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SUMMARY

Coefficients are derived for equations expressing the lateral force and pitching

moments associated with both planar translation and angular perturbations from a nom-

inally centered rotating shaft with respect to a stationary seal.

The coefficients for the lowest order and first derivative terms emerge as being

significant and are of approximately the same order of magnitude as the fundamental

coefficients derived by means of Black's equations. Second derivative, shear pertur-

bation, and entrance coefficient _,ariation effects are adjudged to be small.

The outcome of the investigation delineated in this report defines the coeffi-

cients of the equations:

T = Ae + B_ + C_ + D_ + E_ + F_
(i)

= ae + be + c_ + d_ + ed + f_

The assumptions utilized, mathematical means employed, and conclusions derived

thereby will be the objective of this report.

The effects of the additional terms upon a typical rotordynamic system are

presented.

INTRODUCTION

The factors leading to increasing pressures, speeds, and temperatures in jet

engines, high performance pumps, and turbomachinery for rocket engine applications

have been widely noted in the literature, e.g., Rothe (ref. I).

The increased incidence of stability problems as a function of increased power

density, particularly the phenomenon of "subsynchronous whirl_' has been noted by many

authors.

Among the design features strongly contributing to this phenomenon in a wide var-

iety of high-powered turbomachinery are annular shaft seals. These seals are in gen-

eral utilized to separate regions of high and low gas or liquid pressure. In addition

to their strong effects as pseudo bearings and destabilizing devices, they offer, when
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properly configured, in manydesigns the only real possibility for the introduction of
damping in rotating systems. Various authors have delineated the extent of both the
problems and remedies surrounding these possibilities; for example, Afford (ref. 2),
Ek (ref. 3), Childs (ref. 4), and Gunter (ref. 5).

A very significant part of the understanding of the dynamic behavior of annular
smooth shaft seals has comefrom the pioneering work of Henry Black of Heriott Watt
University, Edinburgh, United Kingdom, who in a series of papers (refs. 6-12) defined
the effect of shaft displacements with both long and short seal assumptions up to and
including the second derivative of the displacement. A numberof workers have ex-
tended his work significantly, these being Jensen (refs. 7 and 8), Hirs (ref. 13),
Childs (ref. 4), and Alliare (refs. 5 and 14). The recent trend is to shift to a mod-
ification of the bulk flow theory to define more closely a set of equations approxi-
mating experimental results [Hirs (ref. 13)].

Onmanysignificant recent problems, e.g., the problem on the high-speed rota-
ting machinery for the Space Shuttle Main Engine (SSME)[Ek (ref. 3)], Black's equa-

tions were the only analytical representa-

tion available for significant computer

modeling. Present efforts to extend this

work include continuing work by Allaire

(ref. 14) at the University of Virginia,

Childs (ref. 4) at Texas A&M, and Fleming

(ref. 12) of NASA Lewis, as well as exper-

imental work with liquid oxygen and hydro-

gen at the Rocketdyne Division of Rockwell

International.

This study represents a departure

from the general approach being carried

on by other investigators in that it ex-
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Figure I. - Orientation of references

axes for seal equations.

plores the effect of pitching moments and angulation in the seal, as shown schemati-

cally in Fig. i.

NOMENCLATURE

The nomenclature in general is that employed by Black (ref. 6) and specific

nomenclature is introduced as comments in the body of the nomenclature table, in the

figures, or presented below. Additional functions are delineated in the text as

required.

A-F } =a-f

b --

D

=

m

coefficients in force equations

gap thickness, y(x,t), inches

d/dt, differential operation

with regard to time

shaft elastic modulus

force on seal, total due to

perturbations

shaft area moment of inertia, m 4

(in. 4 )

effective bearing spring rate,

N/m (ib/in.)

F = force on seal, n is defined in the
n

text

H = PR_O/6%(I+_+20), general coeffi-

cient for moment and force equa-

tions _ = 0.5

H I = PR_L/%y

0 = @F/@g, N/m 3 (ib/in. 3)

v = kinematic viscosity, m2/s

(in.2/sec)
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n

=

N =

p =

p

R

R =
a

R =
r

T =

t =

U ----

V

W

x

y,z

=

y =

6 =

=

length of seal, m (in.)

component spacing on rotor, m (in.)

speed of rotation, rpm

total pressure difference across

seal, Pa (ib/in. 2)

pressure within passage, p(x,t),

Pa (ib/in. 2)

shaft radius, m (in.)

axial Reynolds No. 2Vyo/_

rotating Reynolds No. R_yo/_

passage time, L/V, seconds

time, variable, seconds

axial fluid velocity, u(x,t), m/s

(in./sec)

= mean fluid velocity, m/s (in./sec)

= weight of rotor, kg (Ib)

= axial distance, independent

variable, m (in.)

radial displacement of rotor mass

angular displacement

1.5 + 20, _ = 0.5

weight density, kg/m 3 (ib/m 3)

lateral displacement, Y(t), m (in.)

X

_jk =

O

T

o

X

60

g

= friction coefficient, Ap =----
kL V 2

r 2g'
n

area b
r =
n wetted perimeter,2

= 0.079 R i +
a 8 a

loss factor per Yamada (ref. 15)

functions of a, coefficients for

the perturbation terms

absolute viscosity, Pa-s (ibf-

sec/in.2)

= entry loss coefficient = 0.5

nominally

= mass density, _, kg-s2/m 4 (ib-
sec2/in. 4)

= _L/yo

= pitching moment taken about

L

x = _, N-m (ib-in.)

= pitching moment at x = 0, N-m

(ib-in.)

= _F/_, N/rad (Ib/rad)

= 3T/_c, N (in.-ib/in.)

= _T/_, N-m (in.-Ib/rad)

= circular frequency, rad/sec

= design speed, rad/sec

ASSUMPTIONS

In the following equations, assumptions are m_de as follows:

I. The system (shaft within seal) is assumed to be centered.

2. Perturbations about the nominal centered position are small.

3. Whenever two second order terms are multiplied, they are assumed to be higher

order, i.e., the product approaches zero.

4. Short seal theory is assumed, i.e., perturbations have negligible effect in

the tangential direction.

The period of time required for a particle of fluid to travel from the inlet

to the discharge is small compared to the frequency of the system.

6. There is no change of properties in the working fluid as it passes through

the process.

7. The entrance coefficient into the seal is assumed to be 0.5.

.
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ii.

The effect of fluid shear variation on the shaft moment is neglected in the

fundamental equations.

Total linearity is assumed, i.e., any of the effects can be added individ-

ually with no interdependence between individual effects.

Tangential fluid velocity equal to one-half the shaft tangential velocity is

developed immediately at the seal entrance.

Perturbations are planar; however, Yamada's (ref. 15) work in defining

for rotating shaft effects applies.

APPROACH

The process of deriving the fundamental equations departs from that used by Black

(ref. 6) in three important respects: (i) clearance is expressed as a function of

both x and _, (2) the equations for continuity and velocity are completely rewritten

as a consequence of (i), and (3) the order of integration is reversed. In addition,

the first derivations lead to a result in which all perturbations, moments, and

forces are taken at x = O. This is done because of great simplification of the

boundary conditions. These are then translated to perturbations about x = L/2, and in

the case of the moments, T o is translated to T]L/2. Explanations of each step and
necessary symbol derivations occur as needed in the text.

DERIVATION OF FUNDAMENTAL EQUATIONS

We first consider two plates of length

L and unit width, nominally y in. apart,

with the top plate fixed, the bottom plate

perturbed: perturbations are positive up-

ward and counterclockwise, as are forces

and moments. Flow is positive to the right

(Fig. 2). No fluid moves tangentially or

normal to the surfaces of the plates.

The steady-stat_pressure distribu-

tion through the f]g_ process is reflected equations.

by the following relationships:

V 2

P = Pl - P2 = p(l.5 + 2_) 2

1.5 pV 2
Pl - Po = 2

V

T I _ _v+

|_---- x b "P2

p. |l_p ° _-_-u DRAIN

' YoJ'-

SOURCE __Z7_I///__"_" _

ill
I

!= L

Figure 2. Derivation of fundamental

(2)

(3)

The fundamental equation for head loss through the flow process is

2
_h _ u

(_ b g

(4)

From the Navier-Stokes equations for unsteady flow,

lap _u au
-
%u 2

b (5)
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If a control volume of length dx, and boundedby the two plates, is now considered,
the plates can be thought of as perturbed streamlines. The general continuity equa-
tion for an unsteady stream tube of fixed length ds is

_(p_) _ ÷
_t + _s (pu. _) : 0 (6)

-9- -9-
Since 0 = constant, = b, u A = ub, s = x,

or

Now, approximately

__<_+ _(ub) = 0 (7)
3t _x

_u _b Bb

b_+U_x+_7 =0 (8)

_u _ _ x

--=--u+--+--& 1

_x Yo Yo Yo

or (9)

_u _ _ + x&
11 =

_x Yo Yo

and U(t) = V + v(t),

2)i / x V_x

u =-- _x + d + V + v +Yo T Yo

(i0)

Higher order terms (IIOT) are dropped.

conditions:

and

Now, integrate and set the following boundary

1.5 P(V 2 + 2Vo)
at x = 0, p = Po Pl 2

at x = L, P = P2

i 2V_ x Vx _Vx 2

- _ p = _ +--Vyo x +--_+2Yo --+Yo

3 (Vx 2 )

lV2x x _Vx 3

+TE+--_+ + &
Yo 6Yo \ Yo _3y°

(V2x 3 XV2x 2 ) %V 2
+\Y-£-o + 2 2 c_ + x + c(t)

Yo Yo

(ii)

Therefore

c(t) -
Pl

Po

+'_P(v 2 + 2Vv)
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But

V 2

Pl - P2 = P = p(l.5 + 20) _--

[v ] iv 1
0 = v + _ (1.5 + 2_)v + _ _ + _ 2(1 + g)_ + _ 2ge

L(Y [ V V 2 ]+ _-_ _ + _ 2(3 + (Y)& + _ 3(2 + 30)a

(12)

If now, p = Psteady + Ap(t), then Eq. (ii) becomes

A_p_ "$ + 2 VX x Vx- = --v x+--_+ --+

P Yo 2Yo Yo Yo ]

x3 ( )+  vx2
Yo 6Y° Yo 3Yo

(13)

+(__V2x + 3 XV2x 2 1
\Yo 2 2 / ot + 1.5 Vv

Yo

DERIVATION AND SUMMARY OF FORCE AND PITCHING

MOMENT EQUATIONS

The symbolism and form of the equations for a shaft is:

T = AE + B_ + C_ + Dot + Edt + F[i

= a_ + b_ + c_ + dot + e_ + f_
(14)

The fundamental assumption of linear independence and superposition is made, i.e.;

F1 = aE + b@ + c_

F2 = dot + e_ + f_

T1 = Ae + B_ + C_

T 2 = Dot + E_ + F_

= F 1 + F2 , T = T 1 + T 2

In the above, all displacements, moments, and forces are taken about x = L/2. How-

ever, the first solutions will be taken about x = 0, and the results transferred to

x = L/2. The subscript convention at x = 0 will be

(15)

F ° = F10 + F20 , T O = T10 + T20 (16)
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For the cases about x = 0, certain simplifying parameters will be defined: the re-
sulting form of the equations will be:

FI0 = a E + b _ + c _ = H + T_ + T2_) (17)o o o (_i0 e DII _12

F20 = do_ + eo& + fo_ = H (_20_ + _21 T_ + _22 T2_) (18)

= A e + B _ + C £ = HI + T_ + T2_)TI0 o o o (_30_ _31 _32 (19)

T20 = D_ + E_ + F_ = HI (_40e + _41T_ + _42 T2_) (20)

where T = L/V, and H, HI, and _j,k will be defined as part of the derivation.

FORCE AND PITCHING MOMENT EQUATIONS FOR A SHAFT

The definition of pressure perturbations seen in Eq. (13) is for two plates of

unit width. Utilizing these, the following force and pitching equations can be writ-

ten by integrating around a perturbed shaft as in Fig. I. For example,

,o I(R_D =f Ap dx -- - + +--_--o ]_-- +-- e + -- +--o 6Yo 2Yo 3Yo

+ %V2L 2 L4_ __ %VL 4
£ + 24y ° + ( VL3

2y O -- 3y O + l-_Yo) _

•V2L 2 %V2L 3 )

+ _)_ + 1.5 VvL
(21)

V2L 2 [ L 2 L

and similarly,

(20 + 3)vl + V2LIL2 L6y-7 7_ +_ (3

+ 2_)_ + 12(1 +0")0_] t

11

o = VL 2 8L O 8o"
R_O - -3-- {T + 2Uv + (1"5)2v +-_-- £ + V-- + 4 £ + S c

3o---i-_ +-V- +_ a + 30 + ___o

(22)

(23)

After eliminating v, v between these equations (23-24) and (12-13), the forces and

torques can be defined. This is done piece-wise_ then finally superposed.
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FORCE DUE TO LATERAL DISPLACEMENTS

This will be expressed in the form

FI0 = aoE + bo _ + Co _" = H (_i0 g + DI I T@ + _12 T2_) (24)

From Eq. (12), the equation expressing v,0 as a function of E, _, _, is, with

(a, _, _ = 0)

iv i v j0 = 0 + _ (1.5 + 20)v + _ g + _ 2(1 + 0)_ + 2Og

This can be expressed as

(25)

0 = [TD + y]v +- --
V O

L 2%
[T2D 2 + 2(1 + o)TD + 2o]e (26)

Now, from Eq. (19), with _, _, _ = 0

R_0 2 [TD + (20 + 3)]v + V2L [T2D + (3 + 2o) TD + 3 ]eI i
Eliminating v, _" between these two equations (26-27) with TD << y, eliminating

(TD) of third and higher power,

(27)

where

H
O_RP

6%y

FI0 = H {_i0 _ + BII T_ + B22

, y = (1.5 + 20)

T2_} (28)

9o

_i0 y

(9 + 12o + 4_ 2) % - 9_

_11 = 2
Y

(8o 3 + 18o 2 + 18o)

_12 = 3
Y

This agrees with Black (ref. 6) except that in DI2, Black has 190; 180 is correct.

FORCE DUE TO AN ANGULAR PERTURBATION

This will be expressed in the form

F20 = H (_20 _ + _21 T_ + _22 T2_) (29)
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Proceeding as before,

PR_O

H = 6Xy , _ 1.5 + 2o

3L(202 + 60 + 3)

V20 = y

U21

L
= -_ [_{(202 + 11.50 + 12) - (602 + 180 + 9)]

Y

_22
= L__ [¥2(4.25 + 20) - y(202 + Ii 50 + 12) + (602 + 180 + 9)]

3
T

PITCHING MOMENT DUE TO A TRANSLATION

The pitching moment due to a translation will be expressed in the form

_i0 = Aoe + Bo £ + Co _ = HI (_30 e + ]/31 T_ + ]/32 T2_)

The equation expressing the boundary condition is (26)

V O

0 = [TD+y]v +_ 2--_
[T2D 2 + 2(1 +_)TD + 2o]e

From Eq. (21), _, _, _ = 0,

TIO I VL2
R--_ = - -3-- (TD + 20 + 1.52)v

+ g _ T2D 2 O 80

Eliminating v,v, as before,

TI0 = HI (_30 _ + _31 T_ + _32 T2_)

where

H I R_OL_____PP
= %y , y = 1.5 + 2_

o

]/30 = 2-y

i IO2 30 i I O
U31 = _ _- + _-- + _ 2y 2

H32 - y 3 + - --2 + 4-- + 2 +--
y 2y 3

(30)

(31)

(32)

(33)
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The above pitching momentis about x = 0.

