|
View metadata, citation and similar papers at core.ac.uk brought to you byz CORE

provided by NASA Technical Reports Server
»

2 2343¢

g Toa

Surface tension and contact angles: molecular origins and associated microstructure

H. T. Davis

¥ Department of Chemical Engineering and !faterials Science, University of Minnesota,
151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455

Abstract

Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear
boundary value problems for density and stress distributions in fluid interfaces, contact
line regions, nuclei and microdroplets, and other fluid microstructures. The relationship
between the basic patterns of fluid phase behavior and the occurrence and stability of
fluid microstructures is clearly established by the theory. All the inputs of the theory
have molecular expressions which are computable from simple models.

- On another level, the theory becomes a phenomenological framework in which the

: equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous
fluids are the inputs and the structures, stress tensions and contact angles of menisci are
the outputs—outputs that find applications in the science and technology of drops and
bubbles.

Introduction

As witnessed by the papers presented at this colloquium, drops and bubbles, thin films
and adsorbed layers, and contact angles are key actors in numerou:; natural and man-made
processes. Vith our knowledge of and demands on these processes becoming more sophisti-
cated, it is increasingly important to have a molecular level theory of structure and
stress in interfaces. Although the formal statistical mechanical theory of inhomogeneous
fluids at equilibrium has been developed rather extensively over the last two decades, the
formal theory is presently intractable.!'? Far more powerful is gradient theory,? an
approximation going back to Rayleigh® and van der Waals® which was rediscovered by Cahn and
Hilliard® and was recently put into modern form by Bongiorno et al.°® and Yang et al.’
Successes in predicting the surface tension of polymer melts,® hydrocarbons and their mix-
tures,® and water !° prove that the theory is useful for real fluids. In this paper, I
outline the elements of gradient theory and describe applications that my Minnesota
colleagues and I have made of the theory to fluid-fluid interfaces, fluids at solid sur-
faces, and drops and bubbles.

Gradient theory of microstructured fluids

A fluid microstructure is an inhomogeneous region in a fluid in which component
densities vary appreciably over molecular distances. Any fluid is, of course, inhomo-
geneous because of the presence of gravity. However, the inhomogeneities that result from
gravity are so weak that component densities vary negligibly over molecular distances.
Similarly, the inhomogeneities induced by ordinary centrifugal fields and by the temperature
and composition gradients involved in the usual transport situations are very weak. If the
component densities vary sufficiently little over molecular distances, then the thermo-
dynamic functions can be approximated locally by the corresponding functions for homogeneous
fluid at the local composition. In fluid microstructures the effect of the local component
sensity variations must be accounted for in the local thermodynamic functions.

In the absence of external fields and density inhomogeneities, the Helmholtz free energy
density is f,. From intermolecular interactions species i and j give to f, a contribution
of the order of ajjnjnj, n; and nj being component densities and ajj a characteristic energy
parameter. The fagtor 1/2 njnj i§8 a measure of the number of interacting pairs. If the

- fluid is inhomogeneous at position r, then the number of interacting pairs in the vicinity
- of r should be corrected by some amount 1/2 dnjdnj. An estimate of énjis rijjVnj, rjj the
‘ range of the intermolecular force between i ané j and Vn; the gradient of n;"at r. It

- follows heuristically then that the local Helmholtz free energy density of inhomogeneous

. fluid is f,(n) + igj % cijVni-Vn% plus terms higher order in gradients of component densi-

ties; f,(n(r)) is :he Helmholtz free energy density of homogeneous fluid at the local
composigion n(r) = {ny(r), ny(r),*+-,n (r)} and the terms involving density gradients are
the Helmholtz Eree energy defisity of the inhomogeneity. The cuantity cig is proportional to
\ aijri ,theproportionaliiy factor arising fromappropriate molecular averaging. If an external
consetyative potential ul(r) is present, then to the local free energy density is added
I nj ug. rutting togethgr the pieces of this heuristic argument, one %ets the gradient
theorétical formula for the Helmholtz free energy F of inhomogeneous fluid:
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F l[fo(g) + i%j 5 cijvni an + i niue]d r . (1)
If the density gradients are macroscopic, e.g., caused by gravity or ordinary centrifugal
fields, then Vnj is of the order of nj/L, L being the dimension of the system. In this case
the quantity c;jjVnj-Vnj is negligible since it is of the order of (rjj/L ? compared to the
local value of éhe homdgeneous fluid free energy density f,. Thus, it is appropriate to
identify in % cijVni-an as the free energy density of fluid microstructure,

