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INTRODUCTION

The dynamic response of wind turbines to turbulent
wind fluctuations has generally been modeled using
oniy changes in the streamwise wind velocity as the
disturbance which causes the varying aerodynamic
forces and moments. Often these wind fluctuations
are thought of, and modeled, as discrete wind

—gusts of specified shape and duration, which occur

at some average rate. In addition, these wind
fluctuations usually have been assumed to act uni-
formly over the entire rotor disk. In terms of
the designer's needs, these models are used to
gencrate design loads and expected control system
actions.

1t wias the objective of the work reported here,
and in the companion paper [1], to take a broader
1ook at wind turbine dynamic response to turbu-
lenge, and attempt to ascertain the features of
turbulence that wind turbines are most sensitive
to. A statistical description of the wind input
inciuding all three wind components and allowing
Tinear wind gradients across the rotor disk, was
used together with quasi-static aerodynamic theory
and an elementary structural model involving only
a fow degrées of freedom. The idea was to keep
urbine model simple and show the benefits of
type of statistical wind representation be-

fore attempting to use a more complex turbine

model. As far as possible, the analysis was kept
in the simplest form, while still preserving key
physical responses.

Frow the onset of this work, it was felt that the
results should be validated by comparison with test
measurements. Due to the three-bladed rigid rotor
used or the turbine and the limited degrees of
freedom, comparison with data from one of the small
systems under test at Rocky Flats would provide the
most realistic comparison. At this time, the ex-
perimertal comparison is incomplete,

Tha Turbine Model

The wind turbine model is shown schematically in
Figure 1. Both the rotor and the nacelle are
assumed to be rigid bodies which move in unison,

xcept for_the spinning rotor. Due to tower
filexibility, the nacelle and rotor are free to
translaté in a plane parallel to the ground and
rotate about the top of the tower in pitch and
yaw. The yaw angle of the rotor axis is defined
by the angle, ¢, and the pitch angle by y. The
lateral translation, U, is in the x direction,
while the V translation is in the y direction
atong the rotor axis. The rotor spin velocity

5 given by Q + ¥, where g is the mean rotation
rate and ¥ is some small fluctuation. For the
case of a turbine with a three-bladed rigid rotor,
the basic principles of Newtonian mechanics and
linear, quasi-steady aerodynamics give motion
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equations of the form

X+ G+ KUK = FLLV.

MU J CU J KTJ J FUVJ ()
where Mjj, Cij, Kij and Fij are the turbine system
inertia, damping, StiffnesS and wind input coeffi-
cients. The five displacement coordinates already
described are Xj, while the wind inputs are Vj.

The Tower

The wind turbine tower was modeled as a single
finite element within which the tower displace-
ments were expressed in terms of interpolating
polynomials and the displacements at the top of
the tower. Then the tower deformation, v(z,t),
about one bending axis was written in the form

v(z,t) = Py(2)V(t) + P (2)x(t) (2)

where Py and Py are the interpolating functions
which approximate the displacements within the
tower, These are conveniently represented as
cubic polynomials satisfying the necessary bounda-
ry conditions of a cantilever tower. Using this
expression for the tower bending displacement, the
stiffness and mass coefficients may be obtained by
one of the numerous energy methods. In terms of
the interpolating functions Py and Py, the gener-
alized stiffness and mass coefficients for the
tower may be expressed as

kis = 6 EI(z)P?(z)P}(z)dz {(3)
L
mis = é m(z)Pi(z)Pj(z)dz (4)

where EI{z) and m(z) are the stiffness and mass
per unit length as a function of height. For ad-
ditional detail concerning this technique, the
jnterested reader should see Clough and Penzien
[2]. Although the tower properties are the same
in both bending directions, only one degree of
freedom was desired for the x direction and there-
fore rotation of the nacelle about the rotor spin
axis was neglected. The method of static
condensation was used to eliminate the unwanted
degree of freedom and obtain the desired x direc-
tion stiffness and inertia coefficients as

= koo = k2

kuu = kv = Ky Ry

Mgy = myy = 20k /e my (kg 7k Ym. (6)

uy V' X X XX XX

Vv
In addition, the nacelle and rotor inertias add
directly to the tower inertia coefficients, mij»
to give the turbine system inertias. A detaiied
tabulation of the various terms in the inertia
matrix is provided in the Appendix. There is also
a gyroscopic coupling between the turbine
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pitch and yaw motions. This coupling coefficient
appears in the damping matrix and is given by

C¢X IrQ Cx¢ (7)
where T is the total effective inertia of all the
spinnin5 mass connected to the turbine rotor.
Using this simple model the structural stiffness
and inertia coefficients for a particular wind
turbine are numerically calculated using a TI-59
calculator code [3].

