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Lunar globules are smooth glassy objects which were discovered by the astronauts on the
moon. These objects are small - most are less than a tenth of a millimeter in diameter -
though some are a good deal larger. The shapes of the globules vary on a continuum from
spheres to prolate spheroids to dumbbells. Figure 1 contains two photographs, one of a
prolate globule and one of a dumbbell shaped globule,

Several theories have been proposed for their creation. All these theories assume that
molten rock is shot from the surface of the moon, solidifies in space above the moon and
then falls back to the surface.

The rotational theory which we study in this paper makes the following assumptions: The
volume of the molten rock does not change during cooling. The angular momentum is con-
served. There are no internal motions because of the high viscosity of the molten rock,
i.e., in equilibrium the globule is rotating as a rigid body. Finally, we assume that the
kinetic reaction of the globule to the forces is fast relative to the rate of cooling,
i.e., we assume that the globule reaches equilibrium at constant energy. For more discus-
sion of this theory see [1}.

Most thermodynamists would agree that with these assumptions equilibrium will be
achieved at a local minimum of the internal energy and that the relevant part of the inter-

nal energy is

et

E=5I(Q)w?2 + T - A(20)

N

Here @ is the region occupied by the globule in a coordinate system fixed in the body.
I(2) is the moment of inertia of the globule with respect to its axis of rotation. A(3Q)
is the surface area of the globule. T is a positive constant which describes the surface
tension properties of the molten rock (this number is effectively constant over wide varia-
tions of temperature), and w is the angular velocity.

We remark that from the standpoint of rational thermokinetics there is a need to justify
these claims theoretlcally. However, we will assume here that equilibrium will be achieved
at a local minimum of this internal energy expression.

We therefore consider the mathematical problem:

Iw2+ T « A(3Q) (1)

N =

Minimize: E =

Subject to: Volume (R) = V(Q) = k1 = given constant

In = k2 = given constant.

It is sometimes more convenient to consider the problem in the following eguivalent form.

_  ck,?
Minimize: E=——+AaG0) (2)
Subject to: viQ) = kl = given constant

The class of globules over which we minimize will always be some subset of the smoothly
bounded axisymmetric (with respect to the axis of rotation) confiqurations. Here axisym-
metric with respect to the z-axis means that if (x,y,z) is a point in the globule then so

is (-x,~-y,2).
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We would first like to point out that for this variational problem there is no configu-
ration for which E (or E) attains its absolute minimum, so that we can only expect to find
a local minimum. To see this, consider problem (2). Let ¢ > 0 be given. By detaching
two small identical pieces from the sphere at volume k; and placing them symmetrically on
either side of the remainder of the sphere on an axis which is perpendicular to the axis of
rotation, it is possible by pushing the two small pieces far away from the sphere to obtain
a configuration, @, such that F(n) = a; + ¢ where aj is the surface area of the sphere of
volume kj. Thus the absolute minimum %or E is aj if it exists. But clearly no configu-
ration has this value for E provided that k; # 0, since the sphere of volume k) is the only
possibility.

Applying the classical methods of the calculus of variations we obtain as the Euler-
Lagrange equation for this problem the equation:

C(p) = -(Ar? + B), {3)

where C(p) is the mean curvature of the surface 32 at the point p ¢ 29, r? = x? + y? where
we have taken the z-axis is the axis of rotation, and A and B are constants which involve
Lagrange multipliers and must be chosen to satisfy the constraints. It is reassuring to
note that this equation can be obtained directly by balancing the forces at each point on
3@ without considering the variational problem at all. Since the pressure inside the
globules must be greater than the outside pressure, we may conclude that the constants A
and B are positive. Here we have adopted the convention that inward curvature is negative.

It is possible to write this equation as a free boundary value problem for a nonlinear
partial differential equation. But this problem seems difficult to treat even numerically.
We will introduce additional symmetries into the problem so that we are led to consider an
approximate problem involving ordinary differential equations.

The oblate solutions

There exist exact solutions to (3) which are surfaces of resolution with respect to the
z-axis (the axis of rotation). By taking advantage of the assumed symnmetries, we see that
these solutions will be solutions to the free boundary value problen.

