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Abstract 

Thermocapillary stability characteristics of a horizontal liquid layer heated from below 
rotating about a verticai axis and subjected to a uniform vertical magnetic field are ana- 
lyzed under a variety of thermal and electronagnetic baundary conditions. Results based on 
analytical solutions ta the pertinent eiyenval1se problems are discussed in the light of 
earlier work on special cases of the more general problem considered here to show in parti- 
cular the effects of the heat transfer, nonzero curvature and gravity waves at the two-fluid 
inferface. Although the expected stabilizing action of the Coriolis and Lorentz force fields' 
in this configuratioa are in evidence the optimal choice of an appropriate range for the 
relevant parameters Is shown to be critic..lly dependent on the interfacial effects mentioned 
above. 

Introduction 

In recent years there has been a resurgence of interest in understanding the origins and 
possible means of controlling convective in~tability~especially in configurations relevant to 
material sciences in general and material processing in particular within the framework of 
the current space programs. In this context some of the basic aspects of this problem area 
have been under investigation1-* by the present author. The contribution to be presented here 
is part of a continuing effort at the DFVLR to analyze some of the basic fluid dynamic 
aspects relevant to the material science configurations,especia?ly in the context of space 
experiments under reduced gravity conditions and the related ground based research. 

Since references ' - *  give the general background and raotivation for the particular problem 
considered here and cite the relevant literature, we shall restrict ourselves here only to 
a resport of some of the recent results obtained and discuss them in the light of those avail- 
able in the literature. While references 1-4 deal exclusively with the zero gravity siha- 
tion, we consider here specifically the simultaneous action of surface tension and gravity 
in this classical B6nard - t4arangoni configuration. 

Formulation of the problem 

We consider an infinite, horizontal, Boussinesq liquid layer of mean thickness d rotating 
about a vertical axis at a constant angular speed R and subjected to a uniform magnetic indue 
tion field Of strength Bo under various typical boundary conditions to be detailed later. 
Figure 1 illustrates the configuration schematically and is followed by a list of the symbols 
for dimensional quantities occczring in the later development. The details of the formulation 
incorporate the features introduced by Scriven and Sternling and Smith "extending the 
pioneering work of pearson'. 

Figure 1. The Benard - Marangoni configuratton 
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List of symbols 

B = Coefficient of thermal - 1 3  
volume expansion, o aT 

Y = Electrical conductivity 
AT = Applied temperature difference (TO -TI 1 
co = Amplitude of the disturbance wave at 

the two-fluid interface 
sm = Magnetic diffusivity (yvm)-' 
K = Thermal diffusivity, K/pc 
I = Disturbance wavelength, O 2 7 / ~  
p = Dynamic viscosity 

= Magnetic permeability 
v = Kinematic viscosity 
p = Density 
o = Interfacial energy at the two-fluid 

interface 
0 = Angular speed of rotation 

% = Magnetic induction field 
B, = Magnitude of the applied %-field 
K = Thermal conductivity 
T = Temperature 
c, = specific heat 
d = Mean thickness of the liquid layer 
g = Acceleration due to gravity 
h = heat transfer coefficient at the 

disturbed interface 
k k =Disturbance wave numters in the 

Yx-y-directions 
p = Time constant in the exponential 

growth/decay factor of a disturbance 
normal mode 

The liquid layer has nominally constant temperatures To, T, (To >T, ) respectively at its 
lower --d upper horizontal boundaries. For the sake of definiteness and simplicity the 
characteristics of the adjoining media are somewhat idealized. They are specified for the 
three cases @ , @ , @ of the boundary conditions (b.c. ) as follows. 

In b.c. a we take the bottom boundary as a thermally and electrically perfect solid 
conductor. In b.c. @ the bottom boundary is a thermally and electrically perfect insulator. 
In both cases the upper adjoining medium is taken as an electrically insulating gas extending 
in the z-direction to infinity. The heat transfer to the gas from the liquid layer can be 
simplified (without going into the details of $he possible flow in the upper medium) in terms 
of an effective heat transfer coefficient h(~)',' for the two-fluid interface. A detailed 
discussion of this simplification was given by pearson'. In b.c. @ we consider the situa- 
tion where the same ambient gas is present cn both sides of the liquid layer. 