Aerodynamic Forces

The geometry of the three-bladed rigid rotor is
illustrated in Figure 2. The blades are coned at
an angle 85, and are assumed to be twisted and
tapered. The angle 6 defines the pitch setting
as the angle from the plane of rotation to the
zero-1ift-1ine of the airfoil at the blade tip.

For this analysis, quasi-static aerodynamics will
be used to compute the forces acting on the blades
due to the turbulent wind and structural motion.
The wind input including turbulence is assumed to
-be made up of a steady mean wind, Viy» plus fluctu-
ating components, Vi(t), which at any instant are
constant over the rotor disk and turbulence gradi-
ents Vi, j(t), which vary linearly across the disk.
Both Vitg) and Vi, j{t) may be thought as disk
averaged time dependent quantities. This allows
the wind velocity to be written in a linear expan-
sion as

0 v v v v r siniit
. _ X XsX YX,¥y Vx,z
v} —{VV} +{\\P,} + [Vyox w,y Vy.z ¢
0 2 Vz,x Vz,y V7,2 r cosQt
(8)

where r is the radial position in the rotor disk,
and Qt is the azimuthal Jocation. Motivation for
this particular form for the turbulence and dis-
cussion of its accuracy is presented in the com-
panion paper, reference [1]. In this equation
the mean wind direction coincides with the y axis
of Figure 2. In addition, the spatial change in
the y direction turbulence component due to the
coning has been dropped in the above expression,
which eliminates the effect of the turbulence
gradients Vi, y.

Using the above wind representation and funda-
mental kinematic relationships provides the rela-
tive velocity as observed from the turbine blade.
The relative velocity is made up of contributions
from the wind, the moving structure and the in-
duced velocity caused by aerodynamic action. In
equation form this is

Vo=V -V-v 9

rel = Vo = V- vy (9)

In terms of the displacement coordinates, the rela-

tive velocity components parallel and perpendicular

to the rotor disk rotational plane are given by
VU/RQ = r/RQ H{ry + coth[-¢(Vw—vi) - 6Vx

+ 0 - ag]

]

)

+ sinﬂt[-x(vw-vi) + 6Vz
- ax1}/R2
VR = (Vv ) /RO + {avy+ cosqt[-g 8V, + rx]
+ sinﬁt[Bo(D-SVx)
- r$11/Re (10)

where the fluctuating part of the wind turbulence
has been written as 8V to shorten the expressions.
These expressions have also been linearized assum-
ing small displacements, and wind fluctuations;
however, in some places the product of the static
coning angle and the wind fluctuation were retained
because of interest in their effect.

Referring f01?TQUke 3, the aerodynamic forces
parallel and perpendicular to the rotor plane may
be written as

N 2 2

dAu =5pa'c dg{-nv1J - evvvu + (l-n/Z)VV}
()

dA = l-pa' c dg{-ev2 + (4n)}V.V - =v2 2}

v o2 U IANRTI v/ '

where the 1ift and drag for a blade element have
been calculated using the static formulas with the
instantaneous velocities. In the above expressions
a' is the slope of the sectional 1ift curve

dCi/da, ¢ is the Tocal airfoil chord, n is the
ratio CDO/a', and p is the air density.

