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ABSTRACT

The paper is concerned with the effect of friction in drive couplings on the

non-sychronous whirling of a shaft. A simplified model is used to demonstrate the

effect of large coupling misalignments on the stability of the system. It is

concluded that provided these misalignments are large enough, the system becomes

totally stable provided the shaft is supported on bearings exhibiting a viscous

damping capacity.

SUMMARY

Rotating damping is well known to be a source of instability in shaft systems

and many physical and mathematical explanations of the phenomenon exist. Published

work seems mainly to be concentrated on a viscous or hysteretic damping model for

the rotor, with simple dissipative bearings. The present paper considers non-linear

damping of the Coulomb type in a simple rotor supported on 'realistic' linearized

bearings, characterized by 4 stiffness and 4 damping coefficients.

The paper examines the nature of the sub-synchronous limit cycles resulting

from interplay between the Coulomb damping within the rotor and viscous damping in

the bearings. The rotating damping in the present model is assumed to arise from

rubbing within gear type couplings at both ends of the rotor. The qualitative

findings are however applicable to any mechanism producing friction forces depending

on rotor flexure. It is also shown that as the couplings are misaligned in any

plane, a level is reached above which the sub-synchronous oscillations collapse.

A map of these limiting misalignments is compared with the shaft orbit under

conditions of perfect alignment.

INTRODUCTION

Rotating damping has long been recognised as a source of instability in shaft

systems. Both physical and mathematical explanations of the reasons for this

instability have been advanced. A good summary has been given by Crandall (Ref. I).

Viscous and hysteretic damping is easily incorporated in a linear mathematical

model. In many practical cases, however, the damping arises from relative motions

within the rotating structure, the force-motion relationships obeying non-linear

laws. A Coulomb damping model gives a reasonable representation of the energy

exchanges resulting from slipping mechanisms, although to accurately incorporate

such a model in a rotor/bearing system presents some problems in analysis.
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Intuitively, one might suppose that instability due to any saturable type of
rotating damping would be subject to limit cycles. This is only so if the system
also contains positive damping elements with a more powerful energy-amplitude
ratio. Such a system is a shaft with rotating Coulombtype damping supported on
realistic, albeit linearized, hydrodynamic bearings. Very little published work
exists on this very commonlyoccurring system and the present paper deals with a
particular phenomenonof considerable practical significance.

The system dealt with is a rotor supported on two hydrodynamic bearings and
driven by a gear type coupling. The rotating damping arises from movementsbetween
mating teeth of the coupling.

THEMODEL

The paper deals with an idealised model (Fig. I). The degrees of freedom have
been limited to 4, this being the minimumnecessary to give a qualitatively adequate
solution. The system comprises an isotropic non-dampedshaft s_etric about its
centre of span and characterised by a single flexural mode. The shaft is
supported on two linearized hydrodynamic bearings, notionally represented as 8

stiffness and damping coefficients, each varying with running speed. Each end of

the shaft moves within a coupling which has a fixed slope but is free to move in

translation. The laws governing the force-velocity relationship within the

couplings can be either of the viscous or Coulomb type. Provision is made for

altering the coupling slope in both vertical and horizontal planes.

SYMBOLS

Axxil etc. kg

Bxx, 1 etc. Nsm -l

Exx11 etc. Nm -I

B

Bxx etc.

Blxx etc. Nsm -_

b Nsm -I

C m

Exx etc.

EIxx etc.

ex, ey tad

F N

f N

-2
g ms

L m

Elements of Inertia Matrix

Subscripts denote
Elements of Damping Matrix position in matrices.

Elements of Stiffness Matrix

Parameter concerned with viscous rotating damping (Eqn.7)

Non dimensional oil film damping

Dimensional oil film damping

Dimensional viscous damping of all coupling teeth moving

axially

Radial clearance of bearings

Non dimensional oil film stiffness

Dimensional oil film stiffness

Angular misalignment of couplings, Planes x, y

Coulomb damping force generalised (Eqn.12)

Coulomb damping force of all coupling teeth moving axially

Acceleration due to gravity

Half span of shaft
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M kg

m kg/m- 1

qlX etc.

r m

t s

-I
Vx, Vy ms

We (Nm)

Wv (Nm)

x, y

Y

A

6x, _y

¢o m

Ca 1 0 (rad)

×

k rad •s- I

_0 rad. s-I

rad. s- I

Half mass of shaft

Mass of increment of shaft

Generalised co-ordinate. Shaft centre x plane

Radius of coupling teeth

Time

Generalised velocity of rubbing of gear teeth

Work due to Coulomb damping/cycle

Work due to viscous damping/cycle

Horizontal and vertical planes

Viscous rotating damping factor (Eqn. 7)

Modal parameter (Eqn. 4)

Misalignment parameters (Eqn. 9)

Mode shape of shaft

Modal co-ordinate at shaft centre

Modal slope at shaft end

Co-ordinate vector (Eqn.2)

