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Lunar globules are smooth glassy objects which were discovered by the astronauts on the 
moon. These objects are small - most are less than a tenth of a millimeter in diameter - 
though some are a good deal larger. The shapes of the globules vary on a continuum from 
spheres to prolate spheroids to dumbbells. Figure 1 contains two photographs, one of a 
prolate globule and one of a dumbbell shaped globule. 

Several theories have been proposed for their creation. All these theories assume that 
molten rock is shot from the surface of the moon, solidifies in space above the moon and . 
then falls back to the surface. 

The rotational theory which we study in this paper makes the following assumptions: The 
volume of the molten rock does not change during cooling. The angular momentum is con- 
served. There are no inte-nal motions because of the high viscosity of the molten rock, 
i.e., in equilibrium the globule is rotating as a rigid bgdy. Finally, we assume that the 
kinetic reaction of the globule to the forces is fast relative to the rate of cooling, 
i.e., we assume that the globule reaches equilibrium at constant enerqy. For more disdus- 
sion of this theory see [I]. 

Most thermodynamists would agree that with these assumptions equilibrium will be 
achieved at a local minimum of the internal energy and that the relevant part of the inter- 
nal energy is 

Here n is the region occupied by the globule in a coordinate system fixed in the body. 
I(R) is the moment of inertia of the qlobule with reswct to its axis of rotation. A(a0) 
is the surface area of the qlobule. T is a positive constant which describes the surface 
tension properties of the molten rock (this number is effectively constant over wide varia- 
tions of temperature), and w is the angular velocity. 

We remark that from the standpoint of rational thermokinetics there is a need to justify 
these claims theoretically. However, we will assume here that equilibrium will be achieved 
at a local minimum of this internal energy expression. 

Ye therefore consider the mathematical problem: 

Minimize : 1 E = -1u2 + T A(an) 
2 

Subject to: Volume(n) = V(n) = kl = given constant 

Iu = k2 = given constant. 

It is sometimes more convenient to consider the problem in the following equivalent form. 

Minimize : 

Subject to: V(n) = kl = given constant 

The class of globules over which we minimize will always be some subset of the smoothly 
bounded axisymmetric (with respect to the axis of rotation) configurations. Here axisp- 
metric with respect to the z-axis means that if (x,y,z) is a point in the globule then so 
is (-x,-y,z). 
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We would first like to point out that for this variational problem there is no configu- 
ration for which E (or if) attains its absolute minimum, so that we can only expect to find 
a local minimum. To see this, consider problem (2). Let c > 0 be given. By detachinq 
two small identical pieces from the sphere at volume kl and placing them symmetrically on 
either side of the remainder of the sphere on an axis which is perpendicular to the axis of 
rotation, it is possible by pushing the two small pieces far away from the sphere to obtain 
a configuration, n, such that F(n) = a + c where a1 is the surface area of the sphere of 
volume kl. Thus the absolute minimum )or C is a1 if it exists. But clearly no configu- 
ration has this value for provided that ka f 0, since ;he sphere of volume kl is the only 
possibility. 

Applying the classical methods of the calculus of variations we obtain as the Euler- 
Lagrange equation for this problem the equation: 

C(p) = - ( ~ r ~  + B), ( 3 )  

where C(p) is the mean curvature of the surface an at the point p e an, r2 = x2 + y2 where 
we have taken the z-axis is the axis of rotation, and A and B are constants which involve 
Lagrange multipliers and must be chosen to satisfy the constraints. It is reassuring to 
note that this equation can be obtained directly by balancing the forces at each point on 
an without considering the variational problem at all. Since the pressure inside the 
globules must be greater than the outside pressure, we may conclude that the constants A 
and B are positive. Here we have adopted the convention that inward curvature is negative. 

It is possible to write this equation as a free boundary value problem for a nonlinear 
partial differential equation. But this problem seems difficult to treat even numerically. 
We will introduce additional symmetries into the problem so that we are led to consider an 
approximate problem involving ordinary differential equations. 

The oblate solutions 

There exist exact solutions to (31 which are surfaces of rcsalution with respect to the 
z-axis (the axis of rotation). By taking advantage of the assumed symmetries, we see that 
these solutions will be solutions to the free boundary value problem. 

