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Capillary surface discontinuities above re-~entrant corners
N. J. Korevaar

Mathematics Research Center, University of Wisconsin-Madison
610 walnut Street, Madison, Wisconsin 53706

A capillary surface S is the (equilibrium) interface between two adjacent fluids that
are also contacting rigid walls, Because the inte:rface is in equilibrium one has
information about the mean curvature of S and its contact angle Y with the bounding
walls. The general problem in the mathematical theory of capillarity is to ase this
geometric information to deduce properties of S.

In this paper we study a particular contiguration tfor which S is the interface between
two fluids in a vertical capillary tube, in the presence of a downward pointing
gravitational field. S 1is the graph a function u whose domain is the (horizontal) cross
section 8 of the tube. The mean curvature of S is proportional to its height above a
fixed reference plane, Y is a r.escribed constant and may be taken between zero and /2.

The particular question we study here is, are there domains 8 for which u is a
bounded function but dces not extend continuously to 38? We find simple domains to show
that the answer is yes and study the tehavior of u in those domains.

In section 1 of this note we fix notation and briefly formulate the non-psarametric
capillary problem described in the second paragraph above.

In section 2 we review an important comparison principle that has been used (in the
literature) to derive many of the results in capillarity. 1t allows one to deduce the
approximate shape of a capillary surface by constructing comparison surfaces with mean
curvature and contact angle close to those of the (unknown) soclution surface., 1In the
context of non-parametric problems the comparison principle leads to height estimates above
and below for the function u. We describe an example from the literature where these
height estimates have been used successfully. We indicate areas of possible future
applications. 1In section 3 we construct the promised domains for which the bounded u
does hot extend continuously to the boundary. The point on the boundary at which u has a
jump discontinuity will be the vertex of a re-entrant corner having any interior angle

® > x. Using the comparison principle we study the behavior of u near this point.

Much of this paper uges material from the note, "Or he behavior of a capillary surface
at a re-entrant corner"® and from other sections of the Ph.D._dissertation, "Capillary
surface behavior determined by the bounding cylinder's shape"’, by this author.

Section l: The nrc¢'- arametric capillary problem

For a Lipschitz domain 8 in R?® a function u e Cz(ﬂ) N Cl(ﬁ) is a classical
solution to the capillary problem in a gravitational field if

div Tu = 2H(§,;) = Ku in &, (1)
Tu = ___Jﬁg____' Du = gradu, H(Su) = mean curvature of S,0 % 0,
/1 + IDu|2
Tu*n = cosYy on 24, (2)

0 € Y € v prescribed, n = exterior normal to 8 .

Physically s, describes the capillary surface formed when a vertical cylinder with
horizontal cross section 8 is placed in an infinite reservoir of liquid having zero rest
height. Then

K = %3 where p = density of liquid

g = (downward) acceleration of gravity
0 = gurface tension between liquid and air
c
cosy = == 9 = surface attraction betveen liquid and cylinder .

(More generally, by picking the reference height u = 0 appropriately, S5, can be the
interface between any two different density fluids occupying a capillary tube. Then ¢ is
the density difference between the two fluids, o; is the difference in surface attraction
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between the wwo fluids and the bounding cylinder, and ¢ is the surface tension between
the two fluids).

Geometrically div Tu is twice the mean curvature of the sucface 5,. In some sense this
is the averuge amount the surface is curving: Wrating the surface locally as a graph above
its tangent plane at a point P, § = $(n), then one can verify that at P div Tu is the trace
of the Hessian of ¢. The correct choice of orthogonal coordinates n (called the princi-
pal directions) makes the ilessian a diagonal matrix. Then div Tu is the sum of the curva-
tures (second derivatives of ¢) in these principal directions and H(Su) is the average.

Geometrically Y is the ccntact angle between the (downward normal to the) capillary
surface S, and the (exterior normal to the) bounding cylinder 38 x R (see Figure 1).
Thus if the cylinder is of uriform composition Y is constant. We consider that case
here. By considering the function =-u if necessary (locking at the capillary tube upside
down) we can assume

0 ¢y < w/2 ., (3)

The most natural way to prove the existence of capillary surfaces is to solve the
variational problem associated to (1), (2): u should minimize the .nergy

E(f) = [ (af1 + ID£)2 + 3% fz) -] of
0]

s !
or equivalently

T 7 kL2
E(f) = | V1 + |DE|° + = £° - [ vf, v = cosY (4)
a 2 a0

over the appropriate space of functions. The three terms making up the energy functional
are (in orderg surface energy, potential energy from gravity, wetting energ)y. Emmer’ and
Finn-Gerhardt”® have studied the existence of variational solutions tc the cavillary problem
in Lipschitz domains 8. (In particular, existence theorems are guaranteed for the
particular piecewise smooth domains considered in section 3.) When it exists the function
u is unigye, real analytic in 8 and satisfies (1) classically. Wherever is smgoth
enough {C%), u extends smoothly and satisfies the boundary condition (2) classxcall

(In particular u can never be discontinuous at a point where 38 is smooth.)