Van der Waals introduced the one-component version of Equation (1) in his theory of
liquid-vapor interfaces and Cahn and Hilliard®:!! used a binary regular solution version of
the equation in connection with interfacial structure and spinodal decomposition of sub-
cooled homogeneous solution. In the modern statistical mechanical version of the
theory,2»°: Equation (1) is derived from a formal component density expansion of the exact
free energy of inhomogeneous fluid. Expressions are obtained which relate the local
"influence parameters" cij of inhomogeneous fluid to the fluid radial distribution functions
of homogeneous fluid at ldocal component densities. The heuristic connection of the influence
parameter Ci; to aijrij is justified by the rigorous statistical mechanical expressions.

In its modern version gradient theory is a very attractive description of inhomogeneous
fluid: on the one hand the inputs f,(n) and c;;(n) can in principle be computed from the
molecular theory of homogeneous fluid, but on the other hand if molecular theory is insuf-
ficiently developed for the fluids of interest semiempirical or empirical schemes can be
used to deduce equations of state for f,(n) and c;3(n). Along these lines it is encouraging
that the molecular theoretical formulas for i3 ana some predictions!?:!? based on simple
models imply that the influence parameters are”often only weak functions of component
densities. ~Similarly, the success of the theory with constant cj5 in predicting the sur-
face tensions of hydrocarbon mixtures® and water!® argues against” appreciable density
dependence of the influence parameters. The importance of this is that one can determine
the values of influence parameters from limited experimental data. 1In all the applications
I discuss below the influence parameters are held constant.

At equilibrium the grand potential,

- 3
Q:F~’}_ipifnidr, 2)
A
is a minimum in a closed system. The chemical potential, u;, plays the role of a Lagrange
multiplier accounting for the constraint that N;(= /njd’r)is fixed in a closed system. The

density distributions ni(g), i=1,«++,v, that minimize O must, according to the calculus of
variations, obey the corresponding Euler equations

3c.
=u® 4+ 1%m) - T Ve 1 K gp.. .0 =
My = uy + ui(p) g v (cijan) + j%k 7 7E%E-an Vnk poug = Bfolani ) 3)

i=1,+++,v. Boundary conditions appropriate for a given fluid microstructure must be
assigned and the component densities of the microstructure determined by solving these non-
linear differential equations. Thus, gradient theory reduces the problem of determining
equilibrium fluid microstructures to a nonlinear boundary value problem. Of course, once a
microstruccure solution has been obtained its stability has to be established by preving
that it is a local minimum of the grand potential 2. Typically one solves nonlinea- dif-
ferential equations by discretization (e.g., finite difference or finite element) ani
iteration using the Newton-Raphson technique.'“:!'® A biproduct of such a solution technique
is that the matrix generated by the Newton-Raphson technique is the one required for sta-
bility analysis of the solution so obtained, i.e., the same algorithm generates the solution
and the elements of stability analysis.

The pressure tensor is another quantity of interest in fluid microstructures. In homo-
geneous fluid, the pressure is isotropic, i.e., the number of lines of force passing through
a small element of area from molecules lving on each side of element is independent of the
orientation of the element. This is because the molecular population is identical in all
directions in homogeneous fluid. This is not true in inhomogeneous fluid and so the iso-
tropic pressure of homogeneous fluid, Po(n)I, must be corrected to account for local
component density variation. [ is the unit®tensor. Since the number of lines of force
passing through the area element will depend on orientation, components of the pressure
tensor are in general different in an inhomogeneous fluid, i.e., the pressure tensor P is
anisotropic. To second order in density gradie:..s the general formula for the pressure
tensor is of the form?
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P = Po()] + 7, {n%)nivmj + lg)(Vni)(an) + [mg)nivznj + z§§)(Vni)-(an)];} . (@

where 2(}),°°-.£§§) are functions of the local composition n. The one component ver?i?n of
Equatio& (5) was™ first proposed by Korteweg.!'® The theoretical formulas for the 2{%?) are
much more complicated than that for the influence parameters.? Several simplified

versions of the 2(®) have been investigated.!® The simplest of thegse is obtained by
assuming that thellinfluence parameters are constant and that the £{®) must be consistent
with the constancy. The result is? i}

- -2 Y 1 2., -1 .
P P (n)1 5 i?j cij{“ivv“j 7 (Vni)(an) t 5 [niV 0y I(v“i) (an)]z} . (5)
Since f, and P, are related by the thermodynamic relation dP, = -d(f,V), at constant

T, njy***,n,V, the gradient theory of stress given by Equation (5) requires exactly the same
inputs as the gradient theory of the free energy.