Here, f and b are unknown and A and B are positive constants whizh must be chosen to sat- 
isfy the constraints. The function x = f(z) generates the surface of the globule when 
rotated about the z-axis. Remarkably, this equation can be integrated exactly in terms of 
elliptic integrals. (See Chandrasehkar 121.) However, it is easier to do numerically. 
These solutions while they are exact solutions to the Euler-Lagrange equation (31, they 
almost surely are not local minima for our variational problem except possibly near the 
sphere i.e., for small values of the angular momentum. Nevertheless, there is a smooth one 
parameter family of these solutions for a given volume starting with the sphere (k? = 0) 
and becoming more and more oblate. A convenient parameter to index these solutions is, I, 
their moment of inertia. Table L contains some important numbers for a few members of this 
family. 

The approximate prolate and dumbbell solutions 

Motivated by the fact that the actually occurring shapes are close to being surfaces of 
revolution with respect to an axis (which we call th? x-axis) which is perpendicular to the 
axis of rotation, we consider the variational problem modified so as to include in the 
class of possible globules only those which are surfaces of revolution with respect to the 
x-axis. Now the appropriate functional to minimize is 

where the function y a f(x) generates the surface of the globule by rotation about the 
x-axis, p is the density, and 11, and 12 are Lagrange Yultipliers. Here u is treated as a 
parameter. As before, both f and b are unknown. This leads to the free boundary value 
problem, 



As before, the positive constants A and B must be chosen to satisfy the constraints. As in 
the oblate case, if we fix the volume, we can generate, numerically, a continuous one par- 
nmeter family of solutions startirag at this sphere and proceeding through prolate shapes to 
dumbbell shapes with narrower and narrower necks. Again, I, the? moment of inertia ia an 
increasinq parameter alonq this family of deformations of the sphere. Figure 2 contains 
sraphs of some of the members of this family. The volumes of all the globules in this 
qraph are equal. The reader is asked to compare the shapes in this figure with the photo- 
graphs in Fiqure 1. Mathematically, this equation is more difficult to handle than (4). 
It cannot be inteqrated in terms of elliptic inteqrals and no existence theorem is known 
for this free boundary \rr.lue problem. Table 2 contains extensive informatlcn about this 
family. The number e is defined as the thickness at the axis of rotation divided by the 

\ lenqth of the globule. The number, D, is defined by D = - - - -  We note that both of these 
B ~ '  

numbers are invariant under similarity transforn~ations and that if a globule is a solution 
to our free boundary value problem then so is any similar qlobule. Both Tables 1 and 2 
were computed assuminq that the volume is one and that the density is one. 

We have, therefore, two families of deformatiotts of the sphere each parameterized by, I, 
the moment of inertia of the qlobule with respect to its axis of rotatic,]. We denote the 
oblate family by i;0 (I) and the prolate family by ~p(1). 30r qiven I, :he two corresponding 
members are local minimum for the variat~onsl problem modified in two ways. First, we add 
tho constraint that 'I = const. Second, wc restrict the variotians allowed to be such that 
they prcxiucc in the case of the oblate fiunily surfaces which are surfaces of revolution 
with respect to the axis o f  rotation (the x-axis) and in the prolate family surfaces which 
are surfacrs of revolution with respect to the x-axis. We caution that if more general 
variations are allowed the prolate family globule cannot be a local minimum since they do 
not satisfy (3). While the oblate family qlobule is also not a local minimum, at least 
sufficiently far from the sphere, even thouqh it does satisfy (3). 

The first constraint, I = constant, is eliminated by considering F as a function of I 
along either of the families. We have 

At a minimum for the problem where the constraint, I = constant, is dropped but the 

d E d A restrictions on the vnricltians are retained we must have 0 .  That is = c It2?. 

qlso we must have d2E 0 .  Some simple calculations show that this condition is ~quivalent 

d . d A  dEl to the condition cn (I-=) \ 0 assuming that in = 0 at the point considered. An exnmina- 

tion of Table 2 leads to the conclusion that these qlobules are no longer a minimum beyond 
qlobule 125. That is beyond this point the globules are clearly unstabls. If this theory 
is correct, the dumbbell shaped globule in Fiqure 1 is near the limit of stability. If it 
were much narrower at the neck it would break apart. 

Comparison of the energies- 

We assume now that this volume of all globules is fixed at one. If k2 is sufficiently 
small, :here is exactly one local minimum for the modified variational problems along each 

of the families CO (I ) and np (I . The value of 6 at s point where $ = 0 is given by the 

d A expression In + A which forms the last column in the tables. By inspecting Tables 1 and 2 

we see that for a given k2 the energy, Ep(k2) of the minimizinq globule from the np(1) 
family is smaller than the energy E0(k2) at the minimizing globule from the Bo(I) family 
from globules 116 or (17 on to the end of the table, while up to that point gO(kZ) is 



smaller than 2 (k ) .  However, since chert- exist purturhations of any of the prnlato 
family glohuleg wiioh produce m even syllcr eonrqy thsrr are ulobules near the prolate 
family which produce smaller values of E nearer to the sphere thnrr qlabule C16. 