The onset of convective instability in such a liquid layer with an initially uniform 
linear temperature profile can be formulated as a linear eigenvalue problem for the distur- 
bance amplitudes of the flow variables using the standard normal modes procedure8. We non- 
dimensionalize the problem usinc d, d2/vr w/d, rt/d2, 4nyrtB,/dl AT respectively as the reference 
quantities for length, time, velocity,vorticity,electric current density and temperature. 
The stability of the configuration with respect to an infinitzsimal normal mode of distur- 
bance may then be stated in terms of the following eigenvalue problems in dimensionless form. 

where D 5 (l/d) d/dz and W, Z, XI e are respectively the dimensionless disturbance ampli- 
tudes of the z-components of velocity, vorticity and electric current density and of tempe- 
rature. 

The boundary conditions are to distinguish not on;y between cases a , @ , @ specified 
earlier but also as to whether the neutrally stable osc!.llatory (p, # 0) or atatlonary (pl= 0) 
modes are considered while determining the stability boundary for the confiquration. 

(a )  Neutral modes oscillatory (pl # 0) 

B.c. 0 W(0) = O  =DW(C) = 0(0) = Z(0) =DX(O) 

B.c. @ W(0) = p , ~ ,  (Kinematic condition at the two-fluid interface) 
a- 

hd For Nu = K ~ T  a 0 



For Nu = 0 

DO(@) = O 

B.c. at z = d for cases a, 0 ,  @ are of the same form as those for case @ at z = 0. 

(b) Neutral modes stationary (pi = 0) 

The conditions (1 11, (1 2) r. >eve are to be replaced by 

~ ( 0 )  = 0 (which covers also ( 7 )  above) (1 3 )  

Agarn the b.c. at ?: = d are of the same form for cases @ ,  0, @ as those for case @ 
at z = 0. 

The dimensionless numbers occurrinq in the above formulation are bo = pgd'/o (Bond), 
Cr = ~p/od (crispation), Ma = ! (ao,'a~) AT' / V K  (Mara- .:oni), Nu =dh/RAT (Nusselt) , Pr = v / r  
(Prandtl) , Pr, = v/qm (magnetic Prandtl) , Q =  id' / u  (Chsndrasekhar) , ~a = g ~ h ~ d '  /VK (Rayleigh) 
Ta= 2nd2/v (Taylor), a =  2nd/I (disturba~re wave number), p = pd2/v (frequency factor for 
oscillatory disturbance mode), p, = Prm.q, p, = Pr*pl . The last four parameters are characte- 
ristics of a disturbance normal mode in the hydromagnetic thermocapillary stability discus- 
sion of the configuration whereas the first nine describe the basic configuration. 

~rief lyS,' the boundary conditions ( 5 )  , (6) state the no-slip condition and the thermal and 
electromagnetic sroperties associated with the boundaries where,- ( 8 ) , ( 9 )  cover the require- 
ment~'~' of stress balance along and normal to the two-fluid intrrface incorporating the 
thermocaprllary terms and also taking into account the nonzern in+*-rfacial curvature (Cr), 
gravity waves (Bo) and heat transfer contribution at the disturbed i1:tcrface (Nu). 

The existence of oscillatory modes in this configuration especially at large Ta 1s well- 
known for the buoyancy-driven case8 and ..*as also demonstrated in the surface tension-driven 
case. Tlie oscillatory modes become important at low Pr but it wan found' that at least for 
Bo= 0 the incip!ent instability is stationary rather than oscillatory since the correspond- 
ing critical Marangoni nmber is higher than that for the stationary mode which is independ- 
ent: of Pr. It turns out. rhatfor small 50% 0 the critical Mac tends to decrease and ac+ 0 
with large Ta whereas the oscillatory modes were shown b asymptotic analysis1 to occur at 
large Mac* Ta r> 1 , as a shcrt wave instability with a* h. Thus we have some plauaiblc 
evidence to suppose that in this configuration, where the effects of the magnetic field 
(Q# 0) which inhib~ts the onset of buoyancy-driven oscillatory modes (for Pr. Prm) are 
also included, the stationary modes precede the oscillatory ones at onset of instability 

Since the practical interest in the present inves~igaticn lies ultimately in the suppres- 
s& of convective instability '" ; consider here the case R = 0 ~n the followiny. It, 
however, the solution of the complete eiqenvalue problem with p, # 0 posed above does lead 
to oscillatory modes we have then only to compare the corresponding minimum critical 
Marangoni number with Mac computed here. Mac is in any case an upper bound for stability of 
the configuration. 

