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FINITE ELEMENT ANALYSIS OF
A DEPLOYABLE SPACE STRUCTURE

BY

David V. Hutton, Ph.D.
Assistant Professor of

Mechanical Engineering
Washington State University
Pullman, Washington 99164-2920

ABSTRACT

Development of a large-scale Space Station will require similarly large
structural elements capable of assembly, fabrication, or deployment in space.
Weight and volume constraints of the Space Shuttle orbiter payload bay make
deployable structures with minimum on-orbit assembly requirements the favored
alternative.

Current deployable structure concepts involve folding, three-dlmensional
trusses with automated deployment/retraction systems and having high deployed-
to-stowed volume ratios. Such designs employ a large number of pin joints
to allow the rotational motion required for deployability.

To assess the dynamic characteristics of a deployable space truss, a
finite element model of the Scientific Applications Space Platform (SASP)
truss has been formulated. The model incorporates all additional degrees
of freedom associated with the pin-jointed members. Comparison of results
with SPAR models of the truss show that the joints of the deployable truss
significantly affect the vibrational modes of the structure only if the truss
is relatively short.
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INTRODUCTION

The Scientific Applications Space Platform (SASP} Truss is a deployable
three-dimensional structure designed to be a building-block element in large
space structures. The basic design unit of the SASP truss is a folding cell
composed of two bays. When fully deployed each bay has the overall dimen-
sions of a 1.4 meter cube. Theoretically, any number of cells can be joined
end to end to create a deployable structure of any length. Alternatively,
several independent trusses could be joined to create a composite platform
in a variety of configurations such as a "T" shape, for example.

The Structural Assembly Demonstration Experiment (SADE), tentatively
assigned to STS 28, includes the objectives of demonstrating shuttle capac-
ity to build a large space structure on-orbit and validating truss design
including deployment, assembly, and connectors. As an integral part of
three of the five options under consideration for SADE (Figure I), detailed
analysis and testing of the dynamic characteristics of the SASP truss are
required. For testing deployment characteristics, the SASP ground test
platform (Figure 2) has been fabricated and deployment testing is currently
underway. In addition, a mathematical model of deployment was developed by
Stoll Ill.

As the relatively low natural frequencies of vibration expected of such
large structures could affect shuttle control, analysis of the modal char-
acteristics of the various SADE options is needed. Subsequent articles of
this report describe such an analysis for the SASP truss for several con-
figurations using two different mathematical models.

THE SASP STRUCTURE

When retracted, the SASP truss resembles a tightly folded accordion
with the longitudinal (longeron), diagonal, and transverse members aligned
as depicted in Figure 3a. Deployability of the truss is made possible by
the telescoping design of the main diagonals and the free rotational motion
of certain of the structural members at the joints. In the retraction
positions, the length of the telescoping diagonal members is approximately
2.6 meters (104 inches). A deployment cable is strung through the diagonals
in sequence and passes across pulleys located at the folding joints and is
rigidly attached to the terminal bay of the truss. For depoyment, the
cable is reeled in via a motor located at the fixed end of the truss. This
action produces shortening and rotation of the telescoping diagonals as in
Figure 3b. Simultaneously, the longerons rotate about pin connections
(effectively) at each joint, and the transverse members execute pure trans-
lation in following the joint motion. In the fully deployed position, a
locking mechanism on the telescoping diagonals is mechanically actuated,
thus preventing further motion and locking each bay into its three dimen-
sional truss configuration.
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The SASP deployment mechanism is a single-fold concept. Telescoping
and rotation of structural members occur in a single coordinate plane
(actually in two parallel planes). In the two perpendicular planes, the
truss configuration remains the same whether retracted or deployed. In
these planes, frames designed for payload attachment can be substituted
for truss members as suggested by Figure 2.

Excepting the longerons, Which are open cross sections designed for
nesting, the structural members are 2-inch outside diameter 6061 aluminum
tubing having wall thickness of 0.072 inches. Joint fittings, payload
carrier frames, and cable trays are of the same aluminum alloy. Each
two-bay cell is composed of 26 members. Without payload carriers and
accounting for end closure, the ten bay, five cell truss is composed of
135 structural members.