We conjecture that them is a one parameter family of qlobules which start from the 
sphere and develops essentially like the prolate family hut which contains true local 
minimum for the variational prohlcm (1). (Chandrnsehkar 121 expects that the oblate 
spheroids are stable near thc sphere and that a bifurcation occurs alonq this family which 
contains ellipsoids with different lcnuths for all three 3x0s.) 

The qood agreement between the actual shapes of the Lunar qlnbules and the numerics: 
results in Fiqure 2 certainly lend some support to the rotational theory. ttowever, sincc 
the existence of true local minima has not been establishod and since the theoretical 
understanding of the ttrermokenetics is still to be attained, there is certainly room for 
doubt. 

The simplif icnt ion of the variationill problem yiel,!s ,I second order ordinary dif feren- 
tial equation (ODE) far f ( x )  

and orre nrust f itrtl ,I positive \*,~ltic o f  ttrc indcpc~rdent v;tri.tble, say xf, so that the fol- 
lowinq boundary cund~ t ions hold 

i.e., the function should start off f l : ~ t  fr~lnr the t'-.lxis and should cross the x-axis qninu 
straight down. 

The numerical solutions prcscnt in this paper wcrc computeti usincl 14 diqit precision 
ENSIC' on a 3-00 :~i\sed microcomputer employinq two roiltines From the small machine oriented 
lrbrary of mathematical software, SCRUNCH [PI to solvc this variant of a two-point boundary 
value pl-clblom by simple shooti~rtl. 'CEROIN, a robust root f indcr dtvrloped by L. F. Shsmpinc 
and R. C. Allen, Jr. which uses a careful combination of bisection and the secant rille, was 
used to find the missinq cnd poLnt, xf. RKFPS, a fourth;fifth ordcr Runqe-Kutta-Fehlberq 
method oriqinally cndcd by 11. A.  Watts and I,. F. Pha~apinc for solvintl the initial value 
problem for $:yatems of first order ~lifferrtltial equations with autnmntic step selection 
and reliable ~-rror control, inteqratcd the OOEs for trial \*.~lue of sf. 

Thc different in! aqiiat ions and boundary cc>!rdi t ions were rcformulnted in terms of arc 
lenqth and intoqrated from x-xf to sl.0 usinq a suqqestio~r of c'. W .  Gcsr t.o avoid thr? sin- 
qularities present .at the boundaries and the instability due to a larqe, positive eioen- 
value of tht? ODE system (6) .?t x=x . c'hanqirra thc direr-ti~ln of intoqratj.)n caused the sys- 
tem to be initially stiff due to tie larue, nrqativc? eirlenvalur present, but this causes no 
problem due to the small step sizes typically necessary to start the intcqration. Lettinq 
x  = x (9) ; y = y (s) . f (x  (s) ) , the problem nctunl ly computed was 

with boundary conditions at x f  - ~ ( 0 ) :  



and defining the total length of the arc, sT, by the condition x(sT) = 0 
I 

x(sT) = 0; = -1; y (aT) = positive; 

  he singularity still present at the starting point xf due to the tern & in ( 8 )  is 

avoided by using the approximation 

which comes from using the first two terms of a Taylor series for and y(s) near s=O 

and the known properties of the problem. 

The final BASIC program takes as input the values of the parameters A and B (using the 
relation that C = A/8) and an interval (xl,x2) 5n which to search for the unknown xf, the 
root of the function 

obtained by integrating (8) backwards from the trial starting point x using initial condi- 
tions (9) until the function crosses the y-axis. The differential equations were inte- 
grated using a mixed relative and absolute error tolerance of 10'~ and the root was found 
to a similar mixed tolerance of lo'=. These tolerances were easily met using the 14 digit 
BASIC now that the problem is formulated in a numerically stable manner. Once the missing 
value x was obtained, the initial value problem (8 and 9) was solved and the values (x,y) 
obtained at each step of the integration were plotted using a simple line-printer/plotter 
routine. 

Table 1 



Table 2 



Fiqure I 

Pkotegraphs supplied courtesy of D r .  Gertrude Hinsch ,  Department af Bioloqy, University of 
South Florida and D r .  H. F e r t i g ,  Yax Plank I n s t i t u t e  fur Kerm Fhysik, Heidelberg, Gemany. 

X 

Fiqure  2 

The numbars appearins on t h e  qraph are values of D. 
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