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ABSTRACT

Exposed orbiting equipment is subjected to temperature variations caused
by impinging solar radiation, the reflected energy from the earth, the internal
heat sources and sinks and the mutual radiation among themselves. The
satisfactory operation of these packages depends on maintaining them within
the predetermined acceptable temperature range. The computer-aided thermal
analysis programs can predict these results prior to stationing of these
orbiting equipment in various attitudes with respect to the sun and the earth.

Principle mechanism of heat transfer in space is by thermal radiation and
for thermally diffuse surfaces the heat transfer rates depends on the radiation
viewfactors. Complexity of the surface geometries suggests the use of numerical
schemes for the determination of these viewfactors,

Basic definitions and standard methods which form the basis for various
digital computer methods have been presented followed by a brief discussion of
various numerical methods. The physical model and the mathematical methods on
which a number of available programs are built have been summarized. The
strength and the weaknesses of the methods employed, the accuracy of the
calculations and the time required for computations are evaluated and discussed.
Based on this study, the situations where accuracies are important for energy
calculations have been identified. Methods to save computational times are
proposed. Guide to best use of the available programs at several centers and
the future choices for efficient use of digital computers are included in the
recommendations.
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Thermal Radiation Viewfactor
Methods, Accuracy and Computer-Aided Procedures

Introddctfoh

The orbital Space Laboratory with its door open while in the earth's orbit
is exposed to the solar radiation, the earth's albedo and the mutual radiation
from the parts of the spacecraft itself. Some of the experimental packages are
passive and, hence, they experience a wide range of temperatures due to net
radiative heat balance. This range of temperatures need to be pr?dicted for
various attitudes the space station will be held during its orbit!. If the
upper and low limits of temperatures are beyond the safe limit for satisfactory
operation, these packages need to be protected from undesirable radiative heat
transfer. Other experimental packages are mounted on coldplates with its
ability to heat sink either heat generated from the equipment itself or the
extraneous radiative heat transfer. The nature of their arrangements suggests
that these components need to be held in a narrow range of temperature limits
for their satisfactory operation and control by the crew members. A
successful space laboratory mission requires optimization of thermal performance
of all the components of the system consistent with the critical weight/cost
considerations. It is to be expected that the predicted temperature variations
of components of the space laboratory obtained from analytical methods will be
verified by selective monitoring of the temperature sensors.

The expected temperature variations of the surfaces of the space laboratory
experiments require nodal heat balance among the heat absorption, the heat
generation, the heat conduction and the heat lost to outer space. Successful
tracking of these parameters leads to unsteady state heat transfer problem
since all the suggested parameters are time varying functions, often in
asynchronous manner. It is natural to expect coincident spikes and valleys
giving rise to the expected range in the temperature excursions of the space
laboratory components. Here, the heat flow mechanism is radiative mode to
and from the surfaces. Its evaluation is influenced by mutual radiation
view factors? among the surfaces of the space laboratory as-well as the views
to the sun, the earth, and the celestial space. This report will discuss
the methods available for their computations, the need for accuracy of these
computations and the efficient use of the available computer programs to
achieve these goals.

1

In the recently concluded space shuttle -4 mission (June-July), the shuttle was
flown for 10 hours with its belly showing to sun in order to drive out possible
moisture under the heat shield tiles by taking advantage of the temperature rise
due to net radiative heat transfer to the surface.

—

Some of the other names are form factor, shape factor, configuration factor,
geometric factor, etc.

Author's Note:

This report has been hurriedly put together due to lack of time
at the tail end of the ten week-fFellowship program. The reader
will come across open spots in a line. It should not be viewed
as missing information. At other places there are evidences of
overcrowding. It is hoped that the concerned readers will over-
look these shortcomings and lack of professionalism in preparing
this report. Thank you very much for your understanding.

XX1I-1



Basic Concepts:

Basic definitions of geometric view factors for Lambertian surfaces3
are illustrated in Figure 1. The differential view factor between elemental

areas dA; and  dA; as illustrated in Figure 1-(a) is given by
_ , \ _ cos B, cos B; A .
Fan,-en;= 7 (tos A; dw;) Tr* (1)

where dw; is the solid angle made by dA; at the centroid of the
area dA; cos Bj dA; is the projection of dAj normal to
the radius vector . Eq. 1 represents the fraction of hemispherical
radiation leaving surface dA; that is intercepted by the surface .

dA;  shown in Figure 1-(a). For a selected value of dA; the solid
angle dey; - subtended at the centroid of . dA;  reduces as the square

of the distance represented by the radius vector. This i; of importance
in the computer representation of this equation. By considering several such

dAj's in the area Aj as shown in Figure 1-(b) the geometric viewfactor

between the differential area dA| and the finite area Aj is given by

Jcosp[ cos 3 d Aj (2)
A

Fa..n=
L
J

In computer programs the integration represented in E9. 2 is replaced by
the summation and the accuracy of the result depends on the individual size
of dA;S and y the length of the radius vector. Similarly, by
considering several dA{s as shown in Figure 1-(c), the total radiation
view factor is given by

F.o= F _, = '*j S cos B, cos ;o
1y Ay AJ Ai A; A'J‘ 77-)02, dﬁL dAJ (3)
Again,it is possible to replace the double integration by the double summation

in the computer programs, the accuracy of which depends on maintaining a typical
small value of de defined in Eq. 1. This statement suggests that the

choice of the sizes of dA; and " dAj should be small when the distance
between them is small, opposite being true when the distance is large in order

to speed up computational time consistent with required accuracy. By

multiplying Eq. 1 by . dA; the right hand side is rendered symmetric suggest-
ing the reciprocity relation -

dAL Fynp-an; = 9B Fuagp (4)
Similarly from E9. 2

dA; FAAC'AJ' = HJ' FAJ""”%L - (5)
and from Eq. 3

A Fij = A (6)

3
Emission and reflection from such surfaces are perfectly diffuse obeying Lambert's
Cosine Law
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(a) CONFIGURATION FOR INTERCHANGE BETWEEN
TWO INFINITESIMAL ELEMENTS

X

(b) CONFIGURATION FOR INTERCHANGE BETWEEN AN
INFINITESIMAL ELEMENT AND A FINITE SURFACE.

X

(c) CONFIGURATION FOR INTERCHANGE
BETWEEN TWO FINITE SURFACES.

FIGURE 1 REPRESENTATION OF VIEW FACTOR
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Equations 4, 5, and 6 represent useful reciprocity relations which can be utilized
advantageously in computer program in order to reduce the time of computations.
Equations 1, 2, and 3 and the associated reciprocity relationships are satisfactory
for black bodies and gray surfaces. In the case of gray surfaces, the net energy
transfer between two surfaces differential or finite is proportional to the
radiation view factors. Here, the net energy transfer refers to the concept of
radiosity4, that is the sum of diffusively emitted energy from the gray surface
having an emissivity of € and the fraction of diffusively reflected portion of
incident eneray from the same surface having a reflectivity of p. Here ¢ + o =
1.0. However, the radiative heat fluxes need to be related to the characteristic
temperatures of these diffuse surfaces.

Consider Fig. 2-(a). The radiosity J; = €Wp *+ e H; the sum of emitted
enerqy from the diffuse gray surface (i) and reflected portion of the incident
eneray (H;) from all the surfaces in view. Note €j + pj = 1.0.

Similar! .= £, . ;. . The net radiant flux leaving surface i is given
LTI A Rl VI TR ) ) )

?;egt = Jp - H = E% (Wi =31) (7)

Recognizing that the incident energy (Hi) is from the gray enclosure

> 3 F
HL . =t gl N . (8)
and J. = € Wei +t & jf-.'\ Ij F[J’

Equation 7 can be multiplied by Aj in order to obtain the total heat. Again, Aj

can be replaced by dA;, the sum by integration and F;. by Ea. 1. This leads to
integral equation of radiative exchange at the surface. For the case of two

surface problems, that is, body and its enclosure (see Fiqure 2-(c), F11 = 0,

F1o = 1.0)
. Woi = Wy
9 fet 12 = ; y
ER,AE,T €A,
which illustrates the electric resistance analog leading to network analysis
Recognizing EFr0 =10 = £2+(o the radiant heat flux leaving surface 1 is
%2
) w - w
b b
cinef'/l?. ‘ (11)

Lo+ A Ly
5/ A';_ <€g_ )

Equation {0 can be generalized to represent the energy leaving gray surface
A; streaming towards another gray surface Aj

Weo = W,
. . - bL bJ
%ngt/l._j o; 0 y2 (12)

—— <+ + N]
€ A; A F; g; A

Imet, 1 = ALT (W - Wei) = A B OWym W) (13)
4
Hottel callsthis term as "Leaving Flux Density" and suggests the word "Radiosity"
as an undesirable word.
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(a) NET RADIATIVE ENERGY TRANSFER
AT THE SURFACE

(b) RELATIONSHIP BETWEEN

% . SURFACES
// 2 ., ) .

HERE F15 < 1.0

HERE Fqp = 1.0 GENERAL CASE
BETWEEN SURFACES
A;AND A,

(c) TWO SURFACE PROBLEM —BODY AND ENCLOSURE
OR SURFACES THAT CAN SEE EACH OTHER AND
THE EQUIVALENT RESISTANCE ANALOGY

FIGURE 2. RADIOSITY AND RADIATIVE EXCHANGE
BETWEEN SURFACES
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Here, B;; ¢ ¥;; often used in the textbooks) is the aray surface radiation view
factor.. For blackbodies €,z & =1-0 resulting in B;;=F;; which is purely a
geometric factor or configuration factor. A more general definition of
petterned after Eq 3 is given by

gL
B.. = gﬂafﬁ; Fa Cos B cosfdhdh;

Ly . .
jA;_JL dA;

(14)

and for the case of the radiosity being constant over the surface it will
reduce to Eq. 3.

The concepts expressed in these equations are important. Various methods that
are available to establish the geometric view factors and the associated gray
surface will be reviewed in order to appreciate the speed and the accuracy of
calculations in a complex enclosure such as the Space Laboratory. The concept
of gray surface introduced here and its use instead of real surfaces need to be
explained. They are as follows:

1. FEach surface considered is isothermal. Here, it means that planar
thermal conductivities are high. If a large surface cannot be treated as
isothermal it is possible to subdivide the surface to smaller regions each
assuring local isothermal conditions.

2. Each surface considered is gray. Here, it means that the emissivity
and reflectivity are indenendent of the temperature, the wave length and they
have no directional preferences in the hemispherical enclosure. It is possible
to represent strong variation of property with respect to each of the quantities
as step function with radient energy transferred in each of this range. Real
surfaces with selective coatings can be approximated in this manner provided
the radiative properties are known to a reasonable accuracy and the increase
in computational time can be justified. Specularly reflective surfaces can
also be handled by the methods reviewed here. Chalk white surfaces have
reasonably good diffuse reflectivity, although the tests have shown some
specular character. It should be noted that the representation of variation
in directional emissivity in the polar and azimuthal direction other than gray
surface behavior will add considerable complexity increasing the computational
time.

3. The radiosity of each surface is constant along the surface. This
assumption makes the computed view factors independent of the magnitude and
surface distribution of the radiant heat flux. It is clear that in order to
validate this assumption the local isothermal condition of the surfaces should
be assured and the incident radiant heat flux be the same at every point on the
surface. Again, it is possible to subdivide the main surface in order to
improve the accuracy and, hence, the complexity of computational procedure.

Further significances of these assumptions will be discussed later when the
power of Monte Carlo method is compared to other numercial methods.

The basic concepts expressed in Figure 2 and Eq. 7 through 14 form the core

for various numerical methods that are currently available. Here, the basis
for the program develonment will be discussed.
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Radiosity method, proposed by Eckert and Drake. The basic definition is set
forth in Fig. 2-(a). From Fig. 2-(c), the heat flow is given by

(0
Vo = (W T)/( E,;) (15)
Here 9; represents the heat flow 1eav1ng d1ffuse gray surface towards all parts
of enclosure seen by it. This value of §; need to be broken. into = linear
equat1ons, solution of which depends on the emissive power of these surfaces which
in turn related to the absolute temperatures via Stefan Boltzmann's Law, va c'-r

Hottel's method. Here, the emphasis is placed on evaluation of net heat
transfer 9;j between the two surfaces. As can be seen in Fig. 2-(c) it is the
heat flow in” the resistive element between Ji and J; which is given by

1!
1= At F 3 - 3 ) and ‘h 3= oq',; Although the point of
departure is d1fferent the calculations involved is same as the radiosity mehtod.

Gebhart's method. Here, the emphasis is on the net heat transfer from
surface i to all the » surfaces of the enclosure each characterized by temperature

!
11 § . Adiabatic surfaces (re-radiating surfaces) are treated by substituting
P._|‘) £=0 at these surfaces. The net heat transfer is expressed as
d1fference between the emitted energy from surface Aj and that absorbed at n
surfaces forming the enclosure which is given by

L4
| ‘qc = &AW -JE,OB“ E;A] Wi (16)
Again Wys o T and is the fract1on of the energy emitted by surface
j which is absorbed by the 4 th surface. Evaluation of the absorption factor Eb
involve the use of view factor, Fj; , the energy emitted and that reflected from
the adjoining surfaces which requires all the other view factors of the enclosure.
It is given by

Bj= & F z S Fir By (17)

'Differences among the above three methods is in the viewing of the enclosure and the

associated radiant exchange. As before, the calculations involved is the same as
the previous two methods.

Oppenheim's Electric Network Analog method (1956) Figure 2-(c) represents such

an analog between two gray sur‘aces.

Such a network can be constructed for an enclosure containing vy surfaces. As

before the adiabatic surfaces are treated by letting p = 1 and € = 0. Concave
surface which can see itself will have a view factor as shown in Figure 2 -(C ),

but the net radiation is zero since the equivalent resistance  |/A;F;;

is shorted out of the electric network. Radiation to outer space can be represented
by treating it as black enclosure ( €= 0) maintained at absolute zero which assures
no returning of energy from that surface. The heat flow at any node 1 is represented

by
3 = EOMQJ(%'Q) (18)

and Eq. 7 relates q; to the

—

See alphabetical listing of authors in references at the end of this report,
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temperature of the i th surface. The unsteady state mode at one or more nodes
can be represented by writing the applicable accumulation term. Such a ‘
representation permits use of widely understood Kirchoff rules of linear electric
circuits. Because of the potentials of this bady of knowledge, prefereqce may

be given to this method over the remaining three methods. The calculation
procedures will not be much different and the results should be identical.

