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. Abstract

We outline here, the formal development of a theory of viscoelastic surface fluids with i
" bending resistance -~ their kinematuics, dynamics, and rheology. It is relevant to the mech-
anics of fluid drops and jets coated by a thin layer of immiscible fluid with ratbar general
rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechan-
ics of an elastic shell in the spirit of a Cosserat continuum.
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Introduction

Recently, Waxmanl:? has developed a formal theory of viscoelastic surface fluids in which
bending resistance was incorporated in a purely phenomenological way. Motivation for this
two-dimensional continuum theory stems from a variety of applications: interfacial stability
emulsion rheology, red blood cell deformability, and coated drop and jet mechanics.The mech-
anics of lewtonian surface fluids, accounting for the evolving surface geometry, was first
considered by Scriven3 (as detailed by Aris#), Extension to viscoelastic surface rheologies? ,
and the inclusion of bending resistancel in the formalism then followed. :

e e s e e,

Bending rigidity arises from the finite thickness structure of the fluid coating, e.g.
surface tension at the multiple interfaces of a compound drop or jet, a layer of normally
oriented rod-like molecules such as those which form the lipid bilayer membrane of bio-
logical cells, and electrically charged or polarized monolayers at a fluid interface. What-
ever the molecular origins of the bending rigidity may be, the associated bending moments
(or couple-stresses) may be included in the mechanics of the surface phase in a purely
phenomenclogical way. However, it would clearly be of interest to see if averaging tech-
niques could indeed reduce the mechanics of finite thickness fluid coatings to that of
couple-stress surface fluids. Such averaging methods unceriie the development and success of
elastic shell theory.5 The direct approach which we have adopted is motivated by the notion
of a Cosserat surface which has been exploited by the shell theorists for some time now.6

We view our model continuum as a two-dimensi al viscoelastic fluid, isotropic in the
surface, and associate with each material point on this surface a 'director' (viz. an arrow)
oriented along the local normal with its center of mass located at the surface. Changes in
surface shape imply a reorientation of these directors which manifests itself dynamically in
two ways: reorientation corresponds to curvature changes which generate bending moments, in
addition the rate of reorientation corresponds to an internal angular momentum of the sur-
face phase over and above any surface vorticity. We shall see that the director dynamics
enters into the surface equations of motion through an asymmetric surface stress tensor and
a transverse shearing stress.

There are three distinct facets to the formulation of surface continuum mechsnics and we
shall try to outline here the important ideas and results associatcd with each: the kinemat-
ics of evolving surface geometries, the conservation laws governing the mechanics of surface
continua, and the rheological equations of state ggverning the surface stress and moment
tensors. Further details may be found elsewhere.l"

Evolving surface geometries

As the surface phase 1s generally located at the interface between two bulk fluids, mot-
ions in the bulk lead to a gistortion of the interface and hence, an evolution of the sur-
face phase geometry. In order to discuss the mechanics of surface continua we must be able

* to track the surface as it moves through space. In addition, since various key geometrical

quantities (e.g. metric and curvature tensors) enter into the dynamical equations, it is

useful to derive evolution equations for these quantities. But first we must establish a co-
ordinate system on the surface. Following Scriven3, we construct a set of 'fixed surface co-
ordinates' € («=1,2) which label geometric points on the surface. As the surface evolves,
these fixed coordinates move through space along the local normal to the surface; they are
unaffected by any flow of the surface material tangential to the surface. Associated with
these fixed coordinates are local tangent vectors @ which then define a metric tensor for
the surface a.g sge-gs. A base vector triad at each point on the surface consists of these
tangent vectors ¢, and the local unit normal # to the surface. Thus, for example, the vel-
ocity ¥ of the surface phase through space may be decomposed according to Y= y¥gye + yi*g.
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Here, p% are the contravariant components of surface velocity aud p™ (a scalar) is the com-
ponent of velocity in the direction of the local normal.

Let the surface be embedded in an inertial space described by general coordinates =x!
(i=1,2,3) with corresponding base vectors Q. The surface location is expressed by a rela-
tion between the fixed surface coordinates and the space coordinates: x/sx‘(4",t), It can be
shown that the evolution of the surface geometry through space 1s governed by the equation

é i
$ = vonl, (1)

where the local rormal to the surface has been decomposed as n-n";_ That is, the fixed sur-
face coordinates move through space in the direction of the local®normal and do so at a rate
given by the normal component of velocity of the surface phase. One may also obtain evolu-
tion equations for the metric (a,,) and curvature (b.p) tensors associated with the fixed

surface coordinate system.

o
%%‘ - ,,m)“ - V"”b:b,, 3

Equation (2) expresses the fact that a normal velocity distribution over a curved surface
leads to a stretching of the fixed surface coordinates (viz. the radial expansion of a
spherical surface). Equation (3) describes geometric shape changes via an evolving curvature
The first term, being the second covariant derivative of the normal velocity over the sur-
face, leads to new geometric forms (a first derivative would only e:.prrss a tilting of the
surface). The second term in (3) incorporates the effects of a changing surface metric in
the shape changes (e.g. an expanding sphere has a changing radius o% curvature though it re-
mains spherical). Simple evolution equations may also be derived for the tangent and normal
vectors as well as the Christoffel symbols of the fixed surface coordinate system. As may be
seen from equations (1) - (3), the evolution of the surface geometry may be decoupled from
the tangential flow of the surface phase in so far as it depends only on the noraal compon-
ent of velocity. However, the normal velocity is implicitly coupled to the tangential flow
through the equations of motion governing the surface phase.

Surface equations of motion

The surface equations of conservation of mass, momentum, and angular momentum may all be
derived in the fixed surface coordinate system through the use of the Reynolds transport
theorem generalized to surface flows. If we may neglect mass exchange bhetween the surface
phase and the neighboring bulk fluids on the timescales of interest, then the conservation
of surface mass leads to the following continuity equation for the surface mass density y:

g-th (1 vY),¢ - 2Hv™7r =0. (t)

The first two terms in (4) resemble those found in the continuity equation for bulk fluids.
The third term is associated with the stretching of the fixed surface coordinates (cf. eq.2)
H=kb: being the local mean curvature of the surface. If we bring this term to the right-hand
side of (4) it appears as a 'mass sink' (H< 0 for a sphere) in that it represents a fixed
amount of mass being spread over an ever increasing surface area (for H<0 and y™50) .

The conservation of linear surface momentum leads us to the following equations of motion
for the surface continuum. They may be thought of as dynamical boundary conditions which
couple the adjacent bulk phases.

YA = (544 2G%) + (T*, - 9%} ) (5a)
FA® = (5™ 136"™)+ (TP by -9% ) (5b)

The right-hand sides of (5) closely resemble the equilibrium shell equations.5 They repre-
sent the net tangential and normal forces acting on an element of surface. The surface
stress tensor Tﬂs and transverse shear stress will be discussed further below; they mani-
fest themselves in local stress vectors (forces per unit length) acting on a curve bounding
a small element of surface, T¥# leading tc an in-plane stress, #* corresponding to a stress
normal to the surface along the bounding curve. These are usually termed internal stresses.
External stresses act on a small element of surface and arise from body forces (e.g. gravi-
tational and electrostatic forces) represented in (5) by G=G"S« +6**2, and from the neigh-
boring bulk fluids exerting normal and tangential stresses on Ehs zurface phase embodied in
f=#8«*$™2. Expressions for §* and §“ are given elsewhere.’:3.% On the left-hand sides

2’1



it A W - . - * T e ] it

IR E B e S0 I IS, J
C‘{\;J;' ‘ e &".:',. ‘\3

OF FCOOLR QUALITY

of (5) we have the tangential and normal components of surface acceleration given by

«

A% = .ﬁ_"’" + Py - 29 ylby - y Py ™, g (6a)

™)

A= 2T 4 298y + v VALY, . (6b)
In addition to the intrinsic derivatives of velocity in equatic-. 6), tuere are terms re-
sembling centripetal and Coriolis accelerations. They arise fr. tte t.me varying base vec-
tors associated with the evolving surface coordinate system, i.¢ evolving surface is a
non-inert.ial reference frame. In equation (5b), we see how ta: . stresses conspire with
the curvature to generate a normal feorce (a generalization of place condition). Simi-
larly, the transverse shear in (5a) generates a tangentisl f£¢ - .a the curvature.