£ E" = (1+ (E9)2)(1 - 261 + (£1)2)™ (€2 + B)) (4)
£'(0) = 0: f(b) =0, £f'(b) = - =,

Here, f and b are unknown and A and B are positive constants which must be chosen to sat-
isfy the constraints. The function x = f(z) generates the surface of the globule when
rotated about the 2-axis. Remarkably, this equation can be integrated exactly in terms of
elliptic integrals. (See Chandrasehkar [2].) However, it is easier to do numerically.
These solutions while they are exact solutions to the Euler-Lagrange egquation (3), thev
almost surely are not local minima for our variational problem except possibly near the
sphere i.e., for small values of the angular momentum. Nevertheless, there is a smooth one
parameter family of these solutions for a given volume starting with the sphere (k> = 0)
and becoming more and more oblate. A convenient parameter to index these solutions is, I,
their moment of inertia. Table 1l contains some important numbers for a few members of this
family.

The approximate prolate and dumbbell solutions

Motivated by the fact that the actually occurring shapes are close to being surfaces of
revolution with respect to an axis (which we call the x-axis) which is perpendicular to the
axis of rotation, we consider the variational problem modified so as to include in the
class of possible globules only those which are surfaces of revolution with respect to the
x-axis. Now the appropriate functional to minimize is

b
I ol puy2 4 8l g2y0.2 4 oon D g /T F (£)7

+
0o 8 7

#) M 4 a, [GEEY + om £2x7 1w dx

1 2

where the function y = f(x) generates the surface of the globule by rotation about the
x-axis, p is the density, and )} and )7 are Lagrange Multipliers. Here v is treated as a
parameter. As before, both f and b are unknown. This leads to the free boundary value
problem,
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£ £ = (1 + (£f' ?)(1 - 2f(1 + (f° 2)" (Ax? + i} £2 + B) (5)

£'(0) = 0: £(b) =0, f'(b) = - =,

As before, the positive constants A and B must be chosen to satisfy the constraints. As in
the oblate case, if we fix the volume, we can generate, numerically, a continuous one par-
ameter family of solutions starting at this sphere and proceeding through prolate shapes to
dumbbell shapes with narrower and narrower necks. Again, I, the moment of inertia is an
increasing parameter along this family of deformations of the sphere. Figure 2 contains
qraphs of some of the members of this family. The volumes of all the globules in this
graph are equal. The reader is asked to compare the shapes in this figure with the photo-
graphs in Fiqure 1. Mathematically, this equation is more difficult to handle than (4).

It cannot be integrated in terms of elliptic integrals and no existence theorem is known
for this free boundary value problem. Table 2 contains extensive informaticen about this
family. The number e is defined as the thickness at the axis of rotation divided by the

length of the globule. The number, D, is defined by D = ~5§. We note that both of these
B

numbers are invariant under similarity transformations and that if a globule is a solution

to our free boundary value problem then so is any similar globule., Both Tables 1 and 2

were computed assuming that the volume is one and that the density is one.

We have, therefore, two families of deformations of the sphere each parameterized by, I,
the moment of inertia of the globule with respect to its axis of rotatic.., We denote the
oblate family by g (1) and the prolate family by up(I). For given I, the two corresponding
members are local minimum for the variational problem modified in two ways. Firet, we add
the constraint that I = const. Second, we restrict the variations allowed to be such that
they produce in the case of the oblate family surfaces which are surfaces of revolution
with respect to the axis of rotation (the x-axis) and in the prolate family surfaces which
are surfaces of revolution with respect to the x-axis. We caution that if more general
variations are allowed the prolate family globule cannot be a local minimum since they do
not satisfy (3). While the oblate family globule is also not a local minimum, at least
sufficiently far from the sphere, even though it deces satisfy (3).

The first constraint, I = constant, is eliminated by considering E as a function of I
along either of the families., We have

-
Ck,

E(1) = —= + A(T)

At a minimum for the problem where the constraint, I = constant, is dropped but the

restrictions on the variations are retained we must have g% = 0, That is I‘%% e K23.