Greater details of the above four methods can be obtained from a paper by
Sparrow (1963). A1l of these methods require radiation viewfactors, and solution
to solving linear algebraic equations. The accuracy of the results depends on
the extent to which gray surface approximations are valid. Only the overall
heat transfer to and from the surfaces can be established. The uniformity of the
heat flux depends on the extent to which local isothermal conditions over each
surface is established. It is expected that in all but the simplest systems,
the leaving radiant flux would likely to be nonuniformly distributed over a
surface even if the surface is isothermal and exhibits the character of Lambert1§n
surface. As stated earlier, each of the surfaces can be subdivided, the propgrt1es
can be represented as step functions increasing the number of a]gebraic.equat1oqs
and complexity of the problem,and utilize the digital computers for their solutions.
The success in reproducing actual result depends on the radiative property of the
surfaces as a function of temperature and wave length and their directional
character. Sparrow {1978) suggests monochromatic analysis for property dependence
on wave length and integrating the results over the entire applicable range of
wave lenaths. This thouglt is same as step representation and the number of steps

per surface should justify the concurrence between the predicted result and that
of experience. :

Radiation View Factor:

Nusselt Method.

Basic definition of the radiation view factor has been set forth in Figure 1
and Equations 1, 2 and 3. Such a representation is purely geometric in nature.
Figure 3 further illustrates the definitions of view factors between the two
differential areas dA; and dA;. Here, the total view from the center of

dA; is the "hemispherical space" above it in the viewing plane, which is
termed as unity. An area A;  in Figure 3 projects a surface A on the
hemisphere as viewed from dA;. This surface is projected on to the base
which is shown as Ab . in Figure 3. The radius of the hemisphere being unity,

the ratio of Ab/ 77(1)? is the geometric view factor Fdﬂi-ﬂ'- illustrated in
the figure which“is defined by Equation 2. J

F - = cos ﬂ‘: cos BJ. .
dh; = A; jﬂ, 3 dP\J (2)
This illustration forms a basis for explaining, experimentally determining,

evaluating by digital computers and developing analytical solutions to the
geometric view factor. It is the fraction of the total view. This type of

XXI1-8
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FIGURE 3- GEOMETRY OF UNIT-SPHERE METHOD FOR OBTAINING
CONFIGURATION FACTORS.
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representation is known as the "unit sphere method" first proposed by Herman
{1910), and suggested again by Nusselt {1928). According to Jakob(1957) at
almost the same time Seibert (1928) published a similar method. It is popularly
known as Nusselt Unit Sphere Method. It is interesting to note why it was not
called unit hemisphere method since the view range c¢f the plane face dA(

is only the hemispherical space above it.

The view factor from the differential plane area dA; should not be
confused with the view experienced by a differential sphere of area dAp
to the enclosure. In this report, the space laboratory experiments in the
payload bay are made up of plane, convex and concave surfaces for the determination
of the view factors. In the case of the differential sphere having convex surface
area dA; the total view is the spherical space around it. Jakob (1957) shows
that as a 1imiting case view factor of infinite plane with respect to this
differential sphere is 1/2 while the view factor of the same infinite plane with
respect to differential plane dA( is unity. This result is easy to visualize.
It requires two infinite planes to form a total enclosure around the differential
sphere whose view factor will be unity. Same result will be obtained if both sides
of the differential area dA;] are active viewing areas. In the determination
of view factor only one side of plane or curved surfaces dA;or A Ay is con-
sidered. It is important to note this subtlety since the determination of view
factors from convex surfaces involve portions of differential areas not being
able to see all of the viewing areas AJ , the receiving surface.

The illustration shown in Figure 3 has been the basis for exnerimental
determination of the shape factor by mechanical integrators as developed by
Hottel (1931). Hamilton and Morgan (1952) photographic technique proposed by
Eckert (1935) Hickman (1961}, photo electric method of England and Craft (1942),
Jakob and Hawkins (1942) and electric analoa developed by Paschkis (1936).

Ray Tracing Technique,

The determination of the view factor as described here recognizes the fact
that an infinite number of rays emigrate from a point in a plane in the hemi-
spherical space above it. They are intercepted by adjoining surfaces forming
a view (solid angle) with respect to the differential area at the source. Only
those portions which can be seen are considered. If all the adjoining surfaces
of the experiments in the payload bay, the sun, the earth and the planets as seen
by the point do notcover the entire hemisphere the view factor of the remaining
area is considered as view to the outer space. Farther is the area with respect
to the viewing point smaller is its view factor. Such a ray tracing technique
is the basis for determination of all view factor calculations whether it is
closed form integration or numerical methods including Monte Carlo based model
or experimental methods. In the numerical methods the viewing surface that is
under consideration is divided into number of small areas A A; . The view factor
to each of the A; forming the total hemispherical enclosure is estimated. These
values of view factors for all A A{ forming the area A; are weighted in order
to assure the total view from A; to all the surfaces Aj will not exceed unity.
The accuracy of such numerical methods depend entirely an the sizes of A A; and
A A; and the average distance between them as set fortk in the definition given
by Equation 1 and illustrated in Figure 1 -(a). The choice of the size of A Aj
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depends on the distance v from o A{ and it should be selected in a manner that

the typical value of Fap,-an;  is about the same small value during the

entire field of calculations.” This thought suggests that the sizes of AAs should

be progressively smaller if their average distances get smaller assuring the same

Tevel of accuracy. If the surfaces A; and A; have common boundary, the 4 A's in

their vicinity will be the regions for sources of error in the determination of

view factors. If the determination of view factor to the space from a surface

Aj 1s obtained by subtracting the sum of all the other view factors from unity,
"jJFaFij: it is only natural to expect sources of errors to propagate in

the energy calculations and incorrect prediction of maximum and minimum temperatures

of the surfaces forming the space laboratory experiments in the payload bay.

Double Integration - Double Summation Method.

The view factor between the surfaces A, and A; is given by solution to
Equation 3. Here, the differential view factor given by Equation 1 is integrated
once over the area A; and next over the area Aj  suggesting double area integra-
tion. Closed form soiutions to a number of simple.surfaces are available in the
literature. Here, only two references will be mentioned, namely, NASA TN-2836 by
Hamilton and Morgan (1952) and a recent textbook by Siegel and Howell (1981).

In all these cases each area is defined by two parameters thus reducing the two
area integrals to four line integrals.

For complex surfaces such as in the Space Laboratory mission the luxury
of closed form solution is often unavailable resulting in replacing Equation 3
by double summation. Here, the area Aj and Aj are divided into small areas
A Ay and AA; and the differential view factors as expressed in Equation 1 is
computed. First, the view factors over all of A A;s are summed , rppresenting
solution to Equation 2 and its weighted summation over all of A A_S represents
solution to Equation 3. The areas Ai. and A; can be divided into small area
in any convenient manner for digital computers and their centroid need to be
located for determining the distance r between AAj and AAj as well as the associated
differential view factor and weighting factor. The converging of the numerical
value of Fi; as calculated by such a double summation method to a corresponding
exact value that may be obtained from the closed form solution depends on the
size of AA. Generally, as stated earlier, if the magnitude of the differential
view factor is kept about the same small value by considering smaller AA as » |
decreases, there should be satisfactory convergence. It should be possible to
compare the view factors FLj's as generated by the computer programs for the
geometries for which closed” form solutions are available and develop a level of
intelligence for admitting variable sizes of AA thus reducing computational time
consistant with accuracy.

Hottel's Stretch Film Method,

The surfaces and enclosures that exchange heat by thermal radiation such as
in the payload bay of the Space Laboratory are plane, convex or concave surfaces.
While any part of the plane or convex surface cannot see itself directly, the
concave surface can see itself. In all cases, during the evaluation of view
factors, if there are other surfaces partially obstructing the view all parts of
surface 1 will not see all parts of surface 2 in order to determine
the view factor Fjp. Care should be exercised in evaluating such view factors
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and avoid the pnssibility of over and/or under estimation of the energy exchange
acsociated with them. Hottel (1954) provides solution to twc dimensional cases
and the methods is referred to as "crossed - string method". A variation of the
same idea expressed by Hottel can be referred to as “stretch-film method".

In Figure 4 - (al) the enclosure is made up of a complex surface Ay , a plane
surface A, and a convex surface Aj, jndicating that the real surfaces can be
combination of such contours. The stretched string across Ay will result in
planc - convex surface A;, (A; <Ay ), replacing the actual surface Ay. In a three
dimensional case the stretched string will be replaced by stretched film generating
a cover everywhere there is concave contour very much like cellophane wrap. The

shape factor relationship between the body (A7) and the enclosure (Ap) is given by
7
Ay Frp = A (0-F1) = A

since Fi1 + F12 =1.0and F /o =1.0

(19)

Here, Fy7 > 0 since part of the surface can see itsel f. However, the view of the
concave enclosure can only be through the stretched film covered over it.

Utilizing the view factor algebra for the three surface problem the final expression
is given by Hottel {1954) as

Ay Flp = (M1 + Ap - A3)///2 (20)

Figure 4 - (a2) represents a more complex enclosure containing areas Ay and A,
and bounded by other surfaces. The crossed - string BHGFand EJKL along with’
stretched - string B C D E and F G H J K L breaks the surfaces into problem

represented by Figure 4 - (al). [t is also possible to represent the surfaces

Equation 20 Hottel has shown

Ay Frp = (EJKL + BHGF) - (BCDE + FGHJKL) (21)

from which F12 can be calculated. The right hand side of Equation 21 represents
the length of the two crossed - string minus the length of the the two stretched -
string between the two surfaces that are considered for the view factor. t should
be possible to extend the method of Hottel for the two dimensional geometry to the
three dimensional cases. In exploiting such a potential to its fullest extent

it should be possible to generate stretched - film surfaces utilizing the geometry
of the real surfaces and to break complex enclosure into simplier enclosure by
introducing intermediate surfaces, resulting in the utilization of view factor
algebra for further reduction in computational time without sacrificing the
accuracy. Fven if such a convenience cannot be exploited with the existing
programs, the concept expressed in Equation 19, that is the energy crossing

across Ay, consisting of plano convex surface created by the stretched film is

the same as that received by A1 real surface consisting of plano - conveX0 -
concave surfaces.

6

Reader is alerted to CAD programs with associated graphjca1.displays.wh1ch is
capable of drawing various views very accurately which 1s mind boggling even
for the best of living draftsman.
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(a1) w2} ¥

Ay

(8} TWO—-DIMENSIONAL ENCLOSURES: (a1) THREE-SURFACE SYSTEM;
- (a2) ARBITRARY CONFIGURATION.

,Az

{b) VIEW BETWEEN ARBITRARY SURFACES
WITH OPENINGS TO SPACE

{d) PARTIALLY BLOCKED VIEW
BETWEEN PARALLEL STRIPS

{c) VIEW BETWEEN TWO EQUAL
AND PARALLEL CYLINDERS

FIGURE4 CROSSED STRING REPRESENTATIONS FOR
TWO-DIMENS IONAL VIEW FACTORS
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Figure 4 - (b) represents four real surfaces with spaces between any adjacent
pair can be outer space or remote objects forming the enclosure. It is easy to
visualize the payload bay of the Space Laboratory to contain such configurations.
The shape factor relationship between A1 and Ap can be written as indicated in
Equation 21 and by constructing a pair of crossed string and another pair of
stretched string which in this case

(Aeg * Aad) = (Pabe * Ared) - (22)
2
which is same as Equation 21.

AR, =

Figure 4 -¢ represents two cylinders of equal radius having their axes
parallel to each other and a minimum separation of D. It is desired to exnress
the mutual view factor. Note that the halves of the cylinders not seen by each
other are not shown in the figure. The pair of crossed string abcde and the pair

of the stretched string fe are also shown. Defining X = [ 1+ (D/2R)] and
utilizing Equation 21.
2 2 1/2. T -]
Fo = 2[XF-1) + 5 - cos a/x =X (23)

An extension of Equation 23 for the case of cylinders of unequal radii, R1, R2
(R} > Rp) and their axes separated by a distance C is given by

!
1 2 1 .'/2 2 N /2
FIZ = ﬂ]{ R]q)y +R2¢Z:+ {C °(R|+R7) } —Y_C 'CR, RZ)_] (24)
1 - .- -1 R—
Where 4’,-0(-[3)952_:9“-/3} 0<=5(.'n'(3|€j2.1)) ﬂ:siw'(&a—&)
for the case R1 = Ry e, ;
= 2 (x* in -
Fio = & (X0 +si» Q0 X g
which is same as Equation 23 since m/3 -cos ' (/XD = sin '(1/x) (23)
Figure 4 - (d) represents the view factor between infinite strips Ay and

A, in the presence of two other infinite strips forming a s1it. The Hottel's
cfossed-string method yields (see Siegel and Howell (1981) ).

o= LD 208 e s 17} ()

The results of Equations23, 24 and 25 can be checked with TRASYS program
for speed and accuracy of the computations resulting in required shape factors.

Contour Integration Method

Determination of the view factor F dpj-p; using Equation 2, involves
two lTine integrals while Fij using Equation*3, involves four line integrals.
In the contour integration method they can be reduced to one and two line integrals
respectively. Here, the line corresponds to the boundary of the areas Aj and Aj
thus acquiring the name contour integral. Such a transformation is due to
Theorem of Stokes. The method is applicable for a piecewise smooth oriented
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surface in space and its boundary be a piecewise simple closed curve. The _
integration around the closed curve is taken in a manner such that the interior
space is to the left of a person -walking on the edge of the contour with his
head pointing in the same direction as the unit normal. According to Stokes

Theorem P aR & _ 3P
IR 28y .m (35 -5) * (5 - 5y)]dA

5£P5x+ady+1adz= [A[l(i\, 2 (26)

where P a@awdR are each functions of x, y and z and they are twice differentiable
function and C)m and m are direction cosines of the area dA.

Details of contour integration method can be found in the book of Sparrow
and Cess (1978). Here, some pertinent details will be given. In Figure 1 - (b)
2

N R N DU TR T
ces B = -';.-[eé(.xj"xi_) *wmoCY -y + (2 -z,_-)]

ces f; = "Y‘- LQJ Cxg = %) '\"m‘j(ﬂc- SJ) + T)j (z; - ZJ)]
and using in Equation 2

1
and f= mme [ -x) o m (9 -9 + n (25 - Z;)
Equation 27 represents the right hand side of Equation 26 setting the stage for
the application of Stokes Theorem. Now

- . Z£§(2j’2i,)dyj - (Y; ~Y) 8L + m,£§(>‘j “XD4Z; - (Z5-2Zp)dx;
cJ‘

dAi - A 2T r* ¢; 2T r?

+m; $ (Y = J)d% = (%5 = %) dY;
¢; 2T P

(28)

In practice , in order to simplify the integration where possible select
coordinate axes such that one of them is in the same direction as the unit
normal of dA; . Such a choice permits evaluation of only one of the three
parts in Equation 28, the other two being zero since the direction cosines o
are zero. If one or two coordinates of Cg are constant additional simplification

of Equation 28 will result. Fora complex Jeometry such a simplification may not
be available,

In Equation 28 each of the contour integral can be evaluated independently.
The results represents view factor of the surface A with respect to three
mutually perpendicular dA; at location i whose noiimﬂs are coincident with
respect to ¢; ,m and m; " Ip particular, the absolute value of first part of
Equation 28 is for the case ¢;=£1,™;=M;=0 , Both signs of ¢; are applicable,
they depend on normal to the element . along ¢x or -x axis as it views
Aj. Moreover, it is possible that Li=t!,m:=m;=0may see a portion of A;
and {.=-1 , M™Mi=M; =0 may see the remaining portion of A; such as in" the
wrap around case. In such cases the contour intogral is sui?l of the two view

factors, thus
jr, (z; -2¢)dy; - (5-¥)dz I
¢ 27T

4 C¥1,0,0) (29)

3

7
Theorem of Gauss converts volume integral to area integral, area being the
bounding surface of the volume itself.
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Similarly other two parts of Equation 28 can be computed and identified as
+ +

Finally, the required view factor from dA; having direction cosines, (ei/*"Qf"[)iS

FdAE"ﬂj = ‘&:\ F;Ai-Aj(t’;O)O) +\ml:\ F;RL‘-RJ ('O/tl/o) +\“L\ F;AL'AJ (O} O/tD (_30)

Equation 30 suggests principle of superposition of the view factor. It can be
utilized to convert view factor evaluated along the principle axes to any orientation
by rotation (vector sum). Such considerations may avoid repeative calculations
besides the advantage of single integration replacing double integration.

Sparrow and Cess (1978) shows that the Stokes Theorem can be applied
twice in order to evaluate Fjj. The final form of the expression is

1
F;-J = ﬁAi_ §C‘ <§c‘j(ém Y Aﬁf_dxd‘ ~0nr ch{Ld.‘!_; + Inr dz; 313') (31)

where 1 %L :

T'L-:- LXC—Xj) + (:/L".yJ) + (Z‘:— J)l

Equation 28 of Equation 31 can be used. Here, four line integrals traversing
entire surface Aj, A; have been replaced by two line integrals traversing
around the contour of A;, A;. The closed form integration of Equation 31 is
possible for simple shapes.” For complex surfaces the integration is replaced
by summation and it is more advantageous for computers.

Monte Carlo Method.

Radiative exchange rates at a location is a function of local temperature
and energy fluxes that are coming in or going out. This energy can be represented
by discrete amounts (bundles) saK N, typically of the order of 10,000 emitted
from a point in all directions. Accuracyof the method increases with increasing
values of N. By assigning energy level to each bundle the total heat flux at
the point is satisfied. The Monte Carlo method derives its name from the fact
that the laws of probability (chance) are employed in determining the direction
of travel of energy bundles and in deciding if a bundle is absorbed, reflected
or escapes into space. Some of the other names are "Random Walk" and Markov
Chain. The probability of energy bundle leaving a location in a given direction
expressed in spherical angles (polar and azimuth) arriving at another location is
estimated. . This bundle path history is computed by Monte Carlo method. The
energy reflected back from the receiving location to the source and then back to
receiver is neglected. The accuracy of the method depends on perfect randomness
of the process. '

Directional distribution of emittance as well as the spectral variations
can also be considered. The distiibution functions are normalized to give values
from 0 to 1. The probability functions for diffusively emitting surfaces are
Ry=Sin*0 (050 <M/2), R,= /27 (0 $S21)and equal energy is assigned to each bundie.
Similar probability functions Rg,R, for surfaces having different radiation
properties need to be established if the surfaces are not gray. A pair of
random numbers R9)12¢specifies the direction of departure 4, ¢ of the
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energy bundle having a certain magnitude towards the configuration of the enclosure.
Its point of impingment on the receiving surface is determined. If the receivin
surface has absorptivity o« (or«, &) a random number R(esR&D) 15 drawn. If the
range of & is 0 <Rx.< % the incident bundle is assumed to be absorbed and it

is recorded. The process is repeated for all bundles. If all surfaces are gray

the same probability functions can be repeatedly used. In this case, the result

of Monte Carlo method is geometric view factor as expressed in Equation 2 since the
processis completed for a point on the emitter AAj, to the receiver A.. The

process is repeated for every location of the emitter A; represented By AAy in

order to determine the view factor Fjj.

The method described here suggests that the bundle originating from a point
not intercepted by any of the surfaces forming the surfaces of payload bay, the
sun, the earth can also be recorded. Hence, it should be possible to directly
evaluate the view factor of a surface to the sprawiing space. The accuracy of
estimation of all view factors are upgraded by considering larger values for N
suggesting the use of high speed digital computers with large storage capacity.
More recent developments of the use of Monte Carlo method for radiation exchange
incorporate the time saving schemes by selectively using scaling functions for
the probability functions and completing the calculation only when the random
numbers R, and R iimpinges on the required surface. As stated earlier, the variation
of the radiative properties can easily be accommodated when such information is
made available without disturbing the methodology of Monte Carlo procedure.

In the calculation of the view factor, each selected point views the
hemispherical space above it (in the direction of unit normal). Since the
pair of random numbers R, and Rypselected for each bundle has to intersect
either any of thesurfaces of interest or not intersect at all (lost to outer
space) it should be possible to record all the information and evaluate
simultaneously all the radiation view factors from the differential area
selected. For a pictorial view of the above statement Figure 3 may be considered.
Each of the A; will create an island Ag on the unit hemisphere with Ap being
projection on"its base. The sprawling space around the groups of islands
obviously represents the shape factor . Foa- space when this area is projected
on to the base of the hemisphere. Potential of this procedure should be exploited.

Comparison of Other Methods with Monte Carlo Method

Formulation of equations for radiant exchange by methods other than Monte
Carlo method results in integral equation. Correspondingly, the accurate de-
termination of the view factor results in double area integration. Closed form
solution can only be obtained for single viewing surfaces. Nusselt Unit Sphere
Method is suitable for view factor from a differential (small) area to a finite
(large) area. Contour integration reduces the difficulty of double area integra-
tion to an extent. The difficulty of all these methods when appiied to complex
surface is a consequence of 'macroscopic' view point when deriving either the
radiant exchange of the view factor to a receiving surface. On the other
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hand the use of probabilistic model and Monte Carlo sampling techniques reduces
the problem to “"semi macroscopic or semi microscopic” depending on the size of N
and avoids many of the difficulties inherent in the averaging process of the in-
tegral equation formulations. Monte Carlo provides a basis to examine the small
parts of the total energy on an individual basis and accumulate the results in-
stead of making an attempt to solve simultaneously the entire behavior of all the
energy involved.

The complexity involved in Monte Carlo method is roughly proportional to
the complexity of the problem. In all other cases amenable to numerical methods
the complexity grows rather rapidly. The closed form solutions for view factars
are available only for simple shapes. The complexity of formulation by Monte
Carlo method for simple shapes and associated computational time to obtain the
numerical result via digital computers makes the procedures undesiiable.
However, these examples can be used to check on the applicability of the method
and its speed and accuracy. As the complexity increases it may be the only
method for speed and accuracy of determination of the view factors or energy
exchange between real surfaces. The availability of radiative property in-
formation is best utilized in Monte Carlo method. The choice of the use of
the Monte Carlo method over any one of the other methods and their relative
accuracies should be established by running test cases in the available high
speed computers. Potential of improvision to the existing Monte Carlo methods
and hybrid situation should not be overldoked. '

The determination of view factors and their use in radiative energy ex-
change .involve assumptions such as the surfaces are diffuse - gray emitters and
reflectors, they are locally isothermal and the total flux arriving at the
surface is evenly distributed across the entire area. In real problems such as
in payload bay of the Space Laboratory, the validity of any of these assumptions
may be poor. In such cases, the calculation of view factor becomes difficult and
their use in enrgy calculation will not give accurate results. In such cases,
and when the geometry of surfaces are nonplanar, Monte Carlo technique may be
invaluable. Parametric studies may resolve the issues that are raised here.
Potential of the use of Monte Carlo technique to compute radiative heat -
transfer directly as against using Monte Carlo technique for the evaluation
of view factor and then using auxiliary program for the radiative heat transfer
should be explored. Use of Monte Carlo method provides direct answer to the _
radiative heat fluxes between two surfaces of interest with no restirctions to
the variation of surface property characteristics thus bypassing the calculation
of radiative view factors. Inability to describe the surface properties will
reduce the problem to simpler cases without any loss of generality that will be
available for later use when data is made available. Additional details of the
method can be obtained by reviewing the references by Howell (1968), Siegel and
Howell (1981), Edwards (1981}, Sparrow and Cess (1978).

Turner, Humphries, and Littles (1981) have compared results obtained by
Monte Carlo method with specialized ray tracing technique and the TRASYS I1
program when applied to specularly reflecting surface of orbiter door of the
paylaod bay in its open position to the incoming beam of solar radiation. The
curved surface have been represented by small planar segments in order to
utilize the composite limitations of the programs selected.
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One hundred percent specularly reflecting surfaces for the interior of the orbiter
door has been considered for comparison. Monte Carlo method accommodates multiple
bounce while the specialized ray tracing technique is restricted to single bounce.
The pattern of local heat flux variations on the surface of the payload bay compares
favorably between the two methods. The total heat flux rate evaluated from the
Tocal heating rates compared very well with that obtained by TRASYS II program
which allow consideration of specular surfaces. The discontinuities caused by re-
placing continuous surface by planar segments can be considered by offsetting
planar nodes over small increments and changing its orientation accordingly and
study the pattern of absorbed heat rate on receiving surface after the reflection
from the interior of orbiter door. They can also be compared to smailer segment
results. In reality, the existence of planar conduction of the receiving surfaces
will naturally smooth out the variations in the heating rates obtained in this
paper comparing more favorably with the total heat flux rate.

Numerical Procedures:

The temperature and the radiant heat flux at a point on the surface of any
part of the Space Laboratory depends on the conduction heat transfer influenced
by internal heat development and/or internal cooling, the diffuse/specular
radiative properties at the surface, the radiant fluxes imposed by external sources,
the heat exchange among the viewing surfaces and the heat loss to the outer space.
Such a consideration for a differential area around the point results in integral
equation. The formulation of problem utilizes radiosity concepts which in turn,
requires the ‘unknown temperature distribution. The interplay of the radiant
energy requires differential view factors. The conduction part related to the
first power of temperature and the radiation part related to the fourth power of
temperature renders the equations to be nonlinear. It is important to note that
the variation of temperature and radiosity over the surface necessitates area
integral ruling out the use of contour integral in order to seek the required
solution. Thus, the computational efforts are increased enormously if the heat
balance of the Space Laboratory equipment in the presence of conductive/radiative-
environment need to be considered accurately. Replacing real surfaces with
gray surface and recognizing large areas of the enclosure to be isothermal
reduces computational time greatly. They permit evaluation of radiation view
factors, their use in the radiative heat exchange and in the thermal analysis
problem providing a means to decouple the problem. Even with this simplification,
the computational time for the evaluation of view factors and the associated
thermal analysis is considered excessive in the Space Laboratory configuration.
The accuracy of the results also need to be established.

Iterative Procedure.

Initial distribution of radiosity is assigned using the radiation exchange
formulation between a selected location xo and a general location x, a new
value of radiosity at xo is calculated. Such a numerical procedure is re-
peated using the updated values of radiosities where available and old values
at other locations. The process is repeated until the required convergence
at all locations are satisfied. For problems where the nodal radiation is
uncoupled with the nodal conduction, the iteration procedure will generally
converge without problems of instability. Here, the radiant exchange will be
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a linear function of radiosity permitting resistance network analogy leading to
algebraic system of equations. With nodal conduction, the nonlinear coupling
may display oscillating behavior for successive jterations or even exhibit
diverging characteristics. In such cases the consideration may be given to
replace the newly computed radiosity with the weighted average of the old and

the new values at the same location.

Finite Difference Procedure.

The radiative exchange between any two points represented by integral
equation is replaced by a finite sum of terms by dividing the areas to smaller
areas, the points located at the centroid of these areas and the radiosity
assumed constant over this elemental surface, itself being assumed to be
jsothermal. The accuracy of the finite difference scheme is comparable to
numerical integration by trapizoidal rule, which can be improved by considering
smaller element sizes. For the case when radiation is uncoupled with conduction,
a number of powerful assortment of techniques are available for the resulting
linear algebraic equations. These are standard techniques in the high speed
digital computers. It should be expected that the solution to the radiative
exchange using finite - difference technique could be carried out over a
shorter time when compared to iterative method. In this finite - difference
method care should be taken to minimize the loss of accuracy of the final results
by insuring against the loss of significant figures associated with solution to the
system of linear algebraic equations. Inclusion of nodal conduction to the volume
bounded by the elemental area results in nonlinear algebraic equations. Techniques
are available for such problems, but they may not be in the form of readily
available standard subroutines to the computer programs.

Finite Element Procedure.

The thermal analysis of the complex structures used in the space platform
is to predict temperature excursion under varying thermal environment experienced
during orbit under various orientations. It will cause thermal stresses which
may need to be incorporated at the design stage of these structures. A fast and
compatible solution is to break the structures into such elements which can be
used in both the thermal and the stress analyses, of which thermal stress is but
one part. Finite element method is most popular in the field of stress analysis.
Historically, it has replaced the previous finite difference method which is _
cumbersome because of the odd shapes and contours of the structures. It is
natural to expect that the corresponding thermal problem use the same finite
element technique in order to make the solution jnteractive at all stages. Since
the finite element structure required for the solution follow the contour of the
surface itself, the irregular geometry can be easily accommodated, In the
finite difference method these areas are represented by irregular nodes. Emery
and Mortazavi (1981) make an excellent comparison of finite difference
and finite element methods for the heat transfer calculations. Other useful
references for basic aspects of these two methods are the books by Myers (1971) and
Chung (1978).
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Solution by finite element method requires three new concepts, namely, minimization
of a function having one or more variables, calculus of variation laying foundation
to this method and the approximation of integrals, besides the representation of
derivatives with a finite difference as used in the older finite difference method.
Here, the nodal points are ends of the triangular element in contrast to the cen-
troid of the rectangular element in the finite difference scheme. Rest of the
computational steps are the same for both the methods. In the finite element
method the compatibility of the temperatures at the node of the two elements is
assured but not the continuity of the heat flux at these nodes. In finite

di fference mehtod the continuity of heat flux at the node is also assured. Such

a lack of continuity of heat flux in the finite element method causes oscillatcry
character at the nodes with overshoot at one node compensated by undershoot at an
adjoining node. In current computer programs, the automatic mesh generators are
available for the finite element method. For a more detailed comparison of the
two method, the reference is made to the paper by Emery and Mortazavi (1981)

which also contain relative execution time for same problems. Some of the other
points covered by them are assemblage of the global matrix, boundary conditions
and irregular meshes and graphical display of results. The comparative examples
considered by them are distributed and concentrated heat sources, transient
temperatures in one and two dimensions, problems containing singular points,
thermal radiation problems and transient phase changes.

The finite difference method is best suited when the boundary conditions
are to be treated with high order accurate schemes, for highly nonlinear problems
for which iterative solutions are efficient, for problems in which the continuity
of the heat flux is important and multi-dimensional problems involving change of
phase. The finite element method is best suited for irregular regions for which
the automatic mesh generation and highly accurate modeling exists resulting in good
temperature profiles, for mildly nonlinear problems requiring a very few iterations,
for problems requiring graphical display, for problems involving singular tempera-
ture pdints and concentrated heat sources, for problems in which different
approximations are used in different regions and they need to be joined together
and problems in which temperature profiles are desired.

Approximate Analytical Solution.

The net radiant interchange from a point in the enclosure results in integral
equation since the reflected portion of the enrgy is a function of incoming
radiosity from all points in the enclosure to the point under consideration.

If one were to include the conduction into or out of the differential surface area
of the body at the point, the resulting representation is integro-differential
equation. In general, the close form solution of such an accurate representation
of the equation is difficult even though it is desirable. Under certain conditions
when the kernel of the integral equation can be approximated by another manageable
function it is possible to obtain approximate analytical solution. The choice of
this new function should represent the kernel as closely as possible, it should

be a differentiable function and some order of its derivative be proportional

to the function itslef. With such requirements satisfied, it is possible to
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reduce the integral equation into a differential equation increasing the possibi-
lity of closed form solution. When the kernel can be represented by simple
elementary function exact solution is possible. Methods of calculus of variations
to represent the kernel results in appropriate solutions which can be made highly
accurate. The complexity of the Space Laboratory configuration prevents one to
pursue this method. However, when such situation exists the closed form solutions
is the simplest and most accurate without any computational time involved.

Monte Carlo Procedure:

It has been stated earlier that Monte Carlo method is best suited for
radiation problems in which directional variations, polarization, specular
and diffuse characteristics of surfaces and other complicating factors need to be
considered. While such relaxation of assumptions permits the solution to be
carried out with only slight additional complexity and increased computational
time the other procedures fail to generate the required solution. Such an
advantage can be compared to potential flow solutions which is governed by
Laplace differential equation. The closed form analytical solutions for
pogentia1 flow can be generated for simple geometries. However, having
demonstrated that the potential and flow lines should always intersect everywhere
at right angles as represented by Cauchy-Riemann relationships, it is a simple
matter to draw such lines for a complex geometry and obtain the heat flow
characteristics (conduction shape factors) using the method of curvilinear
squares (rectangles). Here too, a method is available to solve practical
problem approximately when analytical methods fail and finite difference/finite
element methods add degree of complexity for the irregularly shaped bodies.
As in this case and in using Monte Carlo method for radiative heat transfer
characteristics, the solutions for known cases by the more exact procedures can
be compared to the newer techniques for accuracies. The confidence gained in
the execution of the procedures and the comparison of the results will aid in
the efficient development of procedures for complex situations mentioned here
as well as reducing the computational time.

The Monte Carlo procedure utilizes simplified, computerized statistical
approach to ray tracing. The radiative properties at the surface suggests
the fractions of energy absorbed, emitted, reflected and perhaps transmitted.
when the incident energy strikes the surface. The Monte Carlo algorithm
compares a random number within the range of probabilities to the theoreticat
fractions and assigns the whole incident flux to the reflected or absorbed
or transmitted wave. Another random number compares with the reflected
or emitted flux leaving a point selected randomly in the known surface has
arrived at the required surface and assigns this flux. A targe number of
such samples are considered in order to make the statistical fraction
between 0 to 1.0 converge to the expected answers. The Monte Carlo
algorithm dvoids branching during a ray tracing procedure. Here, the energy
is not both reflected and transmitted, instead, it is either reflected or
transmitted and one result is traced further till extinction. Similarly,
the energy leaving a point either strikes the surface or not arrive at all.
One of the two results is counted. The procedure suggests that the surface
properties can be recognized by selecting energy level, the surfaces can
be combination of plano - convexo - concave orientations, the surfaces can
be specular or reflective and the absorptivity/emissivity ratio can be as

desired.
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The method is idealy suited for directly computing the radiative exchange in real
situations, the gray body view factors for diffuse surfaces or in the degenerated
case of blackbodies the view factor between surfaces. Modest and Poon (1977),
and Modest (1978) have applied Monte Carlo procedure for the determination of
radiative exchange heat flux at the deep v~shaped cavity of the opened payload
bay doors of the Space Shuttle which was suspected to have potential hot spot.
This problem reflects all the complexities stated here and the potential of thts
procedure is equally applicable for future exposed orbiting equipment such as in
Orbiting Space Station. Because of the immediate application of their work to
the current problem, it should be illuminating to read their remarks and
comparison of the procedure with the expermental result.

Consider a complex enclosure made out of v surfaces and opening to outer
space. For the sake of simplicity conider each surface to be isothermal and
they exhibit diffuse radiative properties. The view of the Sun and Earth
through this sprawling opening can also be treated as surfaces. Thus, there
are » + 3 surface forming the total enclosure. The net heat balance among-the
ith surface, the remaining enclosure with n surfaces, the Sun, the Earth and the
outer space may be written as " ry
where A ,., A - are the areas at the sprawling opening covered by the Sun and the
Earth as viewgg by the surface A; respectively, and q"s, q"p are corresponding
heat fluxes penetrating towards Ihe surface A, and the rematning term representing
the emitted energy at each of the v surfaces ds represented in Equation 16. Here,
that portion of emitted energy from the surface A; lost through the opening not
covered by the Sun and the Earth (m+ 3rd surface} is lost to the outer space.
Each of the terms on the right hand side of Equation 32 can be replaced by heat
flow from real surfaces which can be directly calculated by Monte Carlo method.
Thus, there is no loss of generality., Here, each of the quantitjes 1is pro-
portional to the diffuse radiation view factor B;;or Bji or Bsi or B,; .

In the Monte Carlo procedure, the statistical sample of energy bundles N
emitted from the surface Ay is considered. The probabilistic history of
Nj; bundles being absorbed by the surface Aj either after direct travel or
af%er any number df reflections (for the case o€ < 1.0) is accounted by this
procedure. For the case of gray surfaces the final result is

Bij = Wmit Lo (Ni/ND) 2 (NG /NG yos 1o (33)

-

For the more general® case the right hand side of Equation 33 is modified to
directly give the net energy leaving the ith surface and received at the jth
surface. The accuracy of the results obtained by this procedure depends on
the large numbers of energy bundles selected, its directional and spectral
characteristics properly represented and the path traced in arriving at the
energy absorbed at the surface (general case), the diffuse radiation view factor
(gray surface) and the geometric view factor (blackbodies) being special cases.

The Monte Carlo procedure indicated here suggests that the accuracy of
the results depends on the large number of samples considered. The convergence
to the true values may be oscillatory. It requires the aid of high speed
digital computers with large memory space. Smaller the value of the view factor
larger will be the number of energy bundles required to achieve the same level
of accuracy. This number increases with each additional parameter required to
describe the characterisitic of the enrgy bundle but it will always produce
the result to sufficient level of accuracy while the other methods fail to
converge on the required answer.

XXII-23



Hybrid program using Monte Carlo procedure to obtain directly the energy absorption/
emission characteristics of the exposed orbiting equipment should be prefered to

the Monte Carlo program which generates partial information (say view factor) re-
quired as an input by another energy analysis program. Here,it is not recommended
to use Monte Carlo program to replace TRASYS program only followed by SINDA program,
although such an option can be exercised by the developers, and the users of the
computer programs.

The Monte Carlo procedure indicated here suggests the possibility of calculating
the energy interchanges among n + 3 surfaces simultaneously. In the space applica-
tions such as in the exposed orbiting equipment, all the information is needed.
The time required for this total information is not much more than that required
to calculate the energy exchange between the ith and jth surfaces. The reason
for this thought is as follows. Having randomly selected the level and
characteristic of each energy bundle leaving a point on a surface in a direction,
it has to arrive at some point on one of the n + 3 surfaces whose absorbing
reflecting characteristics are known. The history of the energy level of this
originating bundle is traced till its near total extinction takes place as it
strikes different points of n + 3 surfaces and this infomation can be stored.
This procedure is repeated for all the bundles selected. The stored values for
each of the surfaces is the required answer. Again the accuracy depends on the
number of the bundles. Selected for each location whose total value represents
the energy level. The computational time required for this approach by Monte
Carlo procedure is considerably shorter than selecting the surfaces i and j and
accumuiate the hits or misses of the moving energy bundle in the total enclosure
one at a time. According to Edwards (1981? the basic elements of Monte Carlo
procedures are randomly choosing a location of emission, choosing a direction
of emission, tracing a ray to a wall and determining its node number, deciding
whether the ray is absorbed or reflected (or transmitted), choosing the
direction of reflection (or transportation) and scoring incremenmts of transfer
factor. The number of strikes (arrived at the jth surface) compared to the
number of starts (departure from the ith surface) is the expected result, that
is, view factor, Fij diffuse radiation factor, Bjj or the energy absorbed.

A modification to the Monte Carlo method is called 'The Exodus Method'
has been suggested by Emery and Carson (1968). This modification reduces
computational time and improves accuracy. It is not dependent on the random
number generator and may be applied to any problem which admits nodal network.
This modification is the 1imiting case of the improvement first proposed by
Klahr (1960). 1In this Timiting method, the Exodus method, a large number of
bundles (usually million) is dispatched simultaneously in directions controlled
by the probabilities of going from one node to its neighbors. As these bundles
arrive at the new nodal points, they are continually moved according to the
probabilities until a set number have reached the boundaries (say 99.99 percent).
According to the authors in this procedure, the Monte Carlo method smoothly
approaches Exodus method. The use of the Exodus method in a computer program
is slightly more difficult since two maps of nodal points are required - one
just prior to the movement of the bundles and another after the movement has
taken place. However, this complexity is more than compensated by the reduction
in computational time and the accuracy. The nodal network representation of
the physical systems sets the probabilities P; apriori. Rectangular and
triangular elements are acceptable. Even the transient problem can be solved
by the Exodus method.
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Modest (1978) suggests number of time saver techniques to speed up the Monte
Carlo procedure. In problems where the spectral and directional dependences of
the emissivity are separable, one random number can represent different wave
lengths. Two more random numbers will establish direction of emission which
is same for all témperatures. Further simplification is possible if the surfaces
are purely specular reflectors which exhibit direction of reflection independent
of wave length. Since the incoming solar energy exhibit such a specular
characteristics in the narrow wave length band it can be considered in this
manner. The computational time can be saved if the overall enclosure can be
broken up into small numbers of basic surfaces dictated by the geometry and
each surface can be further broken up into smaller isothermal subsurfaces.

If these surfaces are parts of plane or convex surfaces, the leaving bundle
will not make direct hit on the same surface. The bundle that is directed
towards outer space through the sprawling openings including that towards the
Sun and the Earth will never return. All these situations should be exploited
since the trends of the results are known apriori and the information can be
easily assessed. Probability theory can also be used to define the minimum
number of bundles that should be considered consistent with the accuracy.

Accuracy and Computational Time:

Evaluation of view factor as depicted in Equation 2 and 3 by numerical
methods involve summation instead of integration. In order to approach exact
value it is necessary to subdivide the basic areas under considerations into
smaller elements such that dA/ y2 is kept as small as possible. This approach
is satisfactory only at the expense of increased computational time, When
the two areas share a common boundary it is difficult to assure small value of
dA/pz for the area elements in its vicinity. Hence, the results of numerical
methods will be inaccurate unless special care is taken to subdivide the area
elements in this zone in order to assure the same overall accuracy. The
added complexity and additional computations will increase the time of
execution. These radiation view factors are converted to radiative conductors
in energy exchange calculations. It is possible that the two adjoining
surfaces may have similar temperatures or the radiant heat flux exchanged by
them be small. In such instances, the accuracy in the computation of view
factors will hardly affect the end result. If the user has apriori knowledge
of these facts it can be used advantageously. However, if the view factors -
from the basic surfaces to the space are computed by subtracting the sum of all
the other view factors from unity, the user is left with no choice but to improve
the accuracies in the computation of view factors to a considerable degree at
the expense of increased time of execution. It is only appropriate to consider
possible alternate methods of computing the view factors from the bodies to the
sprawling space directly, instead of running the risk of increasing computational
time in order to approach exact value which is at best asymptotically reached.