PRELIMINARY ANALYSIS

Initially, several models of the SASP truss were formulated and anal-
ed using the Structural Performance Analysis and Redesign (SPAR) system
]. SPAR is a set of computer programs written for general structural

analysis using the finite element method. The SPAR programs (referred
to as processors) utilize sparse matrix techniques [3] which provide high
computational speed and the capability of analyzing very large structures.
Finite elements available include bar, beam, plate, shell, solid, and
zero-length pure-stiffness elements. However, for analysis of a deployable
structure such as the SASP truss, the SPAR system provides no reasonable
means for directly modeling the many pin-jointed members. To illustrate
this contention, the SPAR models of the SASP truss will be discussed
briefly.

The most common approach in modeling planar truss structures is to
treat the individual members as bar elements which have axial stiffness
only. Effectively, this approach models all structural joints as pin
connections since bending and torsion are not supported by the stiffness
formulation for bar elements. Consequently, joint rotations are not al-
lowed. For structures loaded symmetrically in the plane of the major
load supporting framework, the bar formulation is generally adequate.
In the case of the SASP truss, several shortcomings of bar-element model-
ing are apparent. In this analysis, we seek the natural frequencies
(particularly the fundamental frequency) and mode shapes of forced vibra-
tions of the truss in a cantilever configuration. It is not known a priori
that the inertial loading associated with free vibration will occur in a
plane or planes parallel to a major structural plane of the truss. In
fact, considering the structural complexity of the truss, the likelihood
of this occurrence is thought to be remote. The other objections to bar
elements are rather obvious: all stiffness and inertia terms associated
with bending, torsion and shear are ignored in the formulation.

Another possible approach is to model each structural member as a
three-dimensional beam element. In this formulation, all stiffness
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and inertia terms arising from bending and shear in the principal planes
are included as are those associated with torsion. For beam-element

modeling, all elements connected to a common joint have identical dis-

placements at the joint location. In the case of the SASP truss, the

major joints connect eight structural members. Only two of the members

are affixed so as to have displacement identical to those of the joint.

Each of the other six has an additional, independent degree of freedom
allowed by a pin connection at the joint. A similar situation exists at

the smaller joints as well. Thus, straightforward beam-element modeling

may result in overspecified stiffness and could give vibrational frequen-

cies which are too large. It may be possible, using SPAR's zero-length,

stiffness-only element capability, to produce joint models which more

adequately simulate the actual joint construction of the deployable truss.

This possibility was given a cursory examination but not pursued in-depth

as it appeared to require an excessively large number of joints.

Although several objections to SPAR models of the SASP truss have

been delineated above, computer runs using such models have been obtained.

These results will be used for comparison with those of a SASP-unique
model to be discussed in the next article.

SASP FINITE ELEMENT MODEL

In order to capture, as accurately as possible, the modal vibration

characteristics of the SASP truss, a finite element model of the structure

has been developed from scratch. Hereafter referred to as SFEM, this model

formulation incorporates all additional degrees of freedom associated with

the many pin joints in the structure.

In SFEM, each structural member of the SASP truss is treated as a

three-dimensional beam element, as in Figure 4. With each element is
associated an element reference frame xyz as shown, and the stiffness and

inertia properties of the element are defined in terms of this frame.

Generalized displacements uI through Ul2 represent the three displacements
and three rotations of each-end of the beam. The element reference frame is

assumed to be oriented such that bending is referred to the principal planes

of bending.

The stiffness and inertia properties of the beam element are obtained

by considering the potential and kinetic energies of the element in con-

junction with sh__hapefunctions S(x) which describe the displacement of any
point x along the be_ _-ni-e-rmsof the displacements at the end of the beam.

For axial displacement, for example, we write

(1)

where the shape functions (also known as assumed modes) must satisfy the

boundary conditions
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(2)

in order to satisfy u (o,t) = up(t) and u (L,t) = u7 (t). The ap-

propriate shape functions are Sl(X) =l -x/Land S7 (x) = x/L
which are drawn from the soluti6n for axial displacement under static

loading. The elastic potential energy of the bar is
%,

V - IoEA ax
Using u (x,t) as in (1) the potential energy can be shown to be equiv-
alent to

(3)

(4)

where the stiffness coefficients Kij are defined by

" EA S[ ax

Similar consideration of kinetic energy
L

will lead to definition of the inertia coefficients as

(5)

(6)

(7)

If we next consider transverse bending of the beam, we will obtain

stiffness and inertia coefficients associated with u 2, u6, u8, Ul2

for bending in the xy plane and with u 3, u 5, u 9 and Ull for bending

in the xz plane. Finally, considering torsional displacements will produce

the coefficients associated with u 4 and u 10" The specific formulation

used here is that of Craig [4] and is based on Bernoulli-Euler beam theory.

