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ABSTRACT

The '_eathering vaning" motion of a wind turbine with a moving rotor is an oscillatory problem with

a variable moment of inertia. The analysis of such a motion requires the solution of a non-linear

differentia] equation. In this article an approximation method is presented for reducing the problem to

an equivalent constant moment of inertia problem.

The method is based on the assumption that a moving rotor is an integrator and, therefore, the

problem will behave as if it has an averaged moment of inertia. It is further assumed that this will be

a valid solution to the problem if the rotating speed of the wind turbine is infinite. The method

consist5 of determing the integrated average of the mo_ of inertia for a single rotation. This

averaged value can then be used to determine equivalent natural frequency of the system and other dynamic

properties.

_e method is sho_ to be valid by solving the non-linear differential equation for various rotating

speeds, it was found that the cycle time is the equivalent cycle time if the rotating speed is 4 times

grester than the systems minimum natural frequency. The ratio of equivalent to minimum cycle time is

i

t/to = (Imax/Imin) 4

INTRODUCTION

The oscillatory motion of a system with a

variable moment of inertia is complex. The

analysis of such a motion requires the solution of

non-linear differential equation. In this

article s method for reducing the problem to an

equivalent constant moment of inertia problem is

presented.

The application which generated interest in

this problem is the "weather vaning" of a wind

turbine with a moving rotor. The method estab-

lished here is applicabIe to any problem in which
the moment of inertia is a variable about the

axis of rotation such aft the roll of a helicopter.

=

The problem is illustrated in Fig. 1. It is

desired to describe the motion of the system
about the axis A-A whiIe the rotor is moving. One

Can-se_ from Fig. 1 that the moment Of inertia
about A-A varies from a minimum when the rotor

is vertical (Position A) to a maximum when the

re,or _s horizontal (Position B). This variation

i5 continuous and cyclic with each turn of the

rotor.

One can also see from Fig. 1 that the problem

cannot be hand!ed with a single initial condition.

A different and unique motion is obtained for each

=: == : imitial position of the rotor. Hence, the problem
has a stochastic nature.

:_ _ ANALYSIS

At any rotor position, _, the instantaneous

moment of inertia of the rotor, Ii, about axis A-A
is:

Ii = mrk 2 sin2¢ = IrSin2#

where m is the mass of the rotor. The terms r k
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Fig. 1 - ProbIem Geometry

and I are the radius of gyration and the moment
r

of inertia of the rotor about its axis of rotation,

respectively. The moment of inertia of the rest

of the system about A-A, which is constant, is:

I = I + mh 2
o c

where I is the moment of inertia of the center-

body an_ h is the distance from the center of the

rotor to axis A-A. The expression for the total

moment of inertia I is the sum of the constgnZ and

variable portions

I = i + I. = I + I sin2#
O i O r
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or
I = Io(l + Jsin2_) [i)

where j = Ir/I o.

When the entire system is oscillating about

axis A-A with a moving rotor, it is apparent that

the rotor is acting as an integrator of moment of

inertia. It is hypothesized that if the rotor has

an infinite angular velocity the moment of

inertia I behaves as a constant integrated aver-

age value. It is this hypothesis which is the

basis of method presented here.

To establish the utility of the method,

assuming for the moment that the hypothesis is

correct, there are two questions which must be

answered:

1)

2)
What averaging technique should be used?

How close must the speed be to infinite

for the method to be useful? In other

words, how fast is fast?

The hypothesis is proven by examining the

simple harmonic motion of the system in Fig. 1.

The proof is valid for more complex situations

such as those including damping and forcing

functions. In demonstrating the proof, the
method of solving a variable moment of inertia

problem will be established.

and

The equation for simple harmonic motion is:

2

d2a -Ka _O a

dt 2 I l+Jsin2(_t)
(2)

2
_o = K/I o (3)

where K is the torsional constant and m is
o

defined in Eo. 3 as the reference freouencv for

the system. In writin_ Eq. 2. the moment of

inertia I has been reDlaced by Eq. 1 and the

rotor an£1e _ has been replaced by rotor angular
velocitv _ and time t.

Eq. 2 is dimensionalized by lettin_

T = t/t ° = _o t

n = _/w
o

and O = a/a °

where m is the initial an_ular displacement,
o

Suhstitutin_ these expressions into Eq. 2, one

has

d2O - o
- -kO (4]

dT 2 l+Jsin2(nz)

The term k is defined as the natural frequen=

cy ratio

c0 2

k = 1 (n) (S)
l+Jsin2(n_)

o

and can be used to obtain the natural frequency of

the system at anytime.