-
-

Also we must have gfg > 0, Some simple calculations show that this condition is equivalent

to the condition YT (I’gé) ~ 0 assuming that %E = 0 at the point considered. An examina-

tion of Table 2 leads to the conclusion that these globules are nco longer a minimum beyond
globule #25. That is beyond this point the globules are clearly unstable., If this theory
is correct, the dumbbell shaped globule in Figure 1 is near the limit of stability. If it
wera much narrower at the neck it would break apart.

Comparison of the energies

We assume now that this volume of all globules is fixed at one., If ky is sufficiently
small, there is exactly one local minimum for the modified variational problems along each

of the families i5(I) and up(I). The value of E at a point where g% = 0 is given by the

expression Igé + A which forms the last column in the tables. By inspecting Tables 1 and 2
we see that for a given k; the energy, B, (k2) of the minimizing globule from the Ap(I)

family is smaller than the energy Ep(ky) at the minimizing globule from the Qg (I) family
from globules #16 or #17 on to the end of the table, while up to that point Eo(kz) is
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smaller than E,(kj). However, since there exist purturbations of any of the prolate
family qlohuleg which produce an even smaller energy there are alobules near the prolate
family which produce smaller values of E nearer to the sphere than globule #16.

We conjecture that there is a one parameter family of globules which start from the
sphere and develops essentially like the prolate family but which contains true local
minimum for the variational problem (1). (Chandrasehkar (2] expects that the oblate
sphercids are stable near the sphere and that a bifurcation occurs along this family which
contains ellipsoids with different lenaths for all three axes,)

Conclusion

The qood agreement between the actual shapes of the Lunar globules and the numerical
results in Figure 2 certainly lend some support to the rotational theory. However, since
the existence of true local minima has not been established and since the theoretical
understanding of the thermokenetics is still to be attained, there is certainly room for
doubt.

The numerical computation

The simplification of the variational problem vielis a second order ordinary differen-
tial equation (ODE) for f(x)

d:f if PO | - . A A
3—?2_‘ '(\3 (1 + (t‘ ) lil— - -’f(\) /1 + ("‘;) (A.‘(' + R + (f(x))'ﬂ (b)

and one must find a positive value of the independent variable, =ay x¢, so that the fol-
lowing boundary conditions hold

]
_a. 0. df i
= 0; f(xf) = (0 I

x=Q X=X
1

= -~ )
]

i.e., the function should start off flat from the t-axis and should cross the x-axis going
straight down.

The numerical solutionzs present in this paper were computed using 14 digit precision
BASIC on a 2-80 buased microcomputer employing twe routines from the small machine oriented
library of mathematical software, SCRUNCH [4] to selve this variant of a two-point boundary
value problem by simple shooting. 7JEROIN, a robust root finder developed by L. F. Shampine
and R, ¢, Allen, Jr. which uses a careful combination of bisection and the secant rule, was
used to find the missing end point, xg. RKF45, a fourth/fifth order Runge-Kutta-Fehlberq
method originally coded by H. A. Watts and I,. t. Shampine for solving the initial value
problem for systems of first order differential cquations with automatic step selection
and reliable ~rror control, intearated the ODEs for each trial value of xg.

The differential equations and boundary conditions were reformulated in terms of arc
length and integrated {rom x=x¢ to s=0 using a suggestion of . W. Gear to avoid the sin-
qularities present at the boundaries and the instability due to a large, positive eigen-
value of the ODE system (6) at x=x¢. Chanaing the direction of integration caused the sys-
tem to be initially stiff due to the large, negative eiaenvalue present, but this causes no
problem due to the small step sizes typically necessary to start the integration. Letting
x = x{(8); y = y(s) ™ f{x(s)), the problem actually computed was

a4 x

d o wyy o od
e 131 (AX® + B + Cy")

(dx 1 )
ds y sy
(8)
a? dx » o ? dx dx 1
a—é% - 23—— (Ax® + B + Cy*) + I (a’g S’TBT)

with boundary conditions at x¢ = x{(0):
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ax ad
x(0) = x_; =0; y{0) = 0; -
L 3,00
® and defining the total length of the arc, Spe by the condition x

x(sp) = 03 dx

y(sT) = positive;

1 9

(sT) =0

&

(10)

T

The singularity still present at the starting point X¢ due to the term g% ?i%T in (8) is

avoided by using the approximation

- (Ax2 + B + Cy2)
x=xf

y=0

dx 1
T 7 |, = (Axg + B)

which comes from using the first two terms of a Taylor series for g§ and y(s) near s=0

and the known properties of the problem.