TORQUE DUE TO AN ANGULAR PERTURBATION

After proceeding as before, Eq. (20) is expressed in the form

where

H = --

_40 = --

T20 = HI (_40 a + B41 Td + B42 T2_)

PR_OL

L 2
[22.5o 2 + 50.670 + 22.5]

45y

(34)

_41 = --

L2

2
45y

[ ¥(802 + 39.750 + 33.75) - (22.502 + 50.67o + 22.5)]

_42

L 2

3 [8o + 14.25)y 2 - Y(8o 2 + 39.750 + 33.75)
45y

+ (22.5o 2 + 50.670 + 22.5)]

TRANSLATION OF EQUATIONS TO x = L/2

The translation of the solutions for perturbations about x = L/2 can now be

written. These involve the a terms only. An x rotation at _ = L/2, can be con-

sidered as the sum of an a perturbation at x = 0 plus a displacement of -_ L , so

that at L/2 there is a pure a perturbation. 2

F2 = F20
/_( L_ = d (_ + e d + f _ _ a L L . L ..

- FIO _ -2] o o o o 2-c_ - bo 2 (l - Co 2 (_

and

L - b a = f - c c_ (35)
= - ao _ + eo o o o

T20 = (DO _ AO 2)I + (EO _ BO L)_ + (FO _ CO 2) _ (36)

These are both for _ rotated at x = 1/2, but the moment is still at x = 0. The next

step is to translate the resultant force and moment to x = L/2. The fundamental re-

lationships are (F = Fo) ,

L
= TIL/2 = T - F L + _ .(FI + F23+T

o 2 = TIO T20 (37)

To summarize, these become:

Forces :

F1 = a e +b _ + c _o o o
, since a = a, b = b, c = c

o o o

( ( ( ?F 2 = do a c_+ e° o -2 - c c_- o2 - b cl+ fo o-2 (38)
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Moments

L - b E +
T 1 = TI0 - F 1 _ = A ° - a ° E + B ° o

T2 = T20 F2 L ( _ A L L L 2)- _= Do 03- Co_+aoT_

2-L L bo L 2)+ /\_F° - B e + &o o_ 7-

+ (F - CO O
L_ fo L L 22 2 + Co 4--)_

where

2

ao = H _i0 ' bo = H -±NI1 T , Co = H _1_iz T

d = H , e = H T f = H T 2
o _20 o _21 ' o U22

and

A = H 1 B = H 1 T C = H I T 2o _30 ' o _31 ' o B32

D = H 1 E = H I T F = H 1 T 2o U40 ' o U41 ' o B42

The symbols are previously defined. And finally,

T = AE + B@ + Cg + D_ + EC* + _d }

F = ae + b_ + c_ + da + e& + f_ I

where

L L L
A= A - a -- B = B - b -- , C = C - c --

o o2 ' o o2 o o2

2
L L L

D = D - A° _- do _+ a° 7-
0

L L L 2

E = Eo - Bo 2 - eo 2 + bo 4--

F = F - C L f L L 2
o o2- o2+Co4 --

and where

a=a
O

, b = b , c = c
O O

L L L
d=d -a e=e -b f = f -c --

o o2 ' o o2 ' o 02

- C
O O

(39)

(4O)
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EVALUATION OF SEAL COEFFICIENTS

The geometry and parameter values shown in Table I were used to evaluate a

sample rotor. For comparative purposes, the properties of two fluids, water and

steam under supercritical conditions were used.