The stationary modes of convective instability are given by nontrivial solutions to the 
homogeneous boundary value problems given by (1) - (10) , ( 1 3 ) ,  (14) for the different cases 
,? , @ ,  @ .  The secular conditions for the existence of nontrivial solutions to the 
respective homogeneous boundary value problems have been obtained by using the exact znaly- 
tical solutions (combinations of trigonometric and hyperbolic functions) of (1) - (4) in the 
appropriate boundary conditions. The neutral stability characteristics of the configuration 
are then analyzed from the resulting transcendental secular relationship in terms of the 
dimensionless parameters of the problem. Zince we have a large number of dimensionless groups 
here,wcs shall have to choose a suitable range of their values with some class of applications 
in view. As indicated in references1-' the interface curvature effects are already in evi- 
dence for such small values of Cr= l~-~,liJ-' yielding stability charscteristics quite differ- 
ent frcm those for C r =  0. Using the thermophysical property data available in the literature 
9 - 1  1 the parameter ratio Bo/Cr zgd3/vr at g =  9.81m/s2 with d = m m  has values of 0(10') as 



shown in Table 1 for some substances of intereat 

Table 1. Typical values for Bo/Cr 
Silicone oil Cu-melt Al-Cu-melt GaAs-melt Si-melt 
( DOIJ-Corn ins 

The corresponding values for different levels of gravity and the opriate size of the 
layer for experiments in space missions can be estimated from Table 1. We can also use them 
for estimating parameters sup\ as Ra and Bo say by choosing C r =  lo"', lo'* to demonetrate 
the effects of nonzero inter.acia1 curvature. It is found that Cr- lo", lo-' for Silicone 
oil (Dow-Corning 200) l o  , used frequently for convection experiments, when d - mm, cm respec- 
tively. Thus for experiments in a terrestrial laboratory in the mm size and in an orbital 
laboratory in the cm range can be covered by considering Bo - 0.05, 0.5 and Cr = 10" , 1 0'' 
to emphasize the effects of interfacial waves. Table 2 gives some representative values for 
Q and Ta. 

Table 2. Values of Q at B, = 0.5 tesla and Ta at n = 500 rpm for d = m m  
Silicone oil ~l-melt GI As- sl-melt cu-melt 

Results and discussion 

The eigenvalue relationshi s giving the stability characteristics of the present configu- 
ration under b.c. a, , 6 have been obtained by investigating vario~s special cases: 
T a = O ,  Qd0;'Taf 0, 9 1  ; Ta,Q>>l;'~a*l, Q = O ,  p, $ 0 '  all with P.a=O=Bo i.e., under 
zero gravity bringing out the essential differences between C r =  0 and Cr# 0. 

I l u.! I.#/"- J 
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Figure 3. Variation of Mac with rotation 
(Ta) and magnetic field (Q) neglecting 
interfacial effec s (Cr = 0 = Nu) under zero 
gravity for b.c. 6, a, 0 .  

7 
Figure 2. Neutral stability curves for the onset 
of thermocapillary convective instability in a 
liquid layer under zero gravity: Effects of inter- 
facial curvature (Cr) and heat transfer (Nu) unter 
the influence of (a) rotati n alone and (b) mag- 
netic field alone for b.c. &. 
The unetabla domain is above the respective curves. 



Figure 2 shove the neutral stability curves of the present configuration under the action 
of (a) rotation alone and Ib) magnetic ficld alone for different Ncl, Cr at Bo= 0 -  Ra for b.~. a. We notice first of all the radical departure of the stability characteristics for Cr Z 0 
from those of Cr= 0, namely, that there exists strictly speaking no minimum critical Maran- 
goni number when Cr # 0 as wao first shown by Scriven and Sternling ' for Ta = 0 Q. Asymp- 
totic analysis in the limit a +  0 shows that Ma% f (Ta,Q) (~u+l)/a' ,a+ 0 for Cr = 0 whereas 
Ma % g (Ta,Q) (Nu+l) a2 /Cr , a + 0 for Cr # 0 under b.c. a. The numerical results shown cop Zirm 
this limiting behaviour as well (note the linearity of the curves for small a). The above 
formulas incidentally include the factor (Nu+l) missir?g in those of reference 5 (Table 1, 
p.333) for Ta=O=Q. 