The final BASIC program takes as input the values of the parameters A and B (using the

relation that C = A/8) and an interval (xj,x3) in which to search for the unknown x¢, the
root of the function

G(x) = g%

S=8T

obtained by integrating (8) backwards from the trial starting point x using initial condi-
tions (9) until the function crosses the y-axis. The differential equations were inte-

grated using a mixed relative and absolute error tolerance of 10™¢ and the root was found
to a similar mixed tolerance of 10-5, These tolerances were easily met using the 14 digit
BASIC now that the problem is formulated in a numerically stable manner. Once the missing

value x¢ was obtained, the initial value problem (8 and 9) was solved and the values (x,y)
obtaines at each step of the integration were plotted using a simple line-printer/plotter
routine.
Table 1
(o 20 25 50 75 150
V=]
I .12768 1.9094 .19978 .20477 .21300
A 4.8833 4.9297 4.9742 5.0022 5.0523
- %% 3.499 5.034 5.611 6.087 7.107
242 53 3235
: T .1105 .1835 .2239 .25 .
l 133 + A [ 5.505 | s.891 6.065 6.249 6.566
354



Table 2

' e D I A # r 3 Iqr A
1 1 0 .15401 | 4.8363 .26
2 1.05 .125 .15554 | 4.8367 1.09
3 1.07 .25 .15691 | 4.8382 1.98
a 1.10 .5 15934 | 4.8430 2.59
5 1.14 .75 .16181 |4.8494 3.22
6 1.21 1.25 .16694 | 4.8659 4.4
7 1.43 2.5 .18516 |4.9413 4.52
8 1.45 2.625 .18815 |4.9548 4.55
9 1.47 2.6375 | .18848 |4.9563 4.57
1o 1.48 2.6875 | .18986 |4.9626 4.46 .161 5.81
1 1.49 2.711875 | .19078 |4.9667 4.54 .165 5.83
12 1.50 2.75 .19175 |4.9711 4.50 .166 5.83
13 1.55 3,05 .20779 | 5.0433 4.38 .189 5.95
14 1.92 3.0 .23741 |5.1729 4.13 .233 6.15
15 2.02 2.875 .25021 |5.2257 3.99 .250 6.22
16 2.15 2.6875 | .26628 |5.2898 3.87 .275 6.32
17 2.15 2.6375 | .26770 |s5.2953 3.68 .278 6.33
“DumbeTT
18 2.18 2.625 .27139 | 5.3096 3.78 .278 6.34
19 2.26 2.5 2.8150 |5.3478 3.62 .287 6.37
20 2.41 2.25 .30217 |5.4227 3 42 .312 6.46
21 2.58 2.0 .32432 |5.4984 3.20 .336 6.54
22 2.67 1.75 3.4908 |5.5775 2.98 .363 6.62
23 2.95 1.5 .37758  |5.6623 2.75 .392 6.70
24 3.21 1.25 .41136  |5.7552 2.34 .396 6.72
25 3.98 .75 .50533 [5.9755 1.98 .506 6.98
26 4.66 .5 .57291 |6.1059 1.52 .500 6.98
27 6.30 .25 .65168 |6.2258 1.02 E 6.88
28 9.15 .125 .68487 |6.2595
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| Figure 1
’ Photographs supplied courtesy of Dr. Gertrude Hinsch, Department of Biolegy, University of
South Florida and Dr. H. Fertig, Max Plank Institute far Kerm Physik, Heidelberg, Germuny.
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Figure 2

The numbers appearing on the graph are values of D.
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