Using the wind input of Eq. (8), together with the
velocity expressions of Eq. (10) and substituting
into the aerodynamic force relationships gives
=l ¢ 2 iont -
dAIJ 5 pa ct(RQ) Rdx{A*-B [f0+fccoth+sz1th
+fc2c0529t+fszs1n2Qt]
, .
+C [go+gccosﬁt+gsswnﬂt

+gc26052§2t+95251‘n2§2t])

1
2

dA, = 7 0a'c, (R)2Rax{D'+E' [F +F cosat+f sinat
+fc2c052Qt+fszsin29t]
+F'[q0+gccosnt+gssin9t
+gc2c0529t+gszsin29t]} (12)

where the primed quantities are the aerodynamic
constants

A(x) = [0-n/2)3x(nen) Je/sc,
C'(x) = [(Z-n)X-GXJC/ct
D'(x) = [(1+n)ax-6(x*»%/2)Je/c,

B'(x) = [2nx+5>\]c/ct

£ (x)

[(lm)k-zex]c/ct
[(1+n)x-26]c/c, (13)

with x = /R = (h+£)/R, X = (V. _-v,)/RQ, and ¢

the chord at the rotor tip. Nte'that both tﬁe
pitch setting, 8, and the blade chord, c, may be
functions of x. In the above force equations the

F'(x)

is

[ I )
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subscripted T and g variables are combinations of
the wind inputs and response variables and are de-
fined as follows:

f, = r{¥ + sz)/RQ

f= -gh(-V, * 0 - a¢)/Ra

o= (Y, - ax)/Ra

fop™ -7 Y, /RQ

fop= re, /RO

S %{Yz,x V2

“1x %{Vz,z Vi x)

9y 7 (Vy -V - Pf’oézx)/Rﬂ

g, = (r+ Wyz " BoV2 /RO

o - (80(0 - VX)-ré + rVy,X)/RQ
907~ B T2

952 = By ez

2k * %(Vz,x t Y,z

£, ® %‘(Vz,z HV ) (14)

To obtain the aerodynamic coefficients for the
total forces acting on the rotor hub, the appropri-
ate ccmponents of the blade element forces, Eg.
{12}, are summed over the three blades and inte-
grated with respect to-radius for a specified in-
duced velocity distribution. This gives the net
thrust, torque, horizontal and vertical forces,
and the yaw and pitch moments, which are to be
added to the structural terms resulting in the
final equations of motion, Eq. (1). A detailed
1ist cf these equations is provided in the
Appencix.

Tre aeradynamics of wind turbines involve highly
complex flow phenomena, which require rather
sophisticated theories in order to obtain accurate
predictions. However, some fairly simple theories
making relatively crude assumptions can often give
reasonable estimates and generally can give excel-
lent insight into the physical phenomena of inter-
est. 1In this case two different wake models were
used in an effort to gain insight into the signi-
ficanze of changes in the induced velocity field
on wiad turbine response to turbulence.

For the First wake model, the induced velocity was
computed using blade element theory following the
approach of Wilson [4], and performing a momentum
balance neglecting wake rotation. This provided
the induced velocity as a function of radius,
under the assumption that the rotor axis was per-
fectly aligned with the wind direction. After
the induced velocity distribution was computed
for a given mean operating condition, it was as-
sumed to be constant and independent of turbu-
lent wind fluctuations. This model was named

the "frozen wake model.”

The second wake model was called the "equilibrium
wake." For this model, the axial fluctuations in
wind velocity are assumed to occur so slowly that
the induced velocity is the steady state value for
the instantaneous wind speed. In this situation,
the axial flow will be not only time varying but
nonuniform, because of the inclusion of the fluctu-
ating wind gradient terms in the turbulence model
of Eq. (8). These gradients could be thought of as
sTowly changing wind shears of arbitrary orienta-
tion, since their effect on the wind turbine

would be similar. To obtain an approximation for
the induced velocities of this "equilibrium wake,"
the "semi-rigid" wake model discussed by Miller

[5] was used. Miller shows that the effect of
including the induced velocity due to the nonuni-
form flow is to reduce the 1ift by a factor re-
ferrred to as the "1ift deficiency" function.

For this analysis, assuming small velocity changes,
the 1ift deficiency function was approximately

. !
i © T FTR/R(2AR, ) (15)

where X = V /RQ and 1, = 3a'c,/8mR. In addition,
the aziffuthat change iﬁ the inEuced velocity dis-
tribution led to a change in the in-plane aerody-
namic coefficients B'(x), where the change was

AB'(x) = Tt[B‘(X)F‘(X)+C'(X)E’(X)]/

{x(ZA-Aw)} (16)
Because this change is small, it was tempting to
neglect it, but all of the in-plane forces are
small so it was retained. Finally, the wind
fluctuations in the axial direction V , V and
v are associated with a change in fomettm in
ta*streamwise direction which, for the assump-
tions of this wake model, change the equilibrium
thrust, This added 1ift factor is approximately