For sufficiently small cr/g (Ta,Q) we may speak of (. quasi-critical Maranqoni number Mac 
which is approximately equal to that calculated 3sing Cr = 0 in earlier literat~re'~~'' . Since 
the unstable long wave band increases in size with Ta and Q (for Ta ,zl , Q < <  1; Ta<<l, Q7>l 
respectively the correspondinq band widths are O(Crfi) and O(Cra), Cr must indeed accord- 
ingly be smaller for this approximation to hold at higher Ta, Q. As shown in Figure 2 the 
effects of heat transfer (NuZO) at the two-fluid interface are stabilizing in that the 
unstable domain is pushed upward along the Ma-axis with increasing Nu. 

Figure 3 shows the monotonically increasing stabilization pot'ntially to be achieved by 
increasing rotation (Ta) and magnetic field (Q) under the three t.ypic.1 b.c. @ , , @ 
which, it may be noted, are in decreasin9 order of stability amcngst themsel*?es. T.e results 
shown agree with those in references 12,14 for Cr= 0. Asymptotica1:y Ma, 1 O(Q) for 1 , 
Ta t r  1 and Mac =O(Ta) for Ta7, 1 , Q << 1. Note that the asymptotic range is attainec! faster 
by Ta than by Q due to the influence of rotation on the flow field in general and vorticity 
in particular. The differences between +.he b.c. perdc;ist longer Cn the case of magnetic field. 
The situation is analogous iri the case of buoyancy 

Apart from their formal interest the results shown in Figures 2 ,  :- for Cr= 0 may also be 
seen as useful approximations for sufficiently mall Cr an2 at low levels of gravity provided 
the long wave instabilities are considered relatively harmless. The relevant ranges of the 
parameters will become apparent in the later discuss{~n. 

1. 
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Figure 4. ,Neutral stabil- Figure 5. Correlation of the critical Marangsni 
ity curves for b.c. @ with number Mac with Bo/Cr £0: b.c. @ with Nu = 0, 
Nu= 0. Bo= 0.05 at low grav- Ra= 0.1 at C r =  lo-', 10- ; Bo= 0.01, 0.05 
ity (Ra = 0.1) for different 
Ta (Q= 0.1) and Q (Tar 0.1) 

Figure 4 shows the further departure of the rdtability characteristics of thconfiguration 
from those at Cr= 0 when* consider low Bond number and crisps5;un effects together. We no- 
tice first of all the reinstatement of an absolute minimum c-itical Mac for the onset of 
convective instability as was first shown by Smith for Ta 0 - Q . The neutral atability 
curves for Cr = 10"show two minima, one at a = 0 and the 0th.:~ at f lnite a. Even for Cr 10" 
the same feature can be reproduced at Bo - 0 . 5 .  This is due to the fact that the long wavy 
stability characteristics depend on the ratio Bo/Cr and not individually on Bo,Cr. The 
occurrence of double minima has been confirmed for Bo/Cra 200. The lesser of the two minima 
is then the critical Mac for the onset of instability. For small Ta(e25.8) and small Q(e18) 
we observe that the critical wavelength l c  corresponding to Ma is finite whereas at higher 
Ta and Q , lc is infinite at onset of instability. It may also %e mentioned that w3en 1, is 



f i n i t e  it does  correspond t o  t h e  va lue  f o r  C r =  0. Hac c l e a r l y  d e c ~ e a s e s  monotonical ly  w i t h  
l a r g e r  Ta,Q and t h e  corresponding X c  is t h e n  i n f i n i t e .  Thus, a l lowinq  f o r  g r a v i t a t i o n a l  
waves and c r i s p a t i o n  e f f e c t s  l e a d s  t o  long wave i n s t a b i l i t y  a t  a low b u t  f i n i t e  Hac f o r  
l a r g e  Ta and Q. 