In what follows the influence parameters are always assumed to be constant and either
the van der Waals (VDW) equation of state or one of its empirically modified successors, the
Peng-Robinson (PR) equation,!’ is used. Both equations can be summarized as

kT n°a
P () -~ =2 - (6)
° 1 -nb 1 + y[2nb-(nb)?]

=0 in the VDW equation and ¢=1 in the PR equation. a and b are energy and volume
parameters. For pure fluids the parameters are determined by the critical temperature and
pressure for the VDW equation and these plus the acentric factor for the PR equation.!’

The recommended forms of a and b for mixtures is nb = { n b; and n’a = iz n.n.a;., where

b; and aj; are pure fluid parameters and a;:, i#j, arel mixture parameter td Jbéjdetermined
by a fit of the equation to experimental data on two-component systems. The PR equation is
quantitatively superior to the VDW equation but qualitatively both are quite similar, and so
either serves equally well the purposes of this article.

Planar interfaces

The component density profiles, nj(x), of a planar interface are obtain?d by solving
Equation (?) with u, . 0 and su?;ect to the boundary conditions n(x = -«) =n ) and
n(x=~) = n ), wheré n(!) and n(?®) denote the component densities in coexisting bulk phases
1 and 2. These component densjities are o c?ufse determined by the usual equilibrium con-
ditions P_(n ) = Po(n(‘)), ui(p(‘)) = uj(n %)), i=1,-++,v. Equation (3) can be solved
analytica?ly in the case of a one-component fluid but must be solved numerically in the
multicomponent case.®:'?:!°®

The density profile of a one-component liquid-vapor interface predicted with the VDW
equation at the reduced temperature kTb/a = 0.197 is shown in Figure 1. The density is
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Figure 1. Density in units of b~', distance in \¢/a. kTb/a = 0.197. Ref. 14.
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given in units of b 'and the distance in units of vc/a, a length of the order of magnitude
of a molecular diameter. In a planar interface the normal pressure Py, that is the com-
ponent of pressure measured by a flat test surface lying in the interfacial glane, is
constant in accordance with the condition of hydrostatic equilibrium (V:P = 0, or dPy/dx = 0
since P = Py ii + Pr(j] + kk), i the unit vector along the x-axis). On “the other hand, the
transverse pressure P.., the component of pressure measured by a flat test surface orthogonal
to the interfacial plane, is not constrained by hydrostatic equilibrium and must take on
whatever values forced on it by the density profile. P, cannot be constant in the inter-
face; otherwise, the interfacial tension, which is the Eifference between the normal and
transverse pressuras integrated across the interface, namely,

Y = J (Py - Ppdx , (7

-0

would have to be zero.

From Equation (5) it follows that

_ 2 1
Pr = 3 Po(m) + 3Py . (8)

This result, which has been derived from several approximations to the coefficients in
the gradient theoretical pressure tensor, is heuristically very suggestive. The density
n(x) ie¢ uniform in a plane parallel to the interface, that is the pressure is isotropic in
such a plane. The contribution to the transverse pressure from molecules lying near the
plane is expected to be proportional to P_(n(x)). Molecules lying further from the plane
are distributed to maintain a constant normal pressure Py. The contribution of the so-
distributed molecules to the transverse pressure should §e of same order of magnitude.
Thus, it might be argued that P, will be a linear combination of Po(n) anc Py, the
respective coefficients being 2;3 and 1/3 reflecting the fact that the dimensions of the
interfacial plane are 2 and the normal direction is 1. It would be interesting to find a
convincing derivation of Equation (8) from this point of view. An accounting of the lines
of intermolecular force passing through a small element of area versus orientation of the
element might be fruitful in pursuing this goal.