L (17)

a =1+ A/(ZA-AW)

To incorporate these effects, the aerodynamic
coefficients B'(x), C'(x}, E'(x) and F'(x) of

Eq. (13) were modified in the following manner to
obtain the "equilibrium wake" coefficients:

B(x) =K 400 (B (x)428" (x))

e

Calx) = Rytae' (x)
Ea{x) =);ﬁX)E'(X)
FLx) =& (E" (x)

g, (1)=& 40K et (o)
Fa, (0= K 0 & (x)e* (x)

where the two coefficients Céy and Fgy are speci-
fically associated with the wind f1uc¥uations Vys
Vy,z and Vy yx. The aerodynamic coefficients A'%x)
and D'(x) are related to the mean thrust and torque
and are thus unaffected by wind fluctuations.
Computationally, the influence of the wake model
can be observed by changing the primed aerodynamic
coefficients in the blade element force relation-
ships Eq. (12).

(18)



Although both of these wake models were useful in
developing an understanding of the influence of
the induced velocity distribution on machine
response to turbulence, it is unclear whether
either model accurately approximates the real
distributions and future work is needed to
evaluate the effects of unsteady wake aero-
dynamics.

State Space Egquations

The equations of motion Eq. (1) can be written in
matrix form

[MI{XHLCIAHIKI XY = (@, #IFIu) (19)
where

T = (U V,0,x.9) =

(Q,}'= (0,7,0,0,0)

displacement coordinate

steady state

T _ - -

{U} = (Vx’Vy’vz’vy,x’Vy,z’YxZ’Er’Yr"Exz)
= wind inputs

€ T €,y cos3qt + Yox sin30t

Yo T "Epy sin3at + Yox cos3nt

Furthermore, it is possible to model each of the
nine turbulence inputs using a set of stochastic
differential equations of the form

{u} = [AJMu} + [B,T(w} (20)

where the components of {w} are white noise of
equal power spectral density, [By] is the white

noise input distribution matrix which is diagonal.

The [Aw] matrix is diagonal except for two ele-
ments

[Aw] = .
a77 30

-39 aga
I %99)
which arise as_a result of the sin3nt and cos3at
in the ¢ and Y, wind inputs. A more detailed
presentafion of the wind input model is pre-
sented in the companion paper [1].

Discarding the steady terms, it is convenient to
transform the equations of motion given in Eq.
(19) to the state space form, so that they are
written as a set of first order equations similar
to the turbulence inputs of Eq. (20). To further
facilitate the computation of results, the state
space form of Eq. {19) can be augmented with the
turbulence inputs, Egq. (20), to form a single
system of equations with white noise as the
driving input. The five turbine displacements
and their derivatives together with the nine
turbulence inputs will form the state vector for
this augmented system. The governing equations
can then be written

90

{x} = [A}(x} + [B]{w}

{y} = [c]{x} (21)
where
(1x) [0] [1] [o]
. -4 -f =
{x} ={{X} [A] = |-[MIIK] -[MILK] [MJLF]
[{u} [0] (o] (A,]
Fx
- F
(0] M
(8] = (8, ] {y} = géwe = outputs
Ny {x}
(k] {o]
[c] = (00 ..ch.. 0) = response matrix
[1]

With this formulation it is a relatively straight-
forward numerical procedure, to determine the com-
plex eigenvalues of the A matrix and then to com-
pute the modal matrix, which is made up of the
associated eigenvectors. The modal matrix can then
be used to decouple the equations of motion, so
that transfer functions between any of the nine
white noise inputs and any output, yj, may be
easily computed. These transfer functions account
for differences in the energy level for the turbu-
lence inputs, {u}, so that a comparison of the
transfer function magnitudes provides a direct
estimate of relative importance. The final re-
sult uses the central equation from random
vibration theory, which states that the spectral
gensity for any of the outputs {y} will be given

y

_ )
{Sy(w)} = [lHyw(w)l 115, (w)}

for uncorrelated inputs, where {Sy(w)} is the 2
spectral density of the outputs {y}, [[Hyw(w)l ]
is the matrix of the transfer functions magnitude
squared and {Sy(w)} is the spectral density of the
white noise driving inputs, which are all equal.

Results

To determine the influence of the turbulence in-
puts modeled in this work two wind systems of
vastly different size were examined. The smaller
machine, called the Mod-M, was an 8 kW turbine,
with a three bladed rotor located downwind of the
tower, and designed for free-yaw operation. The
specific characteristics are as follows:

(AR R B ]
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Hod-M

Rotor Characteristics:

Rotor Radius 16.67 ft
Blade Chord {constant) 1.5 ft
Coning Angle 3.5°
Blade Twist 0.0°
System Frequencies:
1st Bending (fore-aft) 15.1 rad/s
2nd Bending (fore-aft) 53.1 rad/s
1st Side to Side 15.9 rad/s
Aerodynamic Properties:
Lift Curve Slope 5.7
Drag Coefficient, CDO .02
Sta1l not Modeled
Operating Conditions Used:
Wind Velocity {mean) 16.63 MPH
Rotor Speed (mean) 73.35 RPM
Pitch Setting {to ZLL) 3.0°
Turbulence Length Scale 300 ft
Rms Turbulent Intensity 2.03 ft/s
Approximate Output 6 kW

Selected analysis results for this situation are
shown in the power spectral density plots of
Figures 4 through 6. The figures clearly illus-
trate the difference in response for the two wake
models. For forces and moments which are highly
dependent on the streamwise velocity such as
thrust, the equilibrium wake assumptions give a
larger response, as shown in Figure 4. This
figure also indicates a significant response at the
two system fore-aft bending frequencies. Figure

5 shows the yaw response, while Figure 6 gives

the pitching moment response. These two figures
indicate the degree of coupling between pitch and
yaw for this free-yaw turbine. Notice that as

the yaw response increases, there is a correspond-
ing increase in the pitching moment. Figure 6
alsc shows a small response peak at 3, which is
the result of the sin3nt and cos30t in the e, and
Yr inputs.

The second wind system to be analyzed in this
study was a large turbine called the Mod-G. The
Mod-G was 2.5 MW turbine with a three bladed rotor
located upwind of the tower, and was designed for
fixéd-yaw operation. The specific characteristics
of this system are:

Hod-G

Roter Characteristics:

Rotor Radius 150 ft
Blade Chord (linear taper) 7.74 ft
at hub to
3.15 ft
at tip
Coning Angle 4°
Blade Twist (linear) 8°

21

System Frequencies:

1st Bending (fore-aft) 2.75 rad/s
2nd Bending (fore-aft) 12.8 rad/s
1st Side to Side 2.9 rad/s
2nd Side to Side 9.5 rad/s
Aerodynamic Properties:
Lift Curve Slope 5.73
Drag Coefficient, Cp, .008
Stall not Modeled
Operating Conditions:
Wind Velocity 20 MPH
Rotor Speed 17.5 RPM
Pitch Setting at tip -6.2°
Turbulence Length Scale 500 ft
Rms turbulent intensity 2.44 ft/s
Approximate Power Output 1.1 MW

Figures 7, 8 and 9 shows some typical results for
the Mod-G. As was the case in the previous plots,
the system frequencies are easily identified.

The primary objective of this work was to identify
the features of turbulence which are most important
in wind turbine design. 1In an effort to focus on
these key features, the response at specific sys-
tem frequencies was broken down into fractional
contributions from each turbulence input. The
most significant results of these calculations

are tabulated in Tables 1 and 2.

From these results it would appear that the most
important inputs are the three longitudinal turbu-
lence terms, and in some instances, the two in-
plane shear terms which have an effective fre-
quency of 30. An alternate means of presenting
this same information is to plot power spectral
density curves for the various outputs using only
the turbulence input Vy, and then adding the two
gradients Vy x and Vy 7. This has been done in
Figures 10 ¥ﬁrough 1¥ for the outputs previously
presented. As can be seen from these figures,

a major contribution to the machine excitation

js lost if the turbulence gradients are not in-
cluded. However, neglecting the v, and e, appears
to have only a local influence around the frequen-
cy 3.