Modal parameter (Eqn.6)

Natural frequency of pinned-pinned shaft

Lowest natural frequency

Running speed

EQUATIONS OF MOTION

The system co-ordinates (Fig. 2) relate to movements in the horizontal and

vertical planes. The coefficients of the equations of motion are expressed as

elements of square matrices using a subscript code where x, y determine the plane

and I, 2 relate to the shaft and bearing respectively. Thus Axy12 would appear in

a matrix as follows:-

I-- - _ fAxy 2

'- -- --I Y

(l)

In the systems with viscous rotating damping the equations of motion are:-

e# •
AX + Bx + Ex ffi 0 (2)
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Dimensional

AXX11 = AyYll = Zm(_o) 2

Axx22 = Ayy22 = M

AXXl 2 = Ayy21 = Axx21 = Ayy21 = lm(_ )
u/0

BXX22 = BIxx

Bxy22 = B Ixy

Byx2z = B1yx

Byy22 = Blyy

br 2 ._oal zBXX1 1 = Byyl I = T ( )

Exxl I = AxxI IA2

Eyyl I = Ayyl I _2

Exx22 = EIxx

Exy22 = E Ixy

Eyx22 = Elyx

Eyy22 = Elyy

Exy11 = -Eyxl l2= ( )_

Non Dimensional Inertia

2

l

z___= _
M_o

g Bxx/_

g Bxy/_C

g Byx/_C

g Byy/_C

br 2 (_a I
B = _-_ ._0 )

X2 lX

X2 lX

g Exx/C

g Exy/C

g Eyx/C

g Eyy/C

br 2 _._1 22--if( )a

(3)

Regarding the shaft geometry, since the equations of motion are set up in terms

of the pinned-pinned shaft modes _, then it is convenient to assume a simple shaft

geometry. The choices are a disc/weightless shaft combination or a uniform shaft.

The latter model has been chosen and this results in a sinusoidal modal shape for

which:-

A = Zm@2/M@02 = 0.5 (4)

= Zm_/M@0 = Z/_ (5)

_al = w/2L (6)
@0

Roots of equation 2 give both system frequencies and dampings. If the system

damping factor is plotted against the rotating damping (Fig. 3) it is possible to

find the reserve of viscous damping possessed by the system. The viscous rotating

damping factor is conveniently expressed as:-

r2 _a I 2 b B

Y = 4-A (_o ) " _" = 2>,'--_
(7)

y being given as a proportion of critical damping of the shaft vibrating in flexure.
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The damping B arises from the axial rubbing of the gear teeth in the coupling.
These teeth are assumedto be continuously distributed on a pitch circle of radius
r. The value b relates to the total viscous force/unit velocity obtained from
sliding the coupling axially. The values of all parameters used in plotting the
curve of Figure 3 are shownon that sheet and will be used for all further work in
the paper. The bearing coefficients relate to a specific non-circular bearing
profile of the fixed arc type.

Solutions of the linear equation of motion yield not only the systemfrequencies
and dampings but the orbit shape, the size being, of course, arbitrary.

The coupling damping operates on the relative velocities of teeth arising from
small vibrations in the system. It is possible to generalise these velocities in
terms of the shaft co-ordinates as follows:-

0

Vx = q,x + _ (qlY + _Y)

Q

Vy = qlY - _ (qlx + _x)
(8)

where 6x, _y relate to the angular misalignments of the coupling ex, ey thus:-

6x = ex (_a,) _y = ey (_al) (9)

The energy reserve/cycle in viscous damping at the coupling is given by:-

Bf2_/m(Vx •Wv = qlx + Vy qly)dt (I0)
0

Coulomb Damping

Suppose now that the damping mechanism in the coupling is of the Coulomb type

and that f is the force resisting axial movement of the teeth. The Coulomb energy/

cycle is:-

Wc = Ff2_/_(Vx _ix + Vy qly)dt
0

(Vx 2 + Vy2) _

(II)

___i f r f
where F = 2__r ( ) ..... (12)

M L M

Note that strictly speaking Vx, Vy are not the same in the Coulomb case as in

the viscous case, but for reasons which will be discussed later, the error involved

in assuming both orbits to be identical ellipses is very small.

Plotting the work function (Wc - Wv) against orbit size for zero misalignment

(Fig. 4) yields the magnitude of a limit cycle at the cross-over point. The fact

that the cross-over slope is negative indicates that this is a stable cycle. The

orbit size which refers to the length of the major axis of the ellipse at the shaft

centre is proportional to f/M.
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Misalignments

Having fixed the orbit size for the system under consideration, the values ex,
ey are now systematically varied. Figure 5 shows that depending on the values of
these parameters the character of the work function changes. Under somecircum-
stances the function shows 2 cross-over points. The smaller orbit is unstable and
the larger one is stable. Certain combinations of the misalignments give a totally
stable system, there being a threshold at which a collapse from a finite orbit to
zero takes place.