Su’ (n 0) s
v
{z = ulx,y)} N Y
(Tu, -1 ")
4141 Du'!

q
Sw
n
3 a0
Figure 1: Configquration for the Figure 2. The comparison principle: If vy <Y
non-paranetric capillary problem. on 30 (wherever v < w;, then any las¥ poixt

of contact between §, and § occurs inside
0 x R. At such a point, H(s,Y » H(s,).
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Section 2: The comparison principle

Let f# be the domain being studied for the capillary problem. Let 0 be a (bo.nded)
subdomain (possibly all of Q). Let n be the 2xterior normal to #0. For a function
u let Y denote the contact angle of S, with the subcylinder 0 x R, That is,

Tu*n = ¢ .Y, The comparison principle for non-parametric surface: -~ related mean
curvature and contact angle is:

Theorem 2.1: Let v,w € c?(0) ana suppose that
(i) wherever v ¢« w 1in (¢, div Tv < div Tw

(ii) wherever v € w on 0, Tven > Twen (i.e. T, < LY

Then Vv io iever actually less than w, v > w.

As applied to mean curvature and contact angle Theocrem 2.! js due to Concus and Finn3.
It is a special case of a very general comparison principle tcr elliptic equations with
suitable boundary conditions.

We roughly sketch the classical proof of this theorem, assuming chat 30 is smootl,
that v,w € C*(0) and that (ii) is replaced by the stronger

(ii) wherever v <w on 30, Y < Y.

(See Figure 2.)

suppose S, does not lie entirely above S, . Then lift S, until it reaches a point

Q of last contact with § . (Lifting S, does not affect its mean curvature or contact

angle with 30 x R). The condition (ii) implies that wherever v < w on 30, S, rises
more steeply than S, to meet 30 x R. Hence Q cannot be a bounaary point, on

30 x R, and must instead be contained in 0 x R. Since Q is a point of last contact

(the lifted) s, and S, are tan-ent there. But (the lifted) s, contacts S, at Q

and never lies beneath it, so we rust have H(s,) » H(s,) there. This contradicts ().

Thus §8,, did actially lie above 5§

w"

Filling in the details to the preceding proof one would see that it is only the
ellipticity of the mean curvature operator that is used (for both the boundary and interior
argurents).

There is another (less intuitive but atill simple) proof that uses the divergence
structure of the elliptic equation (1), (2). Using this proof and the fact that
ITul € 1 it is possible to sce that 30 can be Lipschitz and that the boundary condition
(ii) need only be attained in a certain weak sense. In particular the romparison principle
will hold for the piecewise smooth domains cognidered in section 3 and for the solutions
u tc the capillary prculems in these domains~”.

The specific form of Theorem 2.1 that we need for section 3 ie:

Corollaiy 2.2: Let ( be piecewise smooth. Let u,v,w € c2(0) and suppose the contact
angle for these threc surfaces exists on the smooth parts of (0. Suprose

div Tv € xv, div Tu = xu, div Tw ? «w 1in 0 (5)

< >
Y, Y. Y Y, on 0

Then v ?2 u?>w in (.

Proof: We show Vv 2 u: Condition (ii) of Theorem 2.1 is satisfied on all of (.
Condition (i) is satisfied since v < u implies AdAiv Tv € &xv < ru € div Tu. Thus Vv 2 .

Remark 2.3: Note that the comparison principle sounds backwards: If v has “less”" mean
curvature and "less" cortact angle, §, lies above §,. If w has “more" mean curvature
and "more" contac: angle, S, lirs beneath S .
Remark 2.4: One of the most successful uses of the comparison principle has bean to study
the seemingly strange behavior of capillary surfaces above domgins with corners, in the
presence of gravity. This study was undertaken by Concus-Finn® who showed that above a
corner with intericr angle 0 satisfying 6 < % - 2y, u approaches infinity as the vertex
is approached. In contrast they showed that for 6 2> v - 2y, u is bounded, uniformly as
the corner is closed. In the unbounded case they actually constructed a comparison surface
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that describes u to within a constant. The methods we use in section 3 are very similar
in spirit to theirs.