13

An important implication of Equation (8) is that the structure of the transverse
pressure in the interface is determined by the eguation of state of homogeneous fluid. The
normal and transverse pressures ccrresponding to the profile in Figure 1 are shown in
Figure 2. As expected there is a wide region in which the interface is under tension (i.e.,
Py < Py). Since tension is positive and equals the area under the curve Py - P, versus x,
tEere must be a region in which Py - Py. There is however a small region of coapression
(P ~ Py) on the gas side of the 1nter¥ace. The correspondence between the van der Vaals
loops in the PVT phase diagram for homogeneous fluid is seen by comparing Figures 2 and 3.
The normal pressure Py is of course the liquid-vapor coexistence pressure, i.e., Py =
o(n) = P (ng), ny and n, the liquid and vapor densities, respectively. The region of
compression ip the interféce arises from the region in which the pressure isotherm ".ies
above the tie-lines, which locate the pressure Py.

A signiiicant feature of the theory is that the structure and stress in the interface
are determined by the thermodynamic functions of homogeneous fluid in the metastable and
unstable regions of the PVT diagram. It has usually been thought that in the unstable
region of the phase diagram the thermodynamic functions are meaningless. Far from being
meaningless, the behavior of these functions in this region is a determining factor of
interfacial behavior. The gradient terms provide the necessary free energy to stabilize
states that would be unstable in homogeneous fluid.’

As a critical point or a solution plait point is approached, the VDU loops in the
pressure isotherm begin to flatten out and become symmetric about the tie-line, both pat-
terns of which drive the tension towards zero. That tension goes to zero as a critical
point is approached is vell-known, but the mechanism of getting low tension by symmetrizing
the VDV loops ot the pressure isotherm is novel. Such an erample is provided in Figure 4,
in which is given density and pressure profiles of the liquid-liquid interface of carbon
dioxide and decane.'® The profiles were predicted with the PR equation using the mixture
parameter values a;, = /511322 and ¢y, -0,9/c11c22 and cy; values fitted from pure fluid

surface tension. The tension of the interface in Figure 4 is y = 0.6 dyn/cm.

132



W

,“lam-ﬂ:-

Py, P
PRINCIPAL
001+
P~\/~
60 -0 20 20/ 40 60 «x
DISTANCE
-002 Pr
-003 {[T020 ]
-0.06
Figure 2. Principal pressures in a planar Figure 3. PVT phase diagram of a VDW fluid.
interface. VDW fluid. Pressure Density in units of b™! tempera-
in units of a/b‘, distance in ture in a/kb. The liquid-vapor
“cJa. Ref. 14, densities are indicated by points
connected with constant-pressure
tie-lines.
085

Figure 4.

Density and principal pressure profiles of a COj-decane liquid-liquid
interface of a PR fluid. kTb/a = 0.148, density n; in units or b;‘.
distance in v/c7a, pressure in a/b?’. a, b, ¢ COjp values. Ref. 19.
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Contact angle, wettability, and film formation

The adsorption and wetting characteristics of fluids on solid surfaces and at fluid-
fluid interfaces are of enormous practical interest in the design of detergents, lubricants,
flotation and foaming agents, paints, capillary delivery devices, and the like. 1In spite
of such practical importance, the molecular theory of adsorption and wetting is still a
fledgling science, based most often on ad hoc models for various special situatioms.
Gradient theory shows promise of giving a unified theoretical basis to the subject. In what
follows, the theory is applied to adsorption and film formation at interfaces, three phase
contact regions and the contact angle, and perfect wetting transitions.

Suppose a fluid-fluid interface contacts a flat solid wall as indicated in Figure 5.
If the meniscus (a mathematical surface representing the position of the interface) is
observed at some distance R lying far enough from the solid for bulk fluid phases to exist
on each side of the surface but not far enough for gravitational distortion to affect it,
then the observed contact angle 9 obeys Young's equation

Yya = Yyp + oy, coso . €))

Yyq a@nd v, o denote the tensions (or surface excess free energies) of fluid phases o and 8
with solid phase y. 1y, is the interfacial tension of the interface between fluids « and
8. The basis and meangng of Equation (9), which can be derived from a force balance on the
hemicylinder wlose cross-section is shown in dashed lines in Figure 5, has been discussed
at length in a recent parer by Benner et al,'®

o FLUID 2 AT
. PRESSURE P, a

FLUID L§ 8 B
INTERFACE

x J/
o FLUID 1 AT
- PRESSURE P8

Figure 5. Angle of contact of fluid meniscus Figure 6. Angles of contact of three fluid
at a flat solid wall. phases.