Considerations of angular momentum conservation lead to exp.essions for the transverse
:2§ar stress g‘ and the antisymmetric part ¥ the surface stress tensor T™¥ (We decompose
into a sum of symmetric and antisymmetric parts, T =764 . T&A]) We find

§=M"" + £ (Hom22,), )

T = L M™-br M™)- 2 v H™, (®

where M"™ is the surface moment (or covple-stress) tensor. In equations (7) and (8), £# is
the contravariant alternating tensor of the surface, A and ¥*™ are components of any exfer-
nally imposed torque on the surface phase {e g. magnetic couuples), and &, represcnts the
tangential components of internal angular momentum associated with the tumbling motion of
the directors. A complicated expression may be derived for @, , but what is important is
that it is determined entirely by the velocity field of the surface phase and the surface
geome:.ry (along with a presumed moment of irertia). Thus, it introduces no new unknowns into
the equatinns of motion. In urriving at (8) we have assumed that each director spins about
its local normal at a rate equal tc one-half the local surface vorticity. That is, they are
viscously coupled to their surface phase environments and henc2, there is no normal compoun-
ent of internal augular momentum. We may use (7) and (8) to eliminate"~ and TM® from the
equations of motion (5). These equations simplify enormously for slow flows where we may ne-
glect all terms associated with the inertia of the surface phase. It remalns for us to give
expressions for the symmetric surface stress and moment tensors T(¥® and M*A,

Surface rheology

We concern ourselves here with surface fluids which are isotropic in the surface, and
summarize the rheological laws discussed in detail by Waxman.l,2 Allowing the surface phase
to support an in-plane 'hydrostatic stress' in the absence of any motion, we write

TOA 2 ~Ta% + P8, (9
Here, JJ is an isotropic surface pressure (or minus the net surface tension). It is related
to the density, temperature, and chemistry of the surface phase and neighboring bulk phases
via a thermodynamic equation of state. For incompressible surface contirua, jf becomes a dy-
namic variable to be solved for along with the su:-face velocity field. (he _ymmetric tensor
J“# embodies the viscoue and elaostic components of stress. (An explicit dependence of JF on
¥ a'ready represents an area elasticity.)

The Newtonian surface fluid is the simplest e;cmple of a viscous surface phase. IL is de-
scribed by a linear relatiun between stress and rate-of-strain;

J"= Cd'?‘ S'" (10a)
C¥ = ka2 + €(a’ a* + a*Sa - a¥a¥) (10b)

with £ »nd € being coefficients of surface dilational and shear viscosity, reespectively. The
surface rate-of-strain is given by

Su=t Wi+ v,)-v™b,. an

The first term represents the rate-oci-deformation due to gradients in the tangential flow,
the second term rrpresents the geometric straining associated with the evolving suriace
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metric (cf. eq.2).

A siumple viscoelastic surface fluid which exhibits both stress relaxation in a finite
time and delayed elasticity is the 'corotational Jeffreys surface fluid' described v,

« A §

Here, C""‘ is of the form (10b), and A)g)>©Q are stress relaxation and strain retardation
time constants. The time-derivative operator in (12) represents a rate-of-change as seen
from a frame which is translating and corotating (but not codeforming) with an element of
surface material. It is the surface analogue of the Jaumarn time-derivative. Its d-rivation
and ;roperties are discussed in detail in the work of Waxman.2 Equation (12) is a quasi-
linear rheglogical law of the rate-type; nonlinear modifications of (12) have also been
discussed.

A simple law for the bending moment tensor is motivated by Hookean elasticity. It de-
scribes a surface capable of storing potential energy in bending and relates the moment
tensor to a measure of bending strain in a linear fashion;

M = BB (13)

Again, C¥¥  is of the form (10b) with k£ ard € representing independent (positive% moduli
of bending rigidity. An appropriate chcice of bending strain for surface fluids is

Kyg = =Cbys =Byg) , where (14a)

%.t@_.tuo, By =b,, at t=o0. (16b)

That is, ﬁﬁ‘ measures the deviation of qurvature from a comparison curvature B,‘ which rep-
resents an initial reference curvature 2;‘ evolved forward in time in a corotational way.
Viscoelastic moment relations of the rate-type may be constructed from (13) through the use
of the surface corotational time-derivative operator.

Cornclusions

It is hoped that the dynamical formulation outlined here for couple-stress surface fluids
will provide a useful approximation to the dynamics of thin fluid coatings in evolving ge-
ometries. Application to the mechanics of cell membranes is anticipated in the near future.
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