Consider a value of the view factor between two surfaces of 0.005. This value

‘of view factor is for a -rectangle 0.1 by 0.16 units seen from a point located
one unit from one of its corners, the viewing planes being parallel to and seen
by each other. This value of view factor is also obtained by a rectangle 0.1 by
0.66 units seen from the same point located one unit from one of its corner, but
in this case, the viewing planes being perpendicular to and seen by each other.
These examples serve to illustrate that the elemental areas in the numerical
calculations must be much smaller in order to assure the indicated accuracy of
0.005 in the overall computational scheme. .
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Feingold (1966), considered the closed form solution of two rectangles
having common edge first treated by Hamilton

that in order to assure the accuracy o
to eight (8) digits the individual terms o

and Morgan (1952). He points out

f the results of the view factor equation
f this equation need to be evaluated

to sixteen (16) digits. This situation is classical when the numbers of the
same order are being subtracted. The discrepancy in the computed values by the
original authors were discovered by using reciprocity relationships resulting
in the need to generate higher level of accurate results. Even in the present

case, similar higher level of accuracy nee

d to be assured in order to evaluate

the view factor from the body to the space by using all other component view
factors. This illustration points out that for complex surfaces where such
closed form solutions are unavailable and double area integrals are replaced by

double summation even greater concern

should

be exercised. Again, Feingold

considers the evaluation of the view factor of the regular hexagonal faces of

a honeycomb structure by using the view

factor values of the six adjoining faces

of the enclosure with respect to the face. Recognizing, Fpp = 1-6 FF§’ an error

of 0.0002 in evaluating view factor

F
the reciprocity theorem as well as tth

for a side/height ratio of 0.1
suggested equation resulted in 57 percent

nd using

error in Fpp, a value that can be directly calculated. Here was a case of
Lambertian surface with closed form solution (extension of Hamilton and
Morgan's solution) which resulted in enormous error. In complex geometries
on of properties, it is tempting to
blame the built in accumulated computational

with directional and spectral variati

Lambertian surface instead of having
view factors rather accurately and us
examples highlight the probiems invol

errors on the existance of non-

the luxury of evaluating the configuration

e them
ved in

in energy calculations. These
working with geometric;_bgving

common edge and situations where dA/r
value when using double summation met

2 have
hod. E

ot been kept below a certain low
ven with the provision of idealized

Lambertain surfaces for exposed orbiting equipment, the predicted results for
the temperature variations can be erroneous since the energy loss to space may

have been misrepresented.

N

It has been pointed out that the evaluation of view factor by contour

integration instead of double area in
sulting in considerable simplicity.

height L = H having common edge and p
S/L between the two rectangles of 0.0
Their results showing the percentage

tegrati

on saves two line integration re-

For the case of diffusively gray surfaces
of complex geometries these 1ine integrals can be represented by summation.
Emery, Hortazavi and Kippenhan (1981), considered two rectangles of length =-

laced a
(commo
error g

using the above two methods when compared to
for this problem) have been reproduced here as Table 1. Numerical method for
the contour integration is very accurate. T
obtained by double summation method is highly inaccurate. The reason for this

error is again the proximity problem with dA/ r 2 being too large for the elements

close to the common edge.
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Table 1. Percentage Error in the Numerical Calculation of the View Factor between
two Surfaces of Equal Breadth (L=H)

View factors between surfaces at
right angles to each other and
separated by the distance S.

Error based on exact solution to this
probiem dA = dx.dz or dy.dz

2 4 8 )
___NUMBER OF STRIP ON 2

Contour Integration Double Area Integral
Infinite Strip Finite Area Infinite Strip Finite Area

L S=0.0% $=0.0 S=0.0 S=0.11L $=0.0 S=0.1 L

.0 0.2% 20.7 21.5 59.1 57.6

.5 0. 0.8 12.9 11.2 32.0 24.1

.3 0.4 9.1 6.6 - 21.8 12.1

2 0.1 5.7 2.8 13.2 4.9

1 0. 2.9 0.7 6.7 1.2
1.5 0.2 4| 0.3

d = dx=dy=dz for the Double Area Integration
edge segment length for the Contour Integration

S = Separation distance along the x coordinate
S = 0.0, common edge problem

For example, using the numerical method for contour integration and treating the
finite rectangles having common edge as single strips, the error when compared to
exact solution is 3.7 percent. Contrary to this result, in the case of numerical
summation for double integration using 400 eleménts per rectangle, the error is
still 3.4 percent. It is amazing! Needless to state that the ratio of the = -
computational time will be enormous:! In the case of double summation method, for
the same case with a spacing equal to 10 percent of the sides, the error has
dropped to 0.3 percent. This differential from 3.4 percent is entirely due to
proximity of the area at the common edge.

This above example illustrates convincingly that even for Lambertian surfaces
having common edge or proximity to each other, it is necesiary to further sub-
divide the area in its vicinity reducing the value of dA/ y< to a small value
consistant with overall accuracy. This comparison also suggests that that in
order to compute view factors between_surfaces the subdivision of areas be done
so as to preserve same value of dA/-rZ, thus assuring local accuracy of F dAz‘Ahj

~ is about the same order of the required global accuracy Fij between areas
A; and A; as defined in Equation 1 and 3. It is this type of sensible use of
computer codes which will cut down computational time while preserving both
local and global accuracies as required by the user in the prediction of the
true temperature excursions, even with the assumption of diffusively gray surfaces.
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It has been pointed out that contour integration cannot be used for non-Lambertian
surfaces and it takes considerable longer time when double summation is considered
since it becomes necessary to consider the differential energy exchanges. This
thought suggest the possibility of using Monte Carlo method.

Improvements in the accuracy of the basic view factor calculations can be
achieved by specifying a small value, C, for the differential view factor
~FdAj -dhA: as stated in Equation 1. In using numerical method, it is indeed
E,A[-Aas?, If this calculated value is much smaller than the specified value

(say 0.001 it points out that the initial subdivision of areas for double
summation method (as used in TRASYS is too small. On the otherhand, whenever
the above differential view factor is above the specified value C that particular
element need to be subdivided till the local differential value falls below the
specified 1imit. Such a "do - loop" is standard in all computer programs. It
should be noted that in the evaluation Fj; between surfaces Aj and Aj, the
initial subdivision of areas may be such tﬂat the range of differential view
factors contributing to Fj; may 1ie on either side of C, the specified limit.
They indicate that the valu dA/ v2 is either too small or too large. In order
to add intelligence to the existing programs it is suggested that the initial
subdivision of areas Aj and A; be coarse and let the program do - Toop containing
the specified 1imit C divide %hem into sub areas so as to generate the same
order of values for the differential view factors. This procedure will not only
increase the global accuracies of individual view factor between two finite
surfaces, but also saves considerable time. In adopting such a procedure care
should be taken in situations where two surfaces sharing common boundary or near
proximity to each other,since the value of dA v2 has been used as a guide to
subdivide the areas. It may indeed cause unnecessary expenditure of computational
time to assure accuracy which may be inconsequential in energy analysis. The
test cases for such improvisations should indeed be the known problems having
common edge for which the closed form analytical solutions do exist. As stated
“earlier, if the mutual surfaces have similar temperatures resulting in minimum
exchange of heat the guideline for €, the specified 1imit can be relaxed.

The geometric view factors between two surfaces always satisfies the basic
reciprocity relationships, i.e., Aj Fi; = Aj F:;. The program should be in-
structed to evaluate the larger of the™two va]ﬁes F;5 or Fj3 which can easily
be recognized since the information about A; and Aj is available in the computer.
Such an instruction will also aid in improving the“accuracy and reducing the
time. It is recognized that A; and A are that portions of surfaces seen by
each other, although each of AA; need'not see all of AA:;. The literature on
radiative heat transfer mentions modified reciprocity theorems. The complexities
of the surface arrangements in exposed orbiting equipment may not lend itself to
take advantage of these theorems.

The evaluation of view factor from the surface A; to space S can be calculated
directly. However, some programs do evaluate this va?ue by subtracting sum of all
the other view factors by unity and listing only the positive values. The
possibilities of negative results have been used to check the calculations that
led to impossible results provided they are beyond the expected overall accuracy.
This procedure does not exclude the error involved in computing this important
view factor to the space even when positive values are indicated. If the in-
dirﬁcg method go evaluate the geometrickyiew factor to the space is the only
method, instead of using :

= | - - 34
FL-S "l'El F;'J (34)

~




where the total enclosure contain outer space and N surfaces, it is suggested

to use - ¥
FAAL -5 ) - JZ_‘ F;\P\L'A.I (35)
d - LS
" Fai-s 7~ M &, Fani-s (36)

where M is the number of equal area elements the surface A; 1s divided in the
evaluation of Equation 35, If the surface Ay is divided into unequal areas

it is possible to modify Equation 36 to reflect weighted area in the evaluation
Fa-s  the important view factor to the space. Such a modification may be
viewed as semi-indirect method of evaluation of the view factor to the space.
The work of Sawyer (1978) considers view factors between enclosing surfaces

in the presence of occluded cylinders (surfaces). The basic concepts of this
study can be extended to the current problem of exposed orbiting equipment in
space. The work of Sawyer is a part of VIEWFAC program which also contains
formula for octal memory required in the computer for typical problems.

The accuracy of view factor as determined by finite element method is
comparable to finite difference method, using double summation. Chung and
Kim (1982) compares the results obtained by analytic solution with that of
contour integration and finite element method. For the case of opposite faces
of a cube, the finite element method require 3x3 elements to generate the view
factor comparable to analytic solution and contour integration method. In order
to obtain similar comparative results for adjacent faces it requires 40x40
elements. For the adjacent faces with angle less than 90° (say 60° and 30°)
the values for 40x40 elements did not converge to the analytic values (2.73 and
10.9 percent error). The contour integration method provided the values for
the view factors in close agreement with the analytic solution (0.36 and 0.9
percent error). The error indicated for the 40x40 mesh finite element method
is unacceptable pointing again to the effect of dA/ T¢ in the numerical
evaluation. Wu, Ferguson and Altgilbers (1980) considered the application of
finite element method to the interaction of conduction and radiation in an
absorbing,scattering and emitting medium. They point out that for a 200-node
problem it requires 40,000 (40K) words of storage to define the radiosity
equation. The use of peripheral mass storage and "out of core" matrix inversion
algorithms permit enlarging the number of nodal elements, limited only be the
computer economics at the upper end. B
Vogt (1981) in a paper on recent developments in Thermal Radiation Analysis
System ?TRASYS) recommends evaluation of view factor to space directly in order
to improve the accuracy. The accuracy depends on the method employed but cer-
tainly avoids built in accumulated error when it is obtained by subtracting
all the other view factors of the adjoining surfaces from unity.:. The new
Form Factor Calculation (FFCAL) link, described by Vogt, automatically chooses
between the double summation and the unit sphere methods in order to improve
the accuracy of the nodes that are close to each other. The reduction in
computational time with such a frequent switch over has been expected to be
40 percent. Another interesting paper in this area is by Farrell (1976)
which discusses the determination of view factors of irregular shapes such
as the sprawling space as seen by a point. It is based on the unit sphere
concept introduced by Herman (1900). The paper describes the development of the
scintilascope which uses the perspective projection concept aptly describing
the geometric view factor as stated by Equation 2, between a point to an object
in space (here, sprawling space surrounded by the objects of exposed orbiting
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equipment). The idea of Farrell can be computerized in order to evaluate all

the required geometric view factors directly. The accuracy of these geometric

view factors to important surfaces which exchanges significant energy can also |

be increased very much Tike subdividing the interval in numerical integration

in order to increase the convergence. |
1

The accuracy of view factors obtained by Monte Carlo method depends on
the size of the bundles and randomness of the path selected. Early effort to |
use this procedure has been branded as one requiring large memory space and
inefficient use of computer time. However, the concepts of the procedure is l
idealy suited to produce accurate results for real surfaces having directional
and spectral property variations and integrated approach (for example, coupling : 1
of TRASYS and SINDA) is used in energy calculations. Modest and Poon (1977)
comment about the accuracy and convergence of the Monte Carlo method when |
applied to the determination of the geometric view factor beteeen square parallel |
plates separated by a distance equal to fourth of their sides. They point out
that the sets of random number for the Monte Carlo procedure had to be generated |
on the computer using analytical schemes which can never be truly random. They |
can at best be called as "quasi-random" which depends on the initial starting |
value. They indicate that this starting value had considerable influence on
the convergence of the view factor to the analytic value, suggesting optimiza-
tion to select this starting value. For the illustration they considered with
a starting value of "unity" even after 5000 bundles the convergence is poon.
However, when optimized starting value of "12,345" is selected, initial convergence
at 1000 bundles is indicated They use random number generator contained in NASA -
Houston software package for their UNIVAC 1110 in obtaining these values. For
larger size bundles the result oscillated around expected value and damping
indicated only after using 4000 bundles.

The work of Modest and Poon under NASA/JSC Grant No. NAS9-15109 was to
determine the three dimensional radiative exchange factors for the Space Shuttle
by using Monte Carlo method. In particular, their study has been directed to
radiation exchange between the curved Shuttle door, and radiating panels forming
cavity in the open configuration, both being exposed to solar radiation at
various angles of incidences. The surfaces were specularly reflective and the
problem was directed to predict rather accurately the energy concentration near
the hinge between the door and the panel. For blacksurfaces the Monte Carlo
. preocedure with the optimized starting value of 12,345 showed good convergence
with expected values of view factors obtained by Hottel crossed-string method
using only 1000 to 2000 bundles.

Modest and Poon (1977) have compared the results obtained by TRASYS and
Monte Carlo with the experimental data obtained by Scheps and H. R. Howell
(1976) of Vought Corporation under contract with NASA/JSC. The test facility
simulated the cavity formed by the Shuttle door and radiator panel, with a
baseline deployment angle between them being 38 degrees. In the simulator,
Xenon lamps represented the beam radiation from the Sun. The panels were about
3x5 meters. The doors and panels had a coating of silver/teflon meterial. :
A white blanket made out of beta cloth bonded to thin aluminum sheet was used 4
to cover the door and assess the effect of diffuese surface coating on the
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net radiation trapped in the cavity. The back of the door contained 10 to 20
layers of aluminized mylar in order to minimize the heat leaks. For purposes

of evaluating the local view factors to space using measured local heat fluxes,
the door and the panel have been divided into strips and each strip into zones.
The comparison of experimental-results of Scheps and Howell with the Monte Carlo
method on a zone-by-zone basis has been made by Modest and Poon. Except for

the zones near the hinge (indicating the effect of proximity of two surfaces),the
Monte Carlo method using the absorptivity of silver-teflon material (at room
temperature) as 0.78 predicted about the same values of gray surface radiation
view factors ( -j) on a zone-by-zone basis. In this comparison, each strip

has been divide& into three zones. The end zone cavity view factor to space

as predicted by Monte Carlo method is not symmetric (about one percent or less
difference). This is due to inherent oscillation around the expected value
associated with the statistical nature of the method itself, and use of limited
bundles in increments of hundreds. It should be noted that the assymetry is much
larger with the experimental result (about 3 percent),which is to be expected.
The results of view factors from the flat strips (three zones) of the cavity

to space, obtained by TRASYS (1973) using diffusively gray emitting surfaces
having absorptivity of 0.78, is consistantly higher than the experimental

values which agrees closely with Monte Carlo predictions. The paper of Modest
and Poon contain more detailed comparison of view factors between strips and
each strip to space as determined by experiments and Monte Carlo method. It
also contains comparison of view factors between the front opening and the
strips on the radiator panel facing the door due to solar irradiation. Here,
the solar absorptivity of 0.06 for 46 degree angle opening gave a reasonable
good agreement between the Monte Carlo method and the experiment. With
increasing angle of opening the solar absorptivity had to be artifically increased
in order to obtain better agreement between the two methods. It should be noted
that at an opening of 77 degrees both the concave door and the back of the
radiator panelare fully sunlit. The comparison is also made with TRASYS results
using a diffuse solar absorptivity of 0.15. The agreement is inferior when
compared to Monte Carlo method. The availability of more complete radiative
properties of the surfaces will no doubt improve the comparison between the
theory and the expeiment.

Sowell and 0 'Brien (1972) describes F - matrix method in order to efficiently
compute view factors within the enclosure. The method is based upon the fact that
one view factor in each row of the F - matrix must be determined by conservation
equation of that row, that is algebraic sum of the view factor be equal to unity.
The reduction of the method to evaluate all the required view factors utilizes
reciprocity relationships. They utilize CONFAC II program by Toups (1965) for:
basis view factors which forms the elements of F - matrix. A Fortran computer
procedure is presented. Details of the procedure can be found in the Ph.D
dissertation of Sowell (1972). A method to evaluate view factors between
surfaces that are partially occluded by other surfaces has been presented by
Wiebelt (1972). The computational time required for this program is about twice
that of CONFAC II.However, this program uses coarser grid and the expected accuracy
is within 2 percent when the occluding surface is close to the viewing plane.
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Vogt. (1981) points out that in the evaluation of view factors in a complex
enclosure such as exposed orbiting equipment, 90 percent of CPU time in the
TRASYS program is used up in shadow routines. A significant reduction in time
can be achieved if the shadow tables for the specific attitude and orbital
position are used. Thesa tables need to be generated and stored prior to
computations of view factors. The expected reduction in time is about 50
percent. The newly available FFCAL link for TRASYS Il (1977) utilizes the unit
shpere method and double summation method interchangably in order to save computa-
tional time by about 40 percent. The FFCAL link utilizes the accuracy specified
by the user and Equation 1 in determining the grid sizes. (See Appendix B,
TRASYS II, 1977). This method will automatically subdivide the nodes in the
region where the surfaces are close to each other. Number of other improvements,
time saving steps as well as improved accuracy which are part of TRASYS II indicated
by Voght are; explicit form factor to space (GBCAL link),identical form factor
request matrix, restart tape form factors update, trajectory tape input, extended
orbit generator capabilities and possible shadower.

Emery, Mortazavi and Kippenhan (1981) point out that the key to reducing
computation time is the early detection of obstructions between the elements
AA; and AA; . They have not found effective mehtod for such an early detection.
They recommend fixed pattern of checking and repeating the same at every location
of AA; . The thoughtexpressed by them suggest development of shadow pattern on the
surface Aj as viewed from Aj in the presence of occluded surfaces. They emphasize
that double area integration for surfaces having common edge leads to inaccurate
results, but it is the only method to establish the obstructed view. Hence,
such situations should be avoided by properly defining the surfaces. They point
to the development of hardware having the capability of generating perspective
view with hidden portion of surfaces identified which is as yet unavailable.
Utilizing the fixed pattern of checking for obstructions they have shown that
the reduction in computational time of 50 to 75 percent in the two isolated examples
they considered.

Vogt (1981) emphasizes that the evaluation of geometric view factors of complex
structures can be achieved. at a greater speed if a fast interactive program with
good graphic capability can be developed. For the present, a combination of
contour integration and double summation in concert with ray intersection
calculations provides the fastest method of calculations. The use of rays may be
regarded as highly adaptive Monte Carlo method.

Monte Carlo methods for radiative heat exchange calculations are considered
extremely slow and the accuracies are subjected to the choices of random riumber
generators and sizes of bundles used. They require fast computers with large
memory space in order to converge on required answers at reasonable values of
CPU time. Emery and Carson (1968) compares the computation times of the Exodus
method with Monte Carlo and finite difference methods. In the examples considered
by them the Exodus method with million bundles took about 10 percent of time taken
by Monte Carlo with about 2000 bundles. The computational time for finite
difference method is comparable to Exodus method. While the Monte Carlo method
shows oscillatory characteristics in converging to final value, the Exodus method
exhibits steady convergence to final value. In passing,it may be noted that the
application of Exodus method to matrix inversion is much more efficient than
Monte Carlo and it is comparable to algorithms for exact method. Modest (1978)
has poroposed a number of time saver schemes for Monte Carlo method.
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In the future, it should be of interest to apply the improvised porcedures to the
problems of current interest and compare the same with Exodus method. Modest in
applying the Monte Carlo method with time saver schemes to the problem of cavity
formed between Space Shuttle payload bay door and radiative heat rejector panel,
has shown the superiority of this method over TRASYS for accuracy since it con-
siders specular properties. The execution time on the UNIVAC 1110 using 10,000 -
20,000 energy bundles to assure an accuracy of :.0.005 was about 60 sec for each
incidence angle of the sun shining into the cavity.
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Computer Programs:

There are a number of general purpose heat transfer analysis programs that
are available largely due to significant advances made in numerical discretization
techniques and the rapid developments achieved in computer hardware and software
packages. Noor (1981) claims that there are anywhere up to seventy such programs
many of which are being used by government and industries to develop analyses for
practical problems. He presents a comprehensive review of 38 such programs by
categorizing their features under various classifications of heat transfer
problems itself, methods available, computer facilities that can be used and_ the
methods of representation of the solutions. Here sixteen of these programs-a have
been selected which have capabilities for radiation, convection and internal
conduction required for solving problems of exposed orbiting space equipment with
its convective loops to hold the temperatures of the individual units at the
required temperature. Table 2 gives the list of the programs selected, the
addresses of program developers, the computer language used and the contact person,
where available, for further information. The programsASAS HEAT, BERSAFE(FLHE)
and TAU are from England and SAMCEF (THERNL) is from Belgium. The remaining
twelve programs are from the United States out of which six of them coming from
California based agencies.

Here, in this laboratory, SINDA (Systems Improved Differencing Analyzer)
program (1971) is utilized. It employs finite difference scheme with Tumped
parameter representation of physical problems governed by diffusion mode.

It features resistor capacitor (R-C) network representation. It is backed up
by TRASYS (Thermal Radiation Analysis System), a digital computer software, having
capability to solve radiation related aspects of thermal analysis problems such
as view factors. In combination with SINDA the heat transfer mechanism in space
is represented as radiation conductor, suitable for thermal network analysis.
TRASYS utilizes view (form) factor accuracy (FFACC) specified by the user in
conjunction with Equation 1 representing differential view factor between surfaces
aA; and AA; . Having specified FFACC, the smallest aa; is given by
aA: = JFFACC (T

v cospy co3 f3; .
When the two surfaces Aj and A; are close to each other the average distance v
oY Y;; is smaller and Equation 37 suggests consideration of smaller area elements
for fhe evaluation of view factor Fj; needed for radiation heat transfer analysis.
It should be noted that even with thé use of Equation 37 to define minimum size
of AA;the regions of Aj and Aj where the local values of v is smaller than the average
value 6f,§3the errors in view factor calculations should be expected. The
seriousness of this problem is aggravated when areas having common boundary is en-
countered. The consequences have been discussed in the previous section titled,
"Accuracy and Computational Time."

Letters of communication to our William C. Patterson by Mr. J. D. Gaski
suggest that Mr. Gaski is the originator of SINDA (1971), his contributions being
detailed discussions of the thermal network error correction package and the
sensitivity temperature error program. Mr. Gaski is in the process of completing

—
At the time of writing this report a separate effort of the author to secure technical
backgrounds (theoretical manauls) of these programs in order to independently evaluate
the potentials was unsuccessful. The time limitation of the Fellowship program it
self was also a factor.
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TABLE 2: Computer programs having Heat Transfer Analysis capabilities selected

8.

for survey (taken from Ahmed K. Noor, NASA/CP 2216 (1981).

AGTAP

Advanced General Thermal Analyzer Program. Grumman Aerospace Corporation,
Bethpage, New York, 11714. FORTRAN IV,1000 thermal nodes with 2000 each
conductive and radiation connectivities. Contact: Dr. John G. Roukis,
mail stop B22/35.

ANSYS

Swanson Analysis Systems Inca,P. 0. Box 65, Johnson Road, Houston, PA 15342
ANST FORTRAN.

ASASHEAT

Linear/Non]inear Thermal Analyzer of the ASAS Range of Finite Elem.Program.
Atkins Research and Development, Parkside House, Woodcote Grove, Ashley
Road, Ebsom, Surrey, England. Portable ANSI FORTRAN 66.

BERSAFE (FLHE)

Flow of Heat by Finite Elements. Central Electricity Generating Board,
Berkeley Nuclear Laboratories, Berkeley, Gloucestershire, GL13 9PB, England.
FORTRAN IV dveloped by Dr. T. K. Hellen and colleagues. Contact: Mr. G.
Marshall.

MARC

MARC Analysis Research Corporation, 260 Sheridan Avenue. Suite 200, Palo
Alto, CA 94306. FORTRAN IV,

MITAS 11

Martin Marietta Interactive Thermal Analysis System, Version 2.0. Martin
Mar{ietta Corporation P. 0. Box 179, Denver,Colorado, 80201. CDC FORTRAN
2.4, Developed by R. E. Kannady, Jr. R. J. Connor and C. E. Shirley.
Contact: Roy E. Kannady, Jr., (303) 977-3075 .

MSC/NASTRAN

The MacNeal - Schwendler Corporation - NASA Structural Analysis. The
MacNeal - Schwendler Corporation, 7442 North Figueroa Street, Los Angleles,

-CA 90041. FORTRAN IV, contact: MSC Regional Office at Los Angeles

(213) 254~3456.

NNTB
Nodal Network Thermal Balance Program. NASA-Goddard Space Flight Center,
Code 732, Betsville, Maryland, 20771. 300 Nodes Capability. FORTRAN IV.

Contact: COSMIC, Suite 112, Barrow Hall, The University of Georgia,
Athens, GA 30602.
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TABLE 2: (Continued)

9.

10.

1.

12.

13.

14.

15.

16.

SAHARA

Sandia National Laboratories, Livermore, CA 94550. CRAY-CFT and CDC-FTN
FORTRAN. Developed by V. K. Gabrielson, Organization 8331. Contact:

V. K. Gabrielson.

SAMCEF (THERNL)

Systeme d'Analyse des Mileax Continus Par Elemets Finis (Thermique Non
Linearie). L.T.A.S., Aerospace Laboratory, University of Liege, Rue Ernest
Solvay 21, B-400 Liege, Belgium, FORTRAN IV. Contact: L.T.A.S., Aerospace
Laboratory.

SINDA

Systems Improved Numerical Differencing Analyzer. Program Developers:
Chrysier Corporation, Space Division, New Orleans, LA; TRW Systems,
Redondo Beach, CA ; TRW Systems, Houston, TX; LTV Aerospace Corporation,
Dallas, TX; Lockheed, Houston TX. FORTRAN.Contact: COSMIC, Suite 112,
Barrow Hall, University of Georgia, Athens, GA 30602.

SPAR

Engineering Information Systems, Inc. 5120 West Cambell Avenue, Suite 240,
San Jose, CA 95130. FORTRAN V Contact: James C. Robinson, Loads and
Aeroelasticity Division, Mail Stop 243, NASA Langley Research Center,
Hampton, VA 23665.

TACO

Sandia National Laboratories, Livermore, CA., 94550. ANSI FORTRAN
Contact: W. E . Mason, Applied Mechanics Department.

TAC3D

Thermal Analysis Code - Three Dimensional. General Atmoic Company, -
P. 0. Box 81608, San Diego, CA 92138. FORTRAN V.

TAU : -
Thermal Analysis of Uncle. U. K. Atomic Energy Autority (UKAEA), Risley
Nuclear Power Development Establishment, Warrington, Cheshire WA3 6AT,
England. FORTRAN IV,Developed by J. A. Enderby.

TEMP (NTEMP)

Temperature Analyzer (New Temperature Analyzer). Dr. A.F. Emery, Dept. of

Mechanical Engineering, University of Washington, Seattle, Washington 98195.