There are other instances in the literature where the non-parametric comparison
principle yields interesting height estimates, but I feel the general comparison technique
has not yet been fully utilized, as the following three remarks indicate:

Remark 2.5: Mean curvature and contact angle (i.e. capillarity) make sense in the more
general parametric setting of surfaces. The proof of the comparison principle that I
sketched roughly can also make sense in the parametric setting: If there are two
surfaces S; and S, of "known" mean curvature (known in the sense that the mean
curvature is determined by the perhaps unknown position of the surface), each making
“kaowr" contact angle with a fixed third surface S,, then by considering appropriate
families of transformations of §; relative to 8§, (not necessarily by r.gid motions),
one can conclude location bounds on possible parametric cupillary surfaces.

Remark 2.6: There is a connection between comparison surfaces such as those in (5) and the
‘enargy functional (4). Roughly speaking if f is a candidate to minimize (4) and if one
knows of supersolutions v or subsolutions w in the sense of (5) then one can assume
without loss of generality that £ lies beneath v and above w. This can be very useful
in proving existence theorems, where it is often important to bound the minimizing
sequence. For example, one - n give direct proofs_of the existence theorems for
"admissible domains" in the senge of Finn-Gerhardt” using this observation and tte direct
variational techniques of Emmer”. For parametric variational problems the connection with
the comparison principle has to do with the families of surfaces described in Remark 2.5.

I am currently investigating this area and believe it will yield existence theorems for
parametric capillary surfaces (of the type pictured in Figure 3) depending naturally on the
geometry of the fixed bounding walls.

Remark 2.7: Relatinly little numerical work has been done computing cap.llary surfaces.
(There has been some'.) The effective use of comparison surfaces can reduce the amount of
computing time needed by giving a priori brunds above and below for the candidate functions
(Remark 2.5). This can be especially useful in domains for which the capillary surface
behaves in a singular fashion but for which good comparison surfaces can still be
constructed, (fcr example the narrow wedges described in Remark 2.4 and the domains of
section 3).

_~
—

I i Figure 3: Some capillary
surfaces .

N\ [/[F

Section 3: Re-entrant corner domains

Let 6 and Y satisfy
¥ < B < 27w, 0 <y <« xf2 . (6)

we will construct a domain for which a bounded solution u to (1), (2) exists, but
having a corner of interior angle 6 at which there is a jump discontinuity in u. (The

arguments can be modified to include the case Yy = 0. If Yy = 5/2, u # 0. All other cases
reduce to one of these (3).)

Determine the domain scale by fixing R > 0 (ligure 4). Since & > ® we can pick 9
and 82 satisfying

61 > -y, wn/2> 02 > Y, 01 + 62 =0 . (7)

For positive € 1less than Rsin02, let ﬂe be a bounded domain, of which the

intersection with B3R(0) is shown in Figure 4, and which has ct boundary except at

1

Py and P;. B3g{vu) 1is the disc of radius 3R centered at the origin.)
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Figure 4: The intersection of Qe Figure 5: The subdomains Ie and II. BR(Q)
with the disc of radius 3R. is tangent to at P < is the
circle through & and Pl that hits l3

with angle Bé

Lemma 3.1: There e.xists a unique solution to (1), (2) in any Qe. It is bounded above,
no~negativz, and extends smoothly to the smooth parts of 395.

Proof: The existence, regularity and boundedness follow from the references mentioned in
section 1. The fact that u ?> 0 follows immediately from the comparison principle (Cor.
2.2), comparing u to w 2 0O on the entire domain ﬂe'

We are interested in the behavior of u near Py, as € approaches 0. We will show
that u stays uniformly bounded in one sector touching Py whereas in another it gets
un‘fornfy large. It follows that u, eventually has a jump discontinuity at Pn.

Let I_  Dbe the subdomain of ﬂe shown i1n Figure 5. Then we have

Lemma 3.2: u is uniformly bcunded in I independently of .