F igure  5 shows t h e  c o r r e l a t i o n  o f  Mac w i t h  B0/Cr f o r  b.c. (9 w i t h  Nu= 0,  Ra= 0.1 a t  
C r =  lo", l o - * ;  Bo= 0.01, 0.05. Along t h e  con t inuous  p a r t s  of  t h e  c u r v e s  1, is i n f i n i t e  and 
along t h e  broken ones  lc i s  f i n i t e .  The l a t t x  s i t u a t i o n  is  found t o  occur  a t  low Ta(e25.8) 
and Q e Q* (Q* = 18, 12, 8.5 r e s p e c t i v e l y  f o r  Ta = 0.1, 15, 20) ani! l a r g e  enough Bo/Cr . The l a s t  
p r o v i s i o n  is t o  be  recognize: a long t h e  curves  f o r  T a <  26 where t h e  r e s p e c t i v e  c u r v e s  s p l i t  
o f f  a t  Q* i n t o  two branches  app ly ing  s e p a r a t e l y  f o r  Bo= 3.01 ( X c + u )  and Bo= 0.05 ( k c f i n i t e )  
eventhough both correspond t o  t h e  same v a l u e  o f  C r =  lo'*. For l a r g e  enough Tc and Q v a l u e s  
t h z  c o r r e l a t i o n  wi th  ~ o / C r  is u n i v e r s a l  and a,=O. Furthermore we n o t i c e  t h a t  a t  l a r g e  
Q(s800) a l l  t h e  curves  f o r  T a 1 5 0 0  merge. T h i s  i m p l i z s  a c e r t a i n  " s a t u r a t i o n  e f f e c t *  as f a r  
a s  t h e  i n f l u e n c e  of  r o t a t i o n  is concerned w h i l e  a c t i n g  t o g e t h e r  w i t h  t h e  magnetic f i e l d  as 
a s t a b i l i z i n g  agent .  

f '  
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Figure  6. V a r i a t i o n  of Ma w i t h  rc- F i g u r e  7. V a r i a t i o n  of  Mac w i t h  Bo,  
t a t i o n  (Ta) and magnetic f t e l d  ( Q )  C r ,  Nu f o r  b.c.  a 
f o r  b.c. @ with  Nu = 0 

F igure  6 shows t h e  v a r i a t i o n  of Mac w i t h  Ta and Q (225) wherein t h e  monotonic d e c r e a s e  o f  
Mac i s  t o  be noted even f o r  Bo/Cr= 500 i n  c o n t r a s t  t o  t h e  i n i t i a l  i n c r e a s e  observed i n  Fig-  
u r e s  4, 5 f s r  lower Ta, Q. ( I n  F igures  6 -  8 t h e  r e s p e c t i v e  c o n s t a n t  parameter  v a l u e s  are 
i n d i c a t e d  i n  t h e  i n s e t . ) .  The computations snow t h a t  Mac h a r d l y  changes  w i t h  Ra. I n  f a c t  
f o r  C r =  lo", Bo= 0.05 t h e  upper r i g h t  quadran t  o f  F i g u r e  6 shows t h a t  even up t o  F a =  1000, 
Mac is t h a t  g iven  by t h e  long wave l i m i t  (Ma)a,O. However f o r  h i g h e r  Bo/Cr (=SO0 shown) t h e  
buoyancy e f f e c t s  become n o t i c e a b l n  from R a  > 300 f o r  Ta = 0.1, 10 a t  Q =  25 s i n c e  now Q* in -  
c r e a s e s  f o r  T a =  0 .1 ,  10 from 18, 12 r e s p e c t i v e l y  a t  low R a  (= 0.1) tc  47, 46 a t  moderate 
Ra ( = 1 0 0 0 ) .  Th i s  is i n d i c a t e d  i n  t h e  lower r i g h t  hand quadran t  o f  F igure  6. Th i s  l a t t e r  
range,where b-~oyancy e f f e c t s  become n o t i c e a b l e , i s  d i s t i n  u i shed  by t h e  broken curve  a long  
which ic is f i n i t e .  (The curves  f o r  Ta = 0. I ,  10 a r e  hardTy t o  d i s t i n g u i s h  o? t h e  scale drawn 
b u t  they end,when e x t e n d e d , r e s p e z t i v e l y  a t  approximately  Q , =  16.5 and 13.2 on t h e  Q-axis . )  

Figure  7 shows t h e  c o r r e l a t i o n  o f  Mac with(Bo/Cr) (Nu+l) f  (Tar  Q)  f o r  d i f f e r e n t  combina- 
t i o n s  of  Bo, C r ,  Nu. The c o e f f i c i e n t  f u n c t i o n s  f  ( T a , Q )  shown have been confirmed numeri- 
c a l l y  f o r  v a r i o u s  combinations of  t h e  parameters  a s  long as t h e  buoyancy e f f e c t s  a r e  n o t  
n o t i c e a b l e .  The " u n i v e r s a l i t y "  of t h e s e  c c r r e l a t i o n  f u n c t i o n s  depends s l i g h t l y  on  t h e  para-  
meter range bu t  i s  found t o  be w i t h i n  a few p e r c e n t  a t  + =  0.02 chosen t o  r e p r e s e n t  t h e  l i m i t  
a + O .  Another f e a t u r e  t o  be noted from F i g u r e s  4 -  7 is t h a t  a c + O  a s  T a , Q  i n c r e a s e  and 
a,=O f o r  a l l  Ta, Q g r e a t e r  than  some n o t  t o o  l a r g e  a va lue .  T h i s  is i n  c o n t r a s t  t o  t h e  
common f i n d i n g  of  t h e  e a r l i e r  s t u d i e s  12"' (wherein C r  was s e t  e q u a i  t o  z e r o  a p r i o r i )  , 
namely, t h a t  a, i n c r e a s e s  w i t h  Ta and Q. Eere  we s e e  t h a t  a s  long a s  t h e  buoyancy e f f e c t s  
do no t  dominate , the  s t a t i o n a r y  form of i n s t a b i l i t y  s e t s  i n  on ly  a t  ac = 0 f o r  s u f f i c i e n t l y  
l a r g e  Ta and Q. 

Now w e  t u r n  t o  t h e  e f f e c t  of t h e  boundary c o n d i t i o n s  on t h  s t a b i l i t y  c h a r a c t e r i s t i c s  af 
t h e  conf igura t ion .  I n  a l l  t h e  t h r e e  c a s e s  of b .c .  a, @, t h e  same t r e n d s  i n  t h e  v a r i a -  
t i o n  of  Mac a r e  observed f o r  low R a .  Mac i s  p r o p o r t i o n a l  t o  Bo/Cr and d e c r e a s e s  monotonically 



with  Ta, Q f o r  low Bo/Cr as demonstra ted i n  l i g u r e  8 ( a )  f o r  So/Cr = 10,  100. 

F igure  8 ( a ) .  E f f e c t  of boundary cond i t ionscm t h e v a r i a t i o n  of Mac a t  Bo/Cr= 10, 100 

F igure  8 ( b ) .  E f f e c t o f  boundary c o n d i t i o n s o n  t h e v a r i a t i o n  of  Ma, a t  Bo/Cr = 500 

a l s o  n o t e  t h a t  a t  low Ta and Q, Ma, f o r  b .c .  @ i s  h i g h e r  t h a t  t h a t  f o r  b .c .  @ and the 
l a t t e r  i n  t u r n  i s  h i g h e r  than  t h a t  f o r  b .c .  @ . T h i s  i n d i c a t e s  t h e  d e c r e a s i n g  degree  o f  
s t a b i l i , . , i m & : t e ~ b y  t h e  degrees  of  freedom allowed by t h e  t h r e e  t y p e s  of  boundary condi-  
t i o n s  i n  t h a t  o r d e r .  T h i s  f e a t u r e  is s i m i l a r  t o  t h a t  f o r  t h e  buoyancy-drive; 
convec t ive  i n s t a b i l i t y 8  a l ~ h o u q h  t h e  boundary c o n d i t i o n s  t h e r e  a r e  d i f f e r e n t .  For  l a r g e  Ta 
and Q,  however we n o t i c e  ( c f .  Q ,500, o r  T a =  500) t h e  boundary c o n d i t i o n s  can no longer  be 
d i s t i n g u i s h e d  from each o t h e r .  I n  t h e  p r e s e n t  c a s e  t h e  r o l e  of  t h e  b - c .  i s  f u r t h e r  enhanced 
v i a  t h e  dependence on Bo/Cr. The lower Bo/Cr, t h e  l e s s e r  i s  t h e  i n f l u e n c e  of  b.c.  even a t  
low Ta,Q ( c f  . Ta = 1 ,50 f o r  Bo = 0.01 , C r  = 10" shown by dashed c u r v e s  i n  t h e  lower p a r t  of  
F igure  8 ( a )  . ) 

Complementary t o  t h e  r e s u l t s  i n  F igure  P ( a )  t h o s e  i n  8 ( b )  demonstra te  t h a t  f o r  l a r g e r  
Bo/Cr ( =  500 f o r  t h r e e  d i f f e r e n t  combinations of  Eo,Cr) a  more pronounced e f f e c t  o f  t h e  
boundary c o n d i t i o n s  on t h e  v a r i a t i o n  o f  Mac and i n  p a r t i c u l a r  t h a t  Mac can d e c r e a s e  a s  w e l l  
a s  i n c r e a t l  wi th  Ta and Q depending on t h e  range of parameters .  Again a t  l a r g e  Ta, Q t h e  
a s t i n c t i o n  between t h e  boundary c o n d i t i o n s  d e c r e a s e s .  

Conclusions  

The o n s e t  of s t a t i o n a r y  convec t ive  i n s t a b i l i t y  dr iver ,  by both d e n s i t y a n d  sur face - tens ion-  
g r a d i e r t s  i n  a  h o r i z o n t a l  l i q u i d  l a y e r  hea ted  from be 'ow can be suppressed by means of  r o t a -  
t i o n  about  a  t r a n s v e r s e  a x i s  and by a  t r a n s v e r s e  magt2 t i c  f i e l d .  But t h e  s t a b i l i z i n g  i n f l u -  
ence of  t h e s e  two agenc ies  is s u b j e c t  t o  cons ide rab le  q u a l i f i c a t i o n s  i n  view of t h e  e f f e c t s  
of c u r v a t u r e  and g r a v i t y  waves a t  t h e  two-f luid  i n t e r f a c e .  The l a r g e r  t h e  r a t i o  Bo/Cr, t h e  
g r e a t e r  t h e  range of  s t a b i l i z i n g  a c t i o n  i n  terms of Ta, Q f o r  a l l  t h e  boundary c o n d i t i o n s  
cons ide red  and r e l a t i v e l y  r e a t e r  f o r  b.c.  2 and 3 than  f o r  b.c.  a. The i n f l u e n c e  of  
t h e  i n d i v i d u a l  b .c .  a, , @ becomes i n  9 i s t i n g u  9 s h a b l e  a t  l a r g e r  Ta, Q and a t  lower 
Bo/Cr. S ince  Mac d e c r e a s e s  wi th  Ta, Q ( f o r  s u f f i c i e n t l y  l a r g e  Ta, Q )  and a c + O , a n  op t imal  
parameter range f o r  t h e  combined s t a b i l i z i n g  a c t i o n  o f  r o t a t i o n  and magnetic f i e l d  must be 



souqht appropriately. Allowance for heat transfer he ambient gas is generally stabilizing. 

In the low gravity situation (small Bo and Ra< 100) the buoyancy effects do not percepti- 
bly influe~lce the onset of instability except at low Ta and Q. In this range the onset of 
instability is at a finite wave number ac# 0 whi-h is independent of 60, Cr as may be expect- 
ed. (Mac corresponds otherwise to a c =  0 and as shown - Bo/Cr for Nu= O.)The general 
problem of interaction between buoyancy and surface tension will be considered in a later 
report but it seems legitimate to draw a partial conclusion on the basis of results shown 
here, namely, that the buoyancy-dominated situation tends to prefer finite wave length in- 
stability while the capillarity-do~inated situation including the effects of interfacial 
curvature and interfacial gravity waves tends to favour the infinitely long wave mode of 
instability. This conclusion is qualitatively in constrast to that of earlier studies on this 
configuration ignoring the interfacial effects altogether (50- O=Cr). This stems only from 
the nonzero Bo/Cr and d o ~ s  not explicitly depend on the (finite) value of the mean surface 
tension 

The question of oscillatory modns of instability has been bypassed here on the basis of 
asymptotic results indicating that the incipient instability is stationary for large Ta(Q=O). 
The results for the finite range of Ta and Q need of course to be examined in order to 
confirm whether Mac calculated here is indeed the aSsolute minimum critical Marangon1 nw>-r 
for the cnset of instability. 
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