Conclusions and Recommendations

On the basis of the work done in this study, the
longitudinal turbulence input, V,, and the two
gradients, Vy x and Vy z are of gqua] importance
when computing the dynamic response of wind sys-
tems, and these three inputs together comprise
the major excitation source for horizontal axis
wind turbines. Because of the simplifying assump-
tions and approximations used in this analysis,
it is imperative that the results and the tech-
nique be validated with experimental data, prior
to use for design.
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Table 1. Fractional response contributions of the turbulence inputs for the Mod-M using the
equilibrium wake.

Response/Input Vy Vy,x Vy,z € Yp Other
Frequency =~ 0
Side Force, Fy 0 .96 0 0 .0 .04
Thrust, F 1.0 .0 0 4] .0 .0
Pitch Homent, Mx (] .82 .12 0 .0 .06
Frequency = 15,1 (Tst Bending)
Side Force, Fy .33 .07 .56 0 .0 .04
Thrust, Fy .75 .06 .18 0 .0 .01
Pitch Moment, MX .70 .07 .22 0 .0 .01
Frequency = 30 = 23
Side Force, F, .0 .02 .69 14 13 .02
Thrust, Fy .32 .08 .52 .04 .04 .0
Pitch Moment, Mx .0 1 77 .06 .06 .0

Table 2. Fractional response contributions of the turbulence inputs for the Mod-G using the
equlibrium wake.

Response/Input v v v € ;r Other

Y ¥oX ¥,z r
Frequency = 0
Side Force, Fy 0 .06 .92 0 0 .02
Thrust, F 1.0 .0 .0 .0 0 .0
Yaw Momen¥, M, 0 .97 .0 0 0 .03
Pitch Moment, M, 0 0 .97 .0 0 .0
Frequency = 2.76 (1st Bending)
Side Force, Fy .90 .02 .07 .0 .0 .01
Thrust, F 77 .0 .22 .0 .0 01
Yaw Moment, M, 77 .01 21 0 0 01
Pitch Moment, My .76 .0 .23 .0 .0 .01
Frequency = 30 = 5.5
Side Force, Fy .01 .36 .07 .27 .27 .02
Thrust, F .06 .05 .42 .22 .24 .01
Yaw Momen¥, M, 01 .29 0 .35 .34 .01
Pitch Moment, M .0 .05 .45 .23 .25 .02




APPENDIX

Govarning Equations:

M, o n. o o |fu T, 0 Cp, C MUY [k, o k. k, d]fv)
M 13 y 1 13 i J ¥ 13 Kig
o My, 0 My, 0 iy 0ty 0 0ty 0 Ky O Ky Offv
My 0 My 0 0 Koyt fCy 0 Ly Gy 0 dept O 0 Kz Ky O £ "\
T Mg 0 My O X Cir 0 Gz Gy O |Ix 0 Kgp Kgz Kgg O]
CEEC I B | O b ey 0 0 ofly b0 0 o ofiy,
Fn 0 Ry Ry Ry 00 Fy g 0 Yy
0 Fp 0 0 0 F 0 0 Fy v,
= * Fsp 0 Fy3 Fyy Fys 0 Fay Fag O Y,
Far 0 Fa3 Py Fgs 0 Fgy Fyg O Yy x
0 Fp 0 0 0 R0 0 Fy Vs
YZX

(e L£0s3at + ? 51n39t)
-sz sin3qt + y ccs3ﬂt)

Inertia Matrix k‘

Mpp = mpy bmg +m s My o= My = =(mp +m)q

Higp = Mgy + o+ m 5 Moy = myy = Myp 5 Mag = mgz + 1,

a4 = Maq * I X M55 = Ir 3 m, = mass of rotor ; m, = mass of nacelle
q = distance from C; tower to nacelle-rotor C.G. ; Ixx and Iy, = mass moment of inertia of nacelle-

rotor system about x and y axes ; I, = rotor effective spinning inertia ; mjj = tower inertia
coefficients of Eq. (4), where for a uniform cantilever tower,

it

m., = 99 mt/420 s Mys = 156 mt/420 s M,, = 22 th/420

22
_ _ 2
My3 = I“}/3 > Mgq = th /105 , m

24

¢ = tower mass , Im = tower polar inertia

vamgping Matrix

Ciq = “f(Bo+BoFo)/2RQ 3 Cpq = -3F(aB+B F1)/20 5 Cp, = -3(C +ag E )/20

C,, = 3fF/RR ; Cyg = -3FE,/Q 5 Cqy = -3f(eo{F]+B;}+a{BO+B§FO})/29

Cyy = SfR({F2+BOSB§=}+5{5BO+BOF]})/29 3 Cap = 3fR({E]E+SOC’2‘}+5{C]+EBOE0})/2§2+Ir9
Cyy = SFULE PAIC IR, (O FEG))/20 5 Cpg = ~Caq 5 €y = o