The hypothesis states that as the rotor angu-
lar velocity approaches infinity, the natural

frequency ratio k approaches a constant integrated

average value. The average value is obtained by
integrating Eq. 5 over a quarter cycle

2 _I2 _/2
= _ J kd# = 2 d___._

_ f l+Jsin2_
O O

_/2 _6)

J d_
n o (J+l)sin2_+cos2_

From a table of definite integrals*, one obtains

_/2

I dx n

o a2sin2x+b2cos2x 2ab

2 2
t

= 1 = (Co
f

J/YzY 7o) = (-£)_ (7)t

Eq. 7 is the answer to the first question. Since

J + 1 is Imax/Imin, a more convenient form for

Eq. 7 is

[/t o = (Imax/lmin)[ (8)

The hypothesis is proven if it can be shown that

the system oscillates at a cycle time defined by

Eq. 7 as n increases. It should be noted in

passing that the averaging method defined by Eq. 6

is the proper one. Initially, the following

averaging was used which is incorrect.

J = _--qI(l+Jsin2_)d_

The error the author made was that reciprocal of

the average is not the average of the reciprocals.

Eq. 4 is a non-linear differential equation.

It was solved numerically for a number of cases of

n and J using the Continuous System Modeling

Program (CSMP) which is standard IBM software.

The solution to th_ differential equation

with time ratio T is presented in Fig. 2 for J = i,

One can see that the frequency shifted signifi-

cantly with increase in rotor speed from n = 0 to

n = I. Fig. 2 also shows a significant change in

displacement with speed ratio n. In 3 reference

frequency cycles,the solutions for other than n =

0 does not appear to be repeating indicating the

stochastic nature of the problem.

*Handbook of Chemistry and Physics, Chemical

Rubber Publishing Co.
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i
Displacement RaCLO,

Fig. 2 - Displacement Response with

Variable Rotor Speed

=

in Fig. 3 the time ratio x for the first
cycle is presented with increasing rotor speed

C

ratio n. The limiting value as predicted by Eq.

7 is indicated in Fig. 3. One can see from Fig.

3 that the time ratio equals the limiting value

when n > 4. Hence, the hypothesis is proven and

the second question is answered.
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Fig, 5 - First Cycle Time Response

The curves in Fig, 3 are smooth even though

the Fig. 3 does not indicate it. The curves all

start at r = 2_ because the problem was always

started with the system at minimum moment of

inertia or with rotor at Position A. If the prob-

lem were started at maximum moment of inertia, the

solution would have started at x = 2_ /J + 1

At any other position the solution would start

anywhere in between, It Ts the variation in

moment of inertia with rotor position that causes

the oscillation of the first cycle time ratio in

Fig. 3 before it "damps" down to the limiting

value.

It appears from Fig. 3 that as J increases

the first cycle time ratio approaches the limiting

value more quickly. The reverse is also true,

The solution for J = 0 is a constant horizontal

line as indicated in Fig. 3. The speed ratio for

utilizing the limit solution may maximumize with

J.

CONCLUDING REMARKS

In conclusion, it can be stated that:

1] The hypothesis is true.

2) A variable moment of inertia problem can

be anaIyzed as a constant moment of inertia prob-

lem if the rotor speed is 4 times the reference

frequency, which is based on minimum moment of

inertia.

3) The method of solution is to multiply

the reference frequency by the fourth root of the

minlmum tO maximum moment of inertia ratio to

obtain the system's natural frequency.

4) If n > 4 the initial starting point is

not important and the problem is deterministic.
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QUESTIONSANDANSWERS

E.W.Beans

From: T. Base

Q: Whenyou set up your initial equations, whydidn't youwrite themin form

From:

Q:
A:

From:

Q:

A:

From:

Q:

d (IS) = Applied Torques (including damping)
dt

• .di m

so that: IM _ + _d--_- = Applied Torques

then the rate of change of IM with time could be used directly in the equations.

A: The equation you wrote is not the one I wanted to solve. Your equation appears to

have a velocity dependent term. Since dl/dt varies cyclic I would try to solve it

using the averaging technique.

Art Smith

Do you plan to check your results with a more exact method?

No. My results appear to satisfy application for which it was developed.

G. Beaulieu

You have considered rigid blade for your analysis; could the harmonic deformation

of a vibrating blade significantly change the moment of inertia?

Yes, if the mass center is displaced.

Dan Schiff

Does your solution account for dynamic effects, e.g., gyroscopic effects--or only

static?

A: No, but the method should be applicable to the solution of any equation with cyclic

coefficients.
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