€ [

Proof: We use the compariscn principle, taking @ = I _. Our candidate for a supersolution
is a function v whore graph 1s a lower hemisphere lyIng above Bp(Q). 1Its contact angle
with Bp 7 38 = By is exactly ¥ - (If a plane slices a sphere the contact angle
1s the same along the gntlre circle of conéact But by (7), = - 61 < Y. Along

3BR(Q) N 8 the hemisphere is vertical, Y, = 0 < Yu since u 1is smooth there. Thus
v satisfies the supersolution boundary condition of Cor. 2.2. We must lift the hemisphere
high enough to make

div Tv € «xv ., (8)

i

But div Tv 2H(s,) = 2/R, so (B) is satisfied if
v » 2/Rx

This can be accomplished by placing the south pole at height 2/Rx. Since the lower
hemisphere varies in height by R, the comparison principle implies
u, v < 2/Rxk + R in I_ . (9)

This estimate is independent of ¢. (See Figure 6.) Q.E.D.
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Now fix 8] with Y < Oé < 02 and lev 1I. be the subregion of ﬂc as described in
Figure 5. Thgn we have

Lemma 3.3: u approaches * uniformly in IIc as € approaches zero.

€

Proof: We apply the comnparison principle with 0 = II .. Our candidate w for a

subsolution is the "underside® of a torus. We take thé unique (vertical) torus in R’
containing ¢ and C, (Figure 5). 1t is generated by rotating ¢, about an axis
parallel to t%e y-axis and going through Q;, the point midway between C, and C,. Then
in I1_ the "underside” T = S, of the torus is the graph of

)211/2 ,

wix,y) = [(R - /;2 - (y - yl)z); - x - x)

where (xl,yl) = Q. T contacts 23 x R with contact angle Bé > Y and ccntacts 12 x R
with contact angle of at least Bé. It is vertical along C; and C,; and has contact
angle Yw = % > Yu (since u is smooth along these arcs). Thus w satisfies the
subsolution boundary conditicn of Cor. 2.2. In order to be a subsolution it must therefore
be low enough to satisfy

div Tw 2 kw ,

But the mean curvature of a torus can be calculated and satisfies
1 1

> ~ -
div Tw > = - o/ - (10)
So it suffices tc satisfy (% - E—é—;) > xw, i.e.
1 .1 1]
< (? - RS r) . (11)

This can be done by placing the highest part of S at the height (11). Since the total
height of Sw varies by no more than R, we then have
1 /1 1
> 2 (= - ) -
w> il -rgT) -R
and by the comparison principle,

Rir)—R in 116' (12)

1,1
u, > w2 = (; -

But r is proportional to ¢ and R is fixed, so (12) implies that u_ approaches
infinity uniformly in 11, as « approaches zero.

Combining Lemmas 3.1-3.3 immediately yields the desired:

Theorem 3.4: For ¢ sufficiently small the solution u to the capillary problem (1), (2)
in ‘c cannot be extended continuously to the vertex of the re-entrant corner of angle 6.

One can study the behavior of u near the vertex nmore carefully. Consider for example

the particular case 8 = 3/2w, 8, ="w, 8, = /2. (This is the domain one gets by pushing

two vertically held microscope slides close together in a bowl of water.) Since u
becomes vertical near P, the capillary surface must "look like" the picture in Figure 7:
1t has essentially no curvature in the vcrtical direction and its level sets are
approximately circular arcs with curvature «xz. In fact, one can construct comparison
surfaces having exactly that form near Py (and then modified slightly near their high and
low points to conform to the comparison principle). An easy calculation then implies that
the jump in u at Py is given by

2co8Y

lim sup u (P) - lim inf ”c(P) = o

Y
P’PO P’lo
as ¢ approaches zero. For distilled water and air x is approximately 13 cm™? and
between water and glass the contact ang.e is near zerc, so that one should be able to see a
jutap of about 1 cm. by taking

+ 0(1) (13)

€~ 2/13 cm .,
This 1s quite narrow. LExperimentally, better success will be obtained by using two

fluids of approximately the same density (so that & 1is considerably reduced). (Also, for
a jump of only 1 cem. the 0(1) term in (13) could still play a dest:uctive role.)
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Figure 6: A lower hemisphere contact- Figure 7: The asymptotic behavior of U -
ing 396 x R with angle less than (lere 6 = 3’, 91 = =, 62 = w/2).

Y. The "underside" of a tcrus with

angle of contact greater than Y.

Remark 3.5: What happens in the complimentary case of convex corners? As remarked in
section 2, if © < w - 2y u approaches infinity uTiformly. Simon_has shown that in the
case ® - 2Y < 6 < 27 u actually extends to be C at the vertex®., Therefore it seems
that the only way u can have a jump discontinuity is if there is a re-entrant corner.
This is actually correct: u extends continuoysly to a point on the bou9dary of a
Lipschitz domain if the boundary is locally C or locally convex there’.
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