FORTRAN g xtended,Cost $250.00.
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"Ney SINDA" program. He claims that the existing versions of the SINDA program and
their many modifications created by various users have deficiencies, inaccuracies,
incompleteness, errors and insufficient global documentations. According to Mr.
Gaski the new SINDA will have the following features:

) Sgbstantia]]y reduced core size requirements as well as reduced computational
time for processing and solution phases.

o Increased problem size capability with several mnemonic data options.

e Operational on CDC and UNIVAC computers with possibility of CRAY and IBM
computers.

e Use of CAD color graphics packages such as PATRAN coupled with translators
or emulators which allow the user to automate the input to large
analysis code such as new SINDA, NASTRAN (NASA Structural Analysis),
NEVADA (Net Energy Verification and Determination Analyzer) etc., which
offer order of magnitude reductions in overall problem execution times.

o Improvement in Interanalysis Communication and Coupling.

e Estimated 90 percent reduction in preprocessor time and close to a 50
percent reduction in execution time.

o Total rewrite of preprocessor with an entirely different structural
base and internal operation instead of patch up jobs that have occurred

in 10 years.

e Anticipated submodel definition which will allow several models to serve as
input with overlapping number systems. This feature will slow down the
overall preprocessor speed, but should not effect execution timing.

Current status of New SINDA, according to the telephone conversation on August
5, 1982 with Mr. J. D. Gaski, (SINDA Industries Inc., P. 0. Box 8007 Fountain Valley,
CA 92708, Telephone (714) 557-2080). The New SINDA is 80 percent coded and 50 to 60
percent has been checked out. 01d SINDA (Revised 82) ¥s available at Aerospace
Corporation. The 83 version of 01d SINDA with pressure node is in the making for
them. The NOPACK version that is available utilizes larger core space, but it runs
faster. In SINDA (1971), source data block had lots of errors which have been
removed. New SINDA will have Monte Carlo version which directly calculates the
gray surface radiation view factor Bi; in a single pass instead of TRASYS II which
does the same in two passes, first, cSmputing the geometric view factor Fjj and
then Bj;. New SINDA will accept both TRASYS II and NEVADA (Monte Carlo). "It is
expecte& that for 1000 nodes or larger NEVADA Monte Carlo method is faster which
agrees with other independent claims. moreover, the Monte Carlo method is more
versatile. At present, Mr. Gaski is working with Aerospace Corporation on Space
Shuttle thermal models for the U. S. Force. NASA, Houston is expected to review
these results and based on the satisfactory outcome of comparisons between the
two SINDA programs they will authorize the use of New SINDA at the various NASA

centers.
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Table 3 presents a detailed summary of the capabilities of the sixteen programs
depicted in Table 2 for comparison. The information for this table is entirely
due to Noor (1981). The tabular survey will be useful in the initial selection of
a program or two for heat transfer analysis. The final selection of the suitable
program has to be based on a detailed examination of the documentation as outlined
in theoretical, programer's and user's manuals. Since the computer softwares
continuously change, often at a rapid rate, most up-to-date information should be
sought in order to make final selection. Noor,in a panel discussion with Mr.
Sidney Dixon (1981) as moderator, points out that many of the recent advances in
computational structural and fluid mechanics have nat beeén used in heat transfer
analysis. Such an integration is essential and should be forthcoming. At
present finite element methods are lagging behind finite difference method for
heat transfer analysis, but their superior advantages in terms of mesh design,
formulative aspects coupled with integrated design features and capabilities for
transient analysis will be the tool of the future. The availability of a number
of large general purpose software, the ushering in of super computers, array
processors and microprocessors will also play important role in advancing
computational methods including heat transfer models.

Some general comments about Table 3 are as follows:

e All of the programs except four have been updated during 1981. One
of these programs is SINDA (1975) which is being updated and it is
being reviewed at NASA/JSC for future use at all NASA centers.

e Ten out of sixteen programs utilizes finite element method of analysis.
SINDA uses finite difference method. If the anticipated revision
(NEW SINDA) utilizes current state of the art of finite difference
methods such as curvilinear grids and higher order finite difference
techniques, it should be comparable to finite element methods.

e All the programs have temperature as fundamental unknown. Four of these
programs considers heat flux as also fundamental unknown. SINDA is not
one of them.
e All the programs considers temperature dependent thermo-physical properties.
e All the programs except two considers interelement convection and radiation.

e Only MSC/NASTRAN and TACO have enclosure radiation with view factor
calculations internalto the program. Others require supporting programs.

e All of the programs have restart capabilities.

Based on detailed review of the theoretical manuals of these programs, it should
be possible to select two or three programs for further scrutiny. Here it is
recognized that standard problems which exploits capabilities of these final selection
of programs should be used to compare the accuracy, the consistancy and the
efficiency of computations.
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FOOTNOTES TO TABLE 3 DEPICTING GENERALLY COMMON CHARACTERISTICS
APPLICABLE TO SIXTEEN PROGRAMS OF THIS SURVEY

A1l have three dimensional space capabilities exceot TACO.

A1l have linear/nonlinear steady-state and transient response capabilities
except AGTAP which has only nonlinear capability and TAC3D which has only

1inear capability.

A1l have models for intgrnal conduction represented by elemental matrices.

A1l have models for radiation except AGTAP and TAC3D.

Multilayered capabi1ities'on1y for MITAS II,-TAU, and TEMP.

A11 accommodate time dependent thermal properties except ANSYS, MSC/NSTRAN,
and NNTB.

Boundary Conditions

A1l accommodate steady-state prescribed temperatures and steadv-state thermal
flux input except AGTAP and TAC3D.

A1l accommodate time dependent prescribed temperatures.

A1l accommodate temperature dependent thermal flux input except AGTAP, ANSYS,
NNTB, SAHARA, and TAC3D.

A1l accommodate time varying thermal flux input except AGTAP and TAC3D.
A1l accommodate forced convection except ASAS HEAT, NNTB, SAHARA, and TEMP.
A1l accommodate prescribed fluid flow except ASAS HEAT; MARC, NNTB, and TACO.

Those that accommodate boundary layer convection are; ASAS HEAT, MARC, MSC/
NASTRAN, SAHARA, and SPAR.

A1l accommodate gap thermal resistance except AGTAP, ASAS HEAT, NNTB, and
TEMP, '

A1l accommodate boundary conditions/loads added or removed during analysis
except NNTB and TACO.
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Solution Techniques

A11 programs using finite element methods of analyses have the feature to
transmit temperature field data directly from heat transfer modules to thermal
stress modules except TEMP.

Cyclic symmetry capability is available only for MSC/NASTRAN and TAU. -

Repeated use of identical substructures capability is available only for ANSYS,
MSC/NASTRAN, and SAMCEF (THERNL).

Mixing linear and nonlinear substructures capability is available only for
ASAS HEAT, MSC/NASTRAN, and SAMCEF (THERNL).

A1l programs have suitable file output for user post-processing and plotting
except NNTB, TAC3D, and TEMP.
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Conclusions and Recommendations:

This report is based on the literature reviews related to the thermal
radiation view factor as it applies to computations of temperature variations

- in the exposed orbiting equipment. The thermal balance of such an equipment

depends on impinging solar radiation, the reflected energy from the earth, the
energy lost to sprawling space, the mutual radiative heat transfer among the
surfaces, the internal heat generation and the heat transfer from the convective
loops. This report provides a broad brush approach discussing the various
methods available for calculating thermal radiation view factors, the accuracy
of procedures when computer-aided procedures are used and the computational

time required to achieve satisfactory results.

The current procedure at the MSFC Laboratory requires two pass approaches,
that is, calcuation of radiation view factors (TRASYS) and convert them to space
conductors (SINDA) in order to perform thermal balance. Besides discussing the
basic concepts involved in determining the geometric view factor, in developing
the radiation thermal resistance analogy and the assumption involved, this
report contains interpretation of the basic methods available for radiation
geometric view factor calculations such as Nusselt projection (Unit-Sphere)
method, the ray tracing technique for the same, the double integration/summation
method, the Hottel's stretch film (Crossed-String) method the contour integra-
tion method and the Monte Carlo method. The last method is suitable for directly
calculating energy transfer between surfaces having known radiation properties
(one pass approach) essentially for Lambertian gray surfaces. This report also
contains discussion and status of the available numerical procedures such as
iterative procedure, finite difference and finite element procedures and Monte
Carlo procedure. More efficient ways available in the literature that are -
applicable for these basic procedures are also discussed.

In order to aid in the future search for a more efficient, more accurate and
less time consuming computational procedure capable of predicting the tempera-
ture excursions under time varying conditions, a summary of current state-of-the-
art of sixteen programs have been presented. The tabular summary will aid in the
preliminary review and selection process. More meaningful comparison is difficult.
It can be accomplished by detailed examination of code and by comparing the output
of the problems having same identical input., Accuracy and computational times can
also be compared. Pertinent comments related to the new SINDA which may be the
tool of the future at NASA Laboratories is also presented.

The view factor to space and its importance in dissipating the energy in a
thermal balance model of exposed orbiting equipment is important. Currently,
this important view factor is being calculated by subtracting all the other view
factors from a surface to the objects in the enclosure. This approach imposes
tremendous burden on the computer-aided procedures used in calculating all the
individual view factor very accurately. Such an accuracy is tied up with the
valua of d&/rl (FFACC - form factor accuracy) factor selected in the double
summation method of the view factor calculations. Besides the Monte Carlo method
this method is the only other procedure currently available for complex enclosures.
When there is a common edge the FFACC criterion cannot be locally met causing

global inaccuracies. References have been made to such situations. New and
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novel approaches should be sought in order to improve global accuracies without
undue expenditure of computational times.

In a complex enclosure such as exposed orbiting space equipment, the cal-
culation of view factors is complicated by the presence of occluded surfaces.
At present, considerable amount of time is being spent (about 50%) in identifying
such situations. However, the layout of such objects in a mission is fixed.
This thought suggests the possibility of developing shadow table and making use
of the information in rapidly evaluating the geometric view factors. Reference
has been made suggesting significant reduction in computational time. At present,
Monte Carlo method is considered too slow and time consuming. It may be com-
petitive when there are 1000 or more modal points. However, there are several
time saving techniques and modification to basic procedure itself that are avail-
able. In the future there is the potential to successfully use this method for
fast and accurate computations in a complex enclosure having non-Lambertian
surfaces. In this report a comparison between Monte Carlo method and TRASYS ‘has
been made. Similarly comparative advantages of finite element and finite
difference methods are indicated.

Schemes to improve the accuracy while making every effort to reduce the com-
putational time should be the future goal. They go hand-in-hand in space research
because of the expected one-to-one correspondence between the predicted results
and experimental observation. In order to achieve this realistic but ellusive goal
several ideas are worth considering.

In the evaluation of radiation view factors since the reciprocity relation-
ships are satisfied, every effort should be made to calculate the larger of the

two view factors between the two surfaces. Computer programs should have such an
intelligence.

It should be possible to recognize those surfaces and surfaces to planets or
space which exchange significant energy and calculate these view factors rather
accurately. Surfaces having common edge should be avoided or integrated,
particularly if their thermal conditions are similar.

Where possible less time consuming contour integration, Hottel's stretch film
method should replace slow double summation method. Here it may be possible to
reduce the complex enclosure to a number of simple enclosures containing real
plano-convex surfaces and artifically introduced plane surfaces covering the.
concave enclosures. The radiation streaming across these artifically created
surfaces can be used as subsidiary surfaces whose thermal balances with respect
to enclosed cavity can be completed. The potential of such anm implosion or inward
travel leading to real surfaces will improve the global accuracy of the results.

The view factors related to the earth's albedo, the sprawling space and the
sun are important in the energy circulations. A method to directly calculate
these view factors should be explored. Recognize that the view factor from the
elemental space to the hemispherical enclosure is unity. Depending on the
accuracy of the form (view) factor, it should be possible to construct a number
of rays emitting from the centroid of the element towards the hemispherical space
above it. Each ray can be traced in order and a record of the surface (including
sprawling space, the earth's albedo and the sun) it touches san be kept. Such
an accumulation of information will simultaneously evaluate all the differential
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view factors (See Eq. 2) Fda-a;  satisfying their sum to be unity. This is
identical to Herman - Nusselt projection (unit sphere) method which is the basis
for number of experimental devices determining such a differential view factor.
Here, this procedure can be computerized. The differential view factors from
each element of a surface can be weighted according to the area of the elements
themselves in order to evaluate Fij» the finite view factors. The availability
of computer graphics and the abi11%1es of computers to project surfaces will
greatly aid in the success of this procedure.

At a future date Monte Carlo procedure may be integrated with the above
mentioned ray tracing method which will not only preserve the rather accurate
view factor evaluation but also integrate the rather accurate energy balance
consideration required in problems of space exploration. In this connection
the potentials of the impraved Monte Carlo method (Emery's Exodus method and
the time saver techniques of Modest) should be thoroughly explored. ’

A subset of available computer program for heat transfer analysis based on
Noor's work, presented here, and the information contained therein will aid in
preliminary selection of a program or two for detailed study. The architect of
SINDA (Mr. J. D. Gaski, SINDA Industries, Inc.) after almost ten years of
obscurity, is in the process of completing New SINDA. It is scheduled to be
reviewed by NASA/JSC and based on their Jjudgment, it will be made available to
all NASA centers. It should be of -€nterest to closely scrutinize the improvisa-
tion contained in the theoretical manual of Nyew SINDA against the number of
recommendations suggested here. Such a scrutiny with our active participation
will pave the way to hybrid all the available techniques in order to arrive at
efficient and accurate techniques for thermal analyses simultaneously reducing
the computational and turn-around times currently being posted.

XX11-47



1.

2.

3.

10.

11.

12.

13.

14.

15.