It is possible to plot a mapof constant orbit combinations as in Figure 6.
Here it will be seen that there exists a boundary in the ex/ey plane beyond which,
for the model assumed, instability cannot exist. Within the boundary, limit cycles
exist which are smaller than the limit cycle of the zero misaligned case.

DISCUSSION

It is first necessary to examine the validity of the model with regard to its
general applicability. The semi-rigid modelling of the shaft implies certain
constraints. This does not, however, affect the qualitative behaviour of the system,
particularly that relating to the stabilizing effects of large misalignments. It
does, however, meanthat the system frequency and the orbit size will be incorrect,
but to obtain a more accurate model it is only necessary to incorporate more shaft
freedoms. Either a finite element or a modal representation could be used.

The present mathematical treatment of Coulombdamping also requires justifi-
cation. It is reasonably easy, if tedious, to arrive at limit cycles by time
marching methods or other slightly more elegant algorithms. Alternatively, a
carefully constructed analogue computer circuit can solve the problem. All of these
techniques have been used by the author on the particular problem presented in the
present paper and for this case it can be shownthat the orbits are very nearly
elliptical with little harmonic content. Thus the assumptions used in deriving the
energy expression (Wc - Wv) are valid. The reasons for this are fairly obvious.
The energy supplied by the Coulombdamping is a small proportion of the inertial
and strain energy in the system so that the orbits are largely controlled by these
latter energy exchanges. This circumstance results from the fact that the shaft is
very flexible, as evidenced by the small ratio of frequency: running speed (_/_
Figure 3).

The question arises as to what happens if the shaft is stiffer. As shaft

stiffness increases, so does the stability margin. This margin is expressed in the

present context as the viscous rotating damping necessary to reduce the system

damping to zero. The author has found that reasonably accurate results can occur

when this viscous damping margin is well over 15%.

Any rotating damping, whether viscous, hysteretic or Coulomb, reduces the

stability margin of a rotating system. This means that non-sychronous whirling

will start at a lower speed than that dictated solely by consideration of the oil

film. Since most rotors contain some rotating damping mechanism, then extractions

of the oil film coefficients from rotor/bearing systems may well be subject to

inaccuracies.
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More important, however, is what, in the authors view, is the erroneous

deduction from many tests and case histories, that oil film non-linearities are

responsible for the small limit cycles often experienced prior to large non-

sychronous orbits. The probability is that these limit cycles arise from the

existance of friction in the drive mechanism. To be sure oil film non-linearities

operate to limit journal orbits which are large compared with the bearing clearance,

but this is a gross condition in which the oil film becomes effective around the

complete bearing circumference.

In the present mathematical example, a single running speed has been considered

so far. Obviously as this running speed rises and its associated oil film co-

efficients change, the stability margin reduces. According to our simple model the

orbits should increase with running speed and at the 'resonant oil whirl' threshold,

should grow without limit. Under these circumstances, however, it is obvious that

constraints associated with bearing clearances etc. will take over so that the

increase in orbit size may not be as dramatic as Figure 7 predicts. In any case

the present theory deals with small vibrations and above a certain level the force/

spatial relationships within the coupling may become much more complex than those
assumed here.

The nearer the running speed approaches the 'true' oil film instability

threshold, the easier it is to supply the small amount of friction damping necessary

to promote limit cycles. Figure 8 shows a shaft weighing 700 kgs supported on 2,

I00 mm dia hydrodynamic bearings. Figure 9 shows friction being introduced by 3

small steel 'fingers' supported on a freely rotating layshaft. The pressure between

the fingers and the main shaft was introduced by elastic bands. This very small

amount of damping produced from the dynamic slope of the shaft was quite sufficient

to lower the instability threshold and produce stable limit cycles. The stabilizing

effect of large misalignments was also demonstrated by varying the angle of the

layshaft.

CONCLUDING REMARKS

The author has dealt with the subject of limit cycles in a shaft/hydrodynamic

bearing system with rotating damping present in the drive coupling. The same

conclusions, i.e. that limit cycles exist when saturable damping mechanisms are

present, would apply whenever friction was caused by shaft flexure. The point

brought out in the present paper is that the destabilizing effect of Coulomb damping

can be 'biased out' by friction arising in a fixed plane and resulting from the

rotation. In many practical situations such a biasing would be impossible in that

very heavy fretting wear would be brought about by the gross misalignments necessary

to achieve stability. Nevertheless, the mechanism is of some interest and may not

only apply to couplings, but to other sources of rubbing in rotating elements.
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Figure I. - Diagrammatic arrangement of shaft and couplings.

Figure 2. - Coordinate system.
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Figure 6. Critical misallgnment boundary compared with
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Figure 7. Growth of orbit size with running speed.
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Figure 8. -Model rotor supported on lOOmm dia. hydrodynamic bearings.
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Figure g. - Method of introducing friction damping into model rotor.
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