C., = 3fC;/a 5 C

52 1 55 = 3fR32/Q+Cg H Cg = Generator torque coefficient

Stiffness Matrix

Kiy = kyp 5 Ky3® 14 =

Kiz = k33 + 3fR(BOGf+aGQ)/2 H K34 = 3fR(H]+SOaH0)/2 3 K

-3fGo/2 3 K -3fBoH0/2 H K22 = k22 H K24 = k24

H

42 = Koq

K = Ky, 3fR(BOG?+5G0)/2

43 = “Rag 3 Kgg = kyy

where kij = tower structura] stiffnesses from Eq. (3), and for a uniform cantilever tower ki = 3EI/L3 3
kz2 = 12E1/L3 ; kg = 6EI/L? 5 k33 = GI/L ; k4g = 4EI/L

27




Wind I

nput Matrix

-n
(

Q =

where
dynami

A
h
with A' through F' defined as given in Eq. (13) for the "frozen wake" or Eq. (18)

wake".

Cr=Cp-

= 3fC]/ZQ 3 F

= Fyg 5 Fa3 = -Fay 5 Fag = Fyg 3 Fas = -Fag 5 Fap = Fag 3 Fug

2 . - . = -
= 3f(BO+BoFo)/2RQ H F13 = -3f80(C0+E0)/2RQ 3 F]4 3f80F]/29

- . - 2
17 = -3fBO(C]-E])/ZQ H F.|8 = -3f(-B]+BoF1)/ZQ
3fD0 H F22 = 3fF0/RQ H F26 = 3fE]/Q H F29 = -3fF]BO/ﬂ

- 2 . - 2 -
-3F(B, (F B I+a (B +80F 1)/20 ;3 Fag = 3F((E +BCT143B {C+E })/20

= 3fR(F,#8,3F,)/20 3 Fyp = -37R(B C5+aC,)/20
2egn = , ) enas 2
= -3fR({E,-B.C5}-3B 1C;~E|1)/20 5 Fag = 3FR(B (F,-BS}+a{-B +8 F;1)/20

= Far

3fRA] 3 F52 = 3fC]/Q ; F56 = -3fR BZ/Q H F59 = 33R80C2/Q

f = l-pa'Rc (RQ)Z. The single subscript capitalized coefficients A, through H, are integral aero-

c cogfficieﬁts of the form

R
_— 7oA (x) x" dx where n = 0,1,2

for the "equilibrium

In addition, G'(x) = AB'{x) and H'(x) = AE'(x), while the coefficients with stars are B%=Bn-hBp-1,

ACn-1 and G#=6,-RGn-1, and h=h/R, a=a/R.
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QUESTIONS AND ANSWERS

R.W. Thresher

Frem: B.J. Young

G: Your results show a substantial excitation which is continuous down through zero
frequency, while J.P. Sullivan's results were zero at zero frequency. Any comment
on differences?

At Professor Sullivan used the Davenport model for the horizontal compoment of wind
turbulence which vanishes at zero frequency. We used the model suggested by Von
Karman which is finite at zero frequency; therefore, this excitation difference
at low frequency is due to the turbulence models.

From: K.H. Hohenemser

Q: How should you expect the results to change for hinged ({(teetering) blades?

A: I have not done the analysis, so I do not know exactly. I would ezpect the magni-
tude of the forces and moments to decrease significantly.

From: Anonymous

[¢H Wkat is the effect of damping on the first and second blade bending power spectra
spikes?

The blade is rigid so there are no blade resonances. The bending resonances illus-

e

trated in the plots are for the tower. The only damping in the model is aerodynamic

damping, but if structural damping were added, the response near resonance points
should be reduced.

From: R, E. Wilson
[oH] Do you plan to treat teetering rotors?
A: I would like to add teetering to the model, but at this time, our sponsor has not

indicated a etrong interest in adding this additional degree of freedom. Perhaps
after the model is validated this will be posaible.
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