REFERENCES

Chung, T. J., "Finite Element Analysis in Fluid Dynamics," McGraw Hill
Book Company (1978)

Chung, T. J., "Radiation View Factors by Finite E1ements,“ to appear

_in Journal of Heat Transfer ASME (1982)

Dixon, Sidney, (Moderator), "Panel Discussion - Concerns, Issues, and
Future Directions (In Computational Aspects of Heat Transfer Structures),"
Proceedings of a Symposium held at NASA Langley Research Center, Hampton,
VA, NASA CP 2216, pp.453-486, Nov. 3-5, 1981

Eckert, E., "Bestimmung des Winkelverhaltnisses beim'Strahlungsaustausch
durch das Lichtbild" Z. Ver. deut. Ing. Vol. 79, pp. 1495-6, (1935)

Eckert, E. R. G. and R. M. Drake, Jr., "Heat and Mass Transfer," McGraw
Hi1l Book Company (1959)

Edwards, D. K., "Radiation Heat Transfer Notes," Hemisphere Publishing
Corporation, (1981)

Emery, A. F. and W. W. Carson, "A Modification to the Monte Carlo Method -
The Exodus Method," Transaction of ASME, Journal of Heat Transfer, Vol. 90,
No. 3, pp. 328-332, August 1968

Emery, A. F., H. R. Mortazavi, "A Comparison of the Finite Difference and
Finite Element Methods for Heat Transfer Calculations," Proceedings of a
Symposium on Computational Aspects of Heat Transfer in Structures, Held at

NASA Langley Research Center, Hampton, VA., NASA CP2216, pp. 51-82, Nov. 3-5,

1981

Emery, A. F., H. R. Mortazavi, and C. J. Kippenhan, "Interactive Computation

of Radiation View Factors," Proceedinas of a Symposium on Computational
Aspects of Heat Transfer in Structures, ibid, pp. 221-241, Nov. 3-5, 1981

England, F. and H. 0. Croft, "Radiation Configuration Factors Using Light
in Furnace Models," Transactions of ASME, Vol. 64, pp. 691-702 (1942)

Farrell, R., "Determination of Configuration Factors of Irreqular Shape,"
Journal of Heat Transfer, Trans C., ASME, Vol. 96, pp. 311-313, May 1976

Feingold, A., "Radiation - Interchange Configuration Factors Between
Various Selected Plane Surfaces," Proc. Royal Society of London, Series A
Vol. 292, No. 1428, pp. 51-60 (1966)

Gebhart, B., "Heat Transfer," McGraw Hill Book Company (1961)

Hamilton, D. C., and W. R. Morgan, "Radian Interchange Configuration
Factors," NACA TN 2836 (1952)

germgn, R. A., "Treatise of Geometric Optics," Cambridge University Press,
900

XX1I-48




16.

17.

18.

19.

20.

21,
22.

23.

24,

25.

26.

27.

28.

29.

30.
31.

Hickman, R. S., "Determination of Radiation Configuration Factors,"
Jet Propulsion Laboratory Technical Report No. 32-154, December 1961

Hottel, H. C., "Radiation Heat Transmission Between Surfaces Separated
by Non-Absorbing Media,' Transactions of ASME, Vol. 53, pp. 265-273 (1931)

Hottel, H. C., "Radiant Heat Transmission" in William H. McAdams (ed.),
"Heat Transmission" 3rd Ed., Ch. 4 McGraw Hi11 Book Company (1954)

Hottel, H. C. and A. F. Sarofim, "Radiative Transfer," McGraw Hill Book
Company (1967)

Howell, J. R., "Application of Monte Carlo to Heat Transfer Problems,"
Advances in Heat Transfer, Vol 5, Edited by T. F. Igvine, Jr. and
J. P. Hartnett Academic Press, pp. 1-54 (1968)

Jakob, Max, "Heat Transfer," Vol. II, John Wiley and Sons (1957)

Jokob, Max and G. A. Hawkins, "A Model of Photographic and Photometric
Determination of Heat Radiation Between Surfaces and Through Absorbing
Gases," Journal of Applied Physics, Vol. 13, pp. 246-254 (1942)

Klahr, C. N., "A Monte Carlo Method for the Solution of Ell1iptic Partial
Differential Equations," in Mathematical Methods for Digital Computers,"
Eds. Ralston A. and H. Wilf, John Wiley and Sons (1960)

Modest, M. F., "Three-Dimensional Radiative Exchange Factors for Nongray
Nondiffuse Surfaces," Numerical Heat Transfer, Vol. 1, pp. 403-416 (1978)

Modest, M. F. and S. C. Poon, "Determination of Three-Dimensional Radiative
%xcha?ge Factors for the Space Shuttle by Monte Carlo," ASME Paper 77-HT-49,
1977

Myers, Glen E., "Analytical Methods in Conduction Heat Transfer," McGraw
Hill Book Company (1971)

Noor, Ahmed K., “Survey of Computer Programs for Heat Transfer Analysis,”
Proceeding of a Symposium on Computational Aspects of Heat Transfer in
Structures, Held at NASA Langley Research Center, Hampton, VA, NASA CP2216
pp. 487-561, Nov. 3-5, 1981

Nusselt, Wilhelm, "Graphische Bestimmung des Winkelverhaltnisses bei der
Wamstrahlung," VDI Z., Vol. 72, p. 673 (1928)

Oppenheim, A. K., "Radiation Analysis by the Network Method," Transactions
of ASME, Vol. 78, pp. 725-735 (1956) |

Paschkis, V., Electrotech and Maschinenbau, Vol. 54, p. 617 (1936)

Patterson, W. C., Letters of Communications about NEW SINDA - by J. D. Gaski,
SINDA Industries, Inc., P. 0. Box 8007, Fountain Valley, CA, 92708 (1982)

XXII-49



32.
33.

34.
35.

36.

37.
38.
39.

40.

41.
42.

43.

44.

45.

46,

Sawyer, Patricia, L., "Numerical Procedure to Determine Geometric View
Factors for Surfaces Occluded by Cylinders," NASA TM-78740, Langley
Research Center, Hampton, VA (1978)

Scheps, P. R. and H. R. Howell, "The Effect of Radiation Trappina within
the Sepcular Cavity Formed by the Shuttle Forward Radiator and Payload
Bay Door," ASME Paper 76-ENAS-55 (1976)

Seibert, 0., Archiv fuer Waermewirtschaft, Vol. 9, p. 180 (1928)

SINDA, "Systems Improved Numerical Differencing Analyzer," User's Manual,
Prepared by James P. Smith of TRW for NASA Manned Spacecraft Center, Under
Contract NAS 9-10435, April 1971

Sowell, E. F., "Environmental Radiation from Fluorescent Ceiling Systems,"
PhD Dissertation, University of California, Los Angeles, CA, March 1972

Sowell, E. F. and P. F. 0'Brien, "Efficient Computation of Radiant - Inter-
change Configuration Factors within the Enclosure," Journal of Heat Transfer,
Series C, Trans. of ASME, Vol. 94, pp. 326-328, August 1972

Sparrow, . M., "On the calculation of Radiant Interchange Between Surfaces,"
Moderg Developments in Heat Transfer, Edited by Warren Ibele, Academic Press,
(1963

Sparrow, E. M. and R. D. Cess, "padiation Heat Transfer," Hemisphere Publish-
ing Corp./McGraw Hi11 Book Company (1978)

Toups, K. A., "A General Computer Program for the Determination of Radiant -

Interchange Configuration and Form Factors - CONFAC II,' North American

?viation Inc., Space and Information Systems Division, SID Report 65-1043-2,
1965)

TRASYS, "Thermal Radiation Analysis System," Developed by Martin Marietta
under Contract NAS9-13033, (1973)

TRASYS 11, "Thermal Radiation Analysis System," Users Manual developed under
Contract NAS9-14318 by Martin Marietta, MCR-730105 (Revision 1) August 1977

Turner, L. D., W. R. Humphries, and J. W. Littles, "Effect of Specular O;biter
Forward Radiation on Typical Spacelab Payload Thermal Environment," AIAA-81-
1074, AIAA 10th Thermophysics Conference, Palo Alto, CA, June 23-25, 1981

Vogt, Robert A., "Recent Developments in Thermal Radiation System Analyzer
(TRASYS)," Proceedings of a Symposium on Computational Aspects of Heat
Transfer in Structures, Held at NASA Langley Research Center, Hampoton, VA,
NASA CP2216, pp. 243-251, Nov. 3-5, 1981

Wiebelt, J. A., "Configuration Factors for Radiation Heat Transfer Analysis
when Surfaces Partially Occlude Other Surfaces," AIAA Paper No. 72-304,
AIAA 7th Thermophysics Conference, San Antonio, TX, April 10-12, 1972

Wu, S. T., R. E. Ferguson, and L. L. Altgilbers, "Application of Finite -
Element Techniques to the Interaction of Conduction and Radiation in an
Absorbing, Scattering and Emitting Medium," AIAA-80-1486, 15th Thermophysics
Conference, AIAA, Snowmass. Colorodo, July 14-16, 1980. Also see MSFC/NASA
Report done under Contract NAS8-28097.

XXII-50




APPENDIX

View Factor Calcuations Using TRASYS*:

The computer program TRASYS used in the determination of form (view) factor
utilizies form factor accuracy (FFACC) along with the double summation method.
In order to compare the accuracy of the calculations as well as the computational
time, two standard problems have been selected. One of them is view factor
between aopair of infinite strips having a common edge with included angles of
60° or 90°. The solution to this problem is provided by Hamiiton and Morgan (1952)
and the revised calculated values by Feingold (1966). The other problem is view
factor between a pair of infinitely long parallel cylinders. In order to accom-
modate these problems in the TRASYS program the length of common edge or the
length of the axes had to be finite. Hence, these length dimensions were made . ..
sufficiently large in order to assure two-dimensional character of the problem.

Table A-1 compares the results of TRASYS run for the two rectangular strips
having a common edge with that of results of Feingold. The form factor accuracy,
FFACC = 0.03 has been used for the first six cases. The dimensions of the strips
as well as the angle between them are also shown in the table. The numerical
results of Feingold is available only for the first two cases. The TRASYS values
are higher than Fiengold's results. They should have been a shade less than
Feingold's results because of the end effects on view factors. The differences
are 4.2 and 13.6 percent higher than actual values. Considering that on an average
there is more influence of common edge effect in case 2 compared to case 1, the
trend of departure in the error is to be expected. Table A-1 contains CPU seconds
used in each of these calculations. As the angle between the strips decreases it
is expected that CPU seconds will increase and the departure from true values will
also increase. The cases selected did not provide a direct comparison to demon-
strate the above conclusion.

The results of the test cases 3-1 through 6-1 shown in Table A-1 are for
FFACC 0-05. As to be expected the view factor calculation with FFACC = 0.05 will
consider larger minimum element size than that with FFACC = 0.03. The trend in

the larger view factor seems to be expected recognizing greater error associated with

higher value of FFACC. There has been considerable reduction in CPU time with
larger FFACC which is to be expected. : :

Examination of view factors for the test cases 3 through 6 indicates that
they are too high and the test case 4 posting a view factor greater than unity .
This is impossible. The choice of parameters for these cases did not permit
direct comparison with Feingold's results. It is expected that these view factors
to be less than 0.67. Hence this comparative study is inconclusive.

e —
The supporting computational work was provided by Ms. Kathy Upshaw, Life Support
and Environmental Branch, Engireering Analysis Division, Structures and Propulsion

Laboratory, Marshall Space Flignt Center, NASA.
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*TABLE A-1:

View Factors Between Two Rectangular Strips having a Common Edge.

Test Area Area Angle of  Form CPU Feingold Differ-
Case A1 A2 Contact Factor Secs Results ence
Deg. Form Percent
Factor

1 6 x 300 60 x 300 90 0.4858 2.026 0.4662 4.2

2 6 x 300 15 x 300 90 0.4534 2.151 0.3991 13.6

3 3 x 300 6 x 300 60 0.8155 11.0 - -

4 1.2 x 120 6 x 120 60 1.1947 1.9 - -

5 0.3 x 300 6 x 300 60 0.9492 4.54 - -

6 0.3 x 120 6 x 120 60 0.9449 1.46 - -

3A 0.8647 4.93

4A 1.206 1.74

5A 0.9493 4.54

6A 0.9453 0.935

* FFACC = 0.03 for Test Cases 1 through 6 and

FFACC = 0.05 for Test Cases 3A through 6A.
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Table A-2 compares the results of TRASYS run for the two cylinders having
parallel axes with that of the values evaluated using the equation based ¢n
Hottel's crossed-string method. In this report, the solutions are represented
by Eq. 23 for the case of cylinders of equal radii and Eq. 24 is for the cylinders
having unequal radii. In Eq. 24

brea-8. 4= avs, o« =i (AR

_ 1 R-R

and B= sin® — and R; > Rp and C in the distance between the two
centers. .

Agreement between the TRASYS and Hottel's methods for the case of parallel
cylinders is not at all satisfactory. For the same value of FFACC as the cylinder
moved apart the TRASYS program is supposed to permit use of coarser grid and con-
sequently smaller values of CPU seconds. That trend seems to be true for unequal
cylinders but not for equal cylinders. Another group of comparative cases that
can be considered are semi-cylinders with the curved portions facing each other.
Here the view factor between the curved portion of the smaller semi-cylinder to
the curved portion of the larger semi-cylinder should be slightly smaller than the
corresponding full cylinders. It should be possible to evaluate the view factors
when the two cylinders share a common line contact.

Hottel's crossed-string method permits easy derivation of equations for the
exact values of view factors for a number of two dimensional cases. Each one of
them could be test cases for TRASYS program. These examples could cover occluded
surfaces for which the derivations are possible. Hence, it is possible to con-
struct a number of test cases for TRASYS program and study systematically the
effect FFACC and CPU time used in converging on correct answers as provided by
the closed form solutions. Such a study will enhance the efficient use of

TRASYS program and through understanding of the future modifications that are
in the wings.

*TABLE A-2: View Factors Between Two Cylinders having their Axes Parallel

Center TRASYS Hottel's Crossed -

Test Radii Distance Form CPU String Method
Case R1 R2 C Factor Secs Form Factor

1 11 4 0.3192 9.263 0.16275

2 1 1 6 0.2108 12.683 0.10712

3 2 1 8 0.155 9.094 0.04033

4 2 1 12 0.103 7.390 0.02668

5 5.1 30 0.1854 3.184 0.01304

* FFACC = 0.05 in all these Cases.
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