If all three phase are fluid, then the menisci define three dJihedral angles (Figure 6)
obeying the force balance

y\ls - “"1‘3 _ Y N (10)

—y

X - 1 - —
sing sing sing !
Y X g

A contact angle is not always observed when three phases are brought together. If
either of the inequalities

W\n ks wyﬁ + YR or Y\B > qu + \nB (11)
then Equation (9) (or (10)) has no solution and the free energy of the system will decrease
as the result of a thin layer of phase § (or phase a) intruding between phase y and phase «
(or phase ?) as shown in Figure 7. The intruding phase is said to completely or perfectly
wet the interface between the other two phases. The transition between contact angle and
perfect wetting behavior occurs at conditions for which one of the inequalities in Equation
(11) becomes an equality.
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Perfect wetting is of course essen-
tial in applications involving spontaneous
spreading of some fluid at &n interface.
Examples of perfect wetting are well-known.
In the presence of air, most liquids per-
fectly wet on clean metal surfaces, water
on quartz, some organic liquids on water,
some organic liquids on some polymers,
etc. Not so well-known is critical point
wetting, a phenomenon hypothesized recently
by Cahn.?® He noted that according to
critical point theory and experiment, as
a critical point of phase a and 8 is
approached along a temperature, pressure,
or chemical potential path, the inter-
facial tension approaches zero asymptoti-
cally as
1.3

° , (12)

- . h
Yag = Yag|l

hg
where h is the field variable (any thermo-
dynamic quantity being the same in all
coexisting phases), h. its value at the
critical point, and YOB a scale factor.
Cahn postulated that th&“difference

- YQB‘ will approach zero as the

[y
Ya

composition of the components in phases

a and B approach each other, i.e., it

obeys the scaling law

h 0.34

he

o
Yya = Yag Yagy l-

sufticiently near the critical point. Since vy
Cahn concluded that there wil

for |y - |,
the fidld val?able. .., not equal to h
wetting. The comblnagYon of Equations ?9),

PERFECT
WETTING

B, SMALL DROP a
@ e .OFs 0OES ®
ON S0uLD ¥ ON S0LID ¥
s-ue, -u,
PERFECT WETTING
Yya”Yas " Vb " conpiTions —— 778 *Yag * Ty
Yep $17,4 " 7))

Figure 7. Conditions for perfect wetting

by either phase a or phase 8.

(13

approaches zero faster than that postulated
lways exist a critical wetting value of

, at which one of the fluids will become perfectly
(12) and (13)gives asymptotic formulas for the

contact angle at a solid as h approaches h. ., namely,

,(Yc y0.74 hew = Be
Ty
aB

where vy, 1is the value of Yo 4t h = hcw.

= +

cost =

[

0.96

(14)

The practical significance of Cahn's theory is that one of a pair of fluids can always
be made perfectly wetting in the presence in a third phase by adjusting field variables
(e.g., by changing temperature or pressure or by adding some componeat) to get near a

critical point.

To test the validity of Equation (13), an unverified hypothesis, and to understand the
relation of y,., and h_ = to fluid and solid properties and interfacial structure, Teletzke

~ w w
et al.”? studied with®

gradient theory the behavior of a one-component fluid at a flat solid

wall. Some results of this work are of interest here. The PR equation of state was used for
the fluid and the wall was characterized by the wall-fluid molecule potential

1 ,4.9 1 ,d.3
e = g & - LI,

(15

a choice appropriate for walls and fluids composed of molecules interacting with the 6-12
Lennard-Jones potential. x denotes the distance from the wall. W is a measure of the
strength of the wall-fluid potential and d its range.

The gradient profile equation with constant influence parameter was solved for the
density profile a(x) by the Galerkin technique using a finite element basis set. The solid-
fluid tension can be computed as the area derixative of the free energy, v = 3F/3A, or,
eguivalently, from the pressure formula, y = /°[P,(n,) - PT]dx, ng being the bulk density
of fluid far from the wall. The boundary conditions for the problemare n(x)~+0 as x+0 and

n(x)-ng as x+x,

A PR fluid has an upper critical temperature T. equal to 0.1704 in the units a/b.
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Gradient theory predicts a critical-wetting
temperature T, above which the liquid
phase becomes Ferfectly wetting at the
solid-vapor surface. An example is shown
in Figure 8, for the solid-fluid parameters 0.20
We=6.4a/bandd= /c/a. Below T, a drop == Thick-Thin Fiims

of liquid would not spread on the solid, Thick-Thin Films
but would form a contact angle. Above T, 0.8} TMