIALS INVESTIGATED NITRONIC 40 15-5 PH VASCOMAX 200 CVN PH 13-8 Mo 347 STAINLESS STEEL CUSTOM 450 2024 ALUMINUM 12 NI STEELS

EURTHER_INVESTIGATIONS VASCOMAX 200 CVN PH 13-8 Mo A-286 9 NI STEEL HP 9-4-20 NITRONIC 40 12 NI STEELS AF 1410 300 SERIES STAINLESS STEEL 5000 & 6000 SERIES ALUMINUM COPPER ALLOYS NICKEL ALLOYS

FABRICATION TECHNIQUES

- A. FORGING
- B. CASTING
- C. POWDER METALLURGY
- D. DIFFUSION BRAZING
- E. DIFFUSION BONDING
- F. SUPER PLASTIC FORMING
- G. ELECTRO-DEPOSITING (PLATING)
- H. EDM-GRINDING & CHEM-GRINDING
- I. ELECTRO POLISHING

CONCLUSIONS

STABILITY

Å.

- 0 VASCOMAX 200 CVN
- 0 PH 13-8 Mo & A-286
- O AUSTENITIC STEELS (300 SERIES, NITRONIC 40)
- O DUAL PHASE ALLOYS (15-5 PH, AF 1410)

CONCERNS & PROSPECTS

- O CORROSION
- 0 SENSITIVITY OF ALLOYS TO MANUFACTURING, FABRICATION & HEAT TREATMENT PROCEDURES
- 0 12 NI STEELS & GRAIN REFINEMENT