TABLE I. - GEOMETRY AND PARAMETERS

SEAL

R - RADIUS

L - LENGTH

Yo - CLEARANCE

N - SHAFT SPEED

p - PRESSURE DROP

- VISCOSITY (STEAM)

(_ DENSITY (STEAM)

- VISCOSITY (WATER)

(5 DENSITY (WATER)

ROTOR

_: ELASTIC MODULUS

I AREA MOMENT OF INERTIA

K BEARING SPRING RATE

._ COMPONENT SPACING

W - ROTOR WEIGHT

G - _3K/EI

7.62 cm (3 INCHES)

2.54 cm (1 INCH)

0.254 mm (0.01 INCH)

30,000 RPM

344.6 N/cm 2 (500 PSI)

2.067 X 10 -9 N-S/cm 2 (3 X 10 -9 LB-SEC/IN. 2)

13.84 Kg/m 3 (0.0005 LB/IN. 3)

1.013 X 10 -5 N-S/cm 2 (1.47 X 10 -5 LB-SEC/IN. 2)

996.5 Kg/m 3 (0.036 LB/IN. 3)

2.067 X 107 N/cm 2 (3 X 107 LB/IN 2)

24.97 cm 4 (0.6 IN. 4)

1.75 X 106 N/cm (106 LB/IN.)

15.24 cm (6 IN.)

36.28 Kg (80 LB)

As indicated in ref. 6, if all dynamic terms are retained in the coefficient

formulation, the results are in the form of a frequency-dependent cubic divided by

a first-order term. A Taylor's expansion was used for the denominator to obtain a

simple polynomial form for the coefficients. Questions remain as to how many terms

should be retained and what range of frequencies are allowed before the approxima-

tion degrades.

To answer the question of higher order terms, the equations for the seals

were established in the cubic form and evaluated for the conditions of Table I.

The resulting transfer functions are shown in Table II. From these examples, it

is obvious that the only affects that may legitimately be considered are those of

stiffness and damping. Only those two affects were considered in the evaluation

that follows.

Seal coefficients were evaluated over a wide range of speed by assuming that

pressure drop across the seal varied as the square of speed. The density for water

was assumed to be constant but the density of steam was assumed to be proportional

to pressure drop. The spring rates were found to vary with speed squared for both

water and steam. The damping coefficients, however, varied with speed for the case

of water and speed squared for steam. The restoring force and torque as a function

of shaft translation and angu]ation are therefore described by

I °
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TABLE If. - SUMMARY OF SEAL COEFFICIENTS AT 30,000 rpm

WATER

# (N/cm) = 7,84 X 104

@(N} = 6.806X 105

x (N) = -3.323 X 104

-1.2308 X 105 + 19.76S

STEAM

8 (N/cm) = 9.327 X 104

¢(N) = 1,0163X106

x (N) = -3.949 X 104

_, N--cm) = 3.536 X 105

where S = j tO

Where operating point variations are described by

[id2 _ e_ 'b-_ e

E B_-_ Ed--_
steam water

ROTOR MODEL

A simple rotor model was necessary that would exhibit both translation and

angulation at the seals. A flexible massless shaft was chosen with a mass load at

the center. Seals were placed at each end of the shaft and an ideal bearing was

located halfway between each seal and the central mass. Properties for the rotor
model are contained in Table I.

The restoring force due to the shaft, bearings, and seals due to the lateral de-

flection (Y or Z) at the mass is given by

_/y = N/_ (41)

where

_I = -2K 1 + 1+-_ G _ + _-_- (qb + X) +-- V; + _-_%2K _ (O_ - dPX)
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( G)(87 )G0( I)GD = 1+ 5 + ]+ _ G _- + 2 +_G _-_ (_ + X)

2G)_ +(_+_)I_)_(0_-_X)
+ (2 + _ 12 K

Inserting values for the structural properties and for the frequency dependent journal

coefficients, we obtain a dynamic force-deflection relation at the mass.

d d 2

l a I + b I _ + c1

F_-= _ dt 2

Y d d 2

dl + el d-t + fl
dt 2

(42)

Since the journal equations were developed for a condition where the flow is

ostensibly axial, we assume that they are fixed to Couette coordinates. These

equations must be transformed to rotor coordinates to determine the whirl orbit.