The resulting element stiffness and mass matrices are as given in Figure 5.

The mass matrix so developed is known as the consistent mass matrix since

it is based on the same shape functions as the stiffness matrix.

Using the beam elements, the structure is defined by joining the ends

of the beams at the appropriate joints and deriving system equations of

motion which describe the joint displacements. As an intermediate step in

this process, the element stiffness and mass matrices (described in the

element reference frame) must be transformed to a common reference frame

in which joint displacements will be measured. The latter is known as

the Global Reference Frame. This is a straightforward procedure as it in-

volves only a rotation of coordinates defined by a 3 by 3 matrix of direc-

tion cosines which will be denoted [T:]. If the element displacements
in the global system are represented by _, i = l, 12, the transformation
is given by

(8)
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where [T'_ is the 12 by 12 transformation matrix given by

IT] •

"T: O O O"

O T_. 0 0

0 0 T= 0

o o o T _j

{9)

The total elastic energy of a beam element can be written in matrix
notation as

v --- [,.,.1" (10)

where [k] is the 12 by 12 element stiffness matrix, [u] is the row vector
of element displacements and Iu'_ "r is the transpose of [u] Formal sub-
stitution of eq. (8) into eq. (I0) shows that the element stiffness matrix
in the global reference system is given by

tRI = [%'[KItTI
An identical procedure using kinetic energy gives the transformed mass
matrix as

(II)

(12)

As a brief respite from the derivation, we note that the SASP truss
is composed of members corresponding to five sets of structural and inertia
properties. Thus five sets of stiffness and mass matrices are required.
The truss includes eight different element orientations so that eight

transformation matrices _Tc]are used in the model.

Having transformed individual element matrices to a common frame of
reference, displacement compatibility relations are applied at each joint
in the structure to obtain the _stiffness and mass matrices. The
procedure used here is known as the direct stiffness method. To obtain

the displacement relations we let{U_ be the column vector of system dis-
placement coordinates, and define, for each element, a locator (or label)

matrix [L¢Isuch that

where {_} is the vector of element displacements in the global frame.
Equation (13) does nothing more than assign each of the twelve element

displacements a particular system displacement. The locator matrix is

composed strictly of zeroes and ones in twelve rows and N columns where
N is the total number of system displacements (i.e. degrees of freedom).

XX-13



Normally the vector of system displacements is composedof the six
coordinate displacements (three translations, three rotations) at each
joint. For the SFEMthis is not the case as additional rotational degrees
of freedom are allowed by the pin joints. To include these in the model,
the method proposed by Winfrey [5] for analysis of elastic deformation
in mechanismsis used. This will be discussed with reference to Figure 6
which is an XGYGplane view of one of the major joints of the truss. In
this plane, tile joint displacements are UI, U2' and U6 corresponding
to translation along global axes XG and YG' and rotation about ZG, re-
spectively. Of the structural membersshown, only element 3 is attached
such that its displacements are the sameas those of the joints. Each of
elements I, 2, 4 and 5 are free to rotate about the pin connections at
the joint although the translation displacements are the sameas the joint.
In this example joint then, there arise four additional degrees of freedom
corresponding to U7 through UI0 as shown. Extending this procedure
we find that a SASPtruss with M bays has 24(M + I) system coordinates
associated with "standard" joint displacements and 40M+ 4 system coor-
dinates corresponding to the "extra" degrees of freedom.

Having defined the system coordinates as discussed above, final
"assembly" of the system equations of motion is possible. The system
potential energy can be expressed as

where the summationis over the numberof elements in the system.
of system coordinates, equation (13) is used to obtain

N

v- [u.1"[at<[u l lul
which is equivalent to

The summation term in eq. (16) is the assembled system stiffness matrix
IN] such that

(14)

In terms

(15)

(16)

(17)

Similarly it can be shown that the system consistent mass matrix is given by
N -1.

in terms of which the kinetic energy is
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By using eqs. (17) and (19) we obtain the system equations of motion in
the matrix form

I:: 1 • [K1 o (20)

Equation 120) results from application of Hamilton's principle or by form-
ing the Lagrangian and differentiating. Solution of the Eigenvalue problem
represented by (20) will yield the natural frequencies and mode shapes of
free vibrations of the truss structure.

DISCUSSION OF RESULTS

For simplicity, the SFEM was first applied to a single-cell, two-bay
truss composed of 31 elements and constrained in a cantilever configuration.
The resulting structural model has 92 active degrees of freedom after elim-
inating 24 displacements via the constraint conditions. Computer programs
were written to sequentially calculate the element stiffness and mass mat-
rices, transform the matrices to the global coordinate system, and assemble
the system_matrices, qAs pointed out by Craig, the matrix multiplications
involving [_'_and ILia'do nothing more than locate terms from the element
matrices into the proper row and column of the corresponding system matrix.
To accomplish this and avoid a great number of matrix multiplications in-
volving mostly zeroes, a locator vector was used for each element. This
vector contains simply the row-column data relating element matrix to
system matrix.

After assembly of the system matrices, the Eigenvalue problem was
solved using the FORMA [6]matrix subroutine package. The results of the
first SFEM run gave the fundamental frequency of the two-bay SASP truss
as 27.9 Hz. For comparison, a SPAR model of the two-bay truss, using
identical elements, resulted in a fundamental frequency of 50.6 Hz. This
apparently significant difference in results was not accepted without con-
siderable double checking of the model formulation and the computer program.
By eliminating the "extra" degrees of freedom, the SFEM programs should pro-
duce the same results as SPAR. When this was done, the first six natural
frequencies of the two models were found to differ by less than one percent.
On this basis, the accuracy of SFEM was established.

Extending SFEM to the full size ten-bay truss required considerable
rework of the computer programs. The ten-bay truss is composed of 135
structural members which leads to 444 degrees of freedom for the model.
The huge matrices involved with a model of this magnitude are not amenable
to routine manipulation as the computer time and storage requirements are
astronomical. To assuage these difficulties, all matrix operations were
converted to partition logic to eliminate storage and manipulation of
vast number of zero terms. This conversion was readily accomplished since
NASA's ZFORMA subroutine package could be used directly. These routines
partition all matrices into 60 by 60 (maximum) submatrices for both stor-
age and algebraic manipulation. Using subroutine ZMODEI to solve the
Eigenvalue problem, the two lowest natural frequencies of the ten-bay
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truss were determined _n about eight minutes of actual computer time.
The fundamental frequency so determined is 4.6 Hz while the second

frequency is 5.4 Hz. Again for comparison, results from a ten-bay

model using the SPAR system were obtained. To the surprise of the

investigator, the frequencies from the SPAR model were substantially

identical. Having learned years ago to believe and disbelieve simul-

taneously, the investigator again proceeded to check and double check.

The partition-logic programs were reduced to the two-bay model to de-
tect software errors which could have arisen in conversion. The results

were identical to those previously obtained. On this basis, the ten-bay
results were accepted as correct also.

Based on the contradictory comparisons of two-bay and ten-bay truss
models using SFEM and SPAR, the programs for each model were run for

four-, six-, and eight-bay truss configurations. The results of these

runs, as shown by Figure 7, show that the fundamental frequencies given

by the two models are convergent with respect to overall truss length.
Since the major difference in SFEM and the SPAR model lies in the ef-

fective rotational stiffness of the joints, this phenomena can only be

explained by surmising that the effects of joint rotations are reduced

with increasing truss length not unlike the decreasing significance
of transverse shear versus length of a beam.

Per the request of R. E. Jewell (MSFC/ED21), fundamental frequencies

of the SASP structure were obtained for truss lengths up to 50 bays
(230 feet) and for the ten-bay truss with concentrated mass at one end.

In each of these additional cases the cantilever constraint was retained

so the length cases apply to SADE Options Ill and IlIA while the tip mass

cases are applicable to Option IA. Fundamental frequency versus truss

length as given by SPAR models is shown in Figure 8a. The results of

frequency as a function of tip mass are as in Figure 8b. The latter

results were again in agreement from both SFEM and SPAR.

CONCLUSIONS AND RECOMMENDATIONS

A detailed finite element analysis of the SASP deployable truss has

shown that the fundamental frequencies of vibration are not significantly

affected by the extra degrees of freedom associated with the many pin-

pointed members except for short overall truss lengths. This leads to

the conclusion that simplified models utilizing the SPAR system can be
used to adequately assess the dynamic characteristics of the structure

for the configurations being considered for SADE.

As additional deployable truss designs evolve or composite platform
configurations using SASP are considered, it is recommended that similar

analyses be conducted to insure accuracy of simplified models. Detailed

modeling similar to SFEM may be required if, in the latter case, a plat-

form concept includes short truss sections to connect payloads for example.
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