Now assume, steady circular motion of the shaft in the y-z plane. Transforming the

force-deflection equations to coordinates rotating with the shaft, we obtain

[d14 "e]lyI[a c"b z
_ fl F + _ bl - al 4- 2 el dl 4 z

(43)

The equations for the rotor with the central mass unbalanced a distance A from

the axis of rotation in the y direction are

2W = --_
-0J --y Fy+A W

2

g g

2W
- _0 -- z = F

g z

(44)

Solutions for shaft motion due to the unbalanced mass at a particular speed (_) are

obtained by first scaling the seal coefficients that were obtained at design speed

(_). Then solutions of equations (41-44) produce the normalized orbit radius, or

amplification ratio

y2 + Z2

A

EVALUATION OF ROTOR RESPONSE

Normalized rotor deflection vs shaft speed is shown in Fig. 3 and 4 for the

steam and water journals, respectively. Rotor response considering only the trans-

lation coefficient (_) is shown for reference. The rotor response with the complete
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Figure 3. Rotor response with

steam as fluid.
Figure 4. Rotor response with

water as fluid.

set of forces are shown for cases where the flow is outboard through the seals and

where the flow is reversed. Reversed flow (inboard flow direction) was simulated

by changing the sign of the off diagonal coefficients (_ and _).

To evaluate sensitivity of the various coefficients, cases with the off-

diagonal terms increased by i0 percent were run as well as a case where the dia-

gonal coefficient (_) was increased by i0 percent. A summary of these cases in

terms of critical speed and effective damping (_/_cr) are contained in Table IIl.

TABLE Ill. - SUMMARY OF CRITICAL SPEED CALCULATIONS

SEAL STIFFNESS
MATRIX

:]

{_; -:}

[e.,,,;o]

STEAM

SPEED (RPM)

13266

13585

13807

13323

13584

13830

13806

DAMPING

0.0%

0.28%

0.46%

0,60%

-I .2%

0.77%

0.32%

WATER

SPEED (RPM)

13266

13780

15_0

15510

14880

15900

15410

DAMPING

0,0%

5.12%

7.58%

8.47%

-11.2%

6.36%

7.87%
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DISCUSSION OF THE RESULTS

When angulation affects are included, as well as the translation, the critical

speed is shifted slightly and the whirl radius is significantly reduced.

Off diagonal seal coefficients are very significant; without them, the effect

of angulation is destablilzing. This indicates that the centers of pressure for

rotation and for translation do not coincide. Reversing the journal flow (to the

inboard direction) actually increased effective damping for the cases investigated.

The second order "mass" affects of the journals were negligible and for whirl

the mass affects may be deleted.

For the two fluids that were considered in the journal, spring rates were very

similar but damping coefficients were an order of magnitude higher with water. This

is evidenced by an order of magnitude increase in damping at critical speed for thal

journal. For both fluids the spring rate varies with seal pressure drop and there-

fore speed squared. The damping coefficient varies with speed for an incompressible

fluid and the square of speed for a compressible fluid.

CONCLUDING REMARKS

From a study of the results, the following conclusions have been reached:

i. Journal forces associated with the second time derivative of shaft motion

should be ignored. The coefficients are very small and are significant

only in a frequency range where the approximations required to obtain them

are questionable.

2. Forces associated with the first-time derivative are very important.

3. Pitching moments and angulation effects are as significant as translation.

4. The net effect of moment and angulation is a slight shift in critical speed

and a significant decrease in peak amplitude.

5. While the partial of moment with respect to angulation appears to be de-

stabilizing, off diagonal coefficients result in net stabilization. This

result is due to a lack of coincidence between the centers of pressure

for translation and rotation.

6. Seals, where the flow is outboard, showed lower damping than where the seal

flow was inboard. Higher critical speeds, where a different mode shape is

involved, may not exhibit the same trend.

7. Damping forces at speeds below the design value are reduced more for a

compressible fluid than for an incompressible one.

8. Moments due to variation in fluid shear along the shaft surface are very

small.

9. Coefficient accuracy is not known in the absence of experimental data.

Specifically this approach assumes full turbulent flow with a rotation at

m/2 throughout the seal. Black (ref. Ii) and Hirs (ref. 13) comment on

this. For short seals, a significant error may occur because of the slow

development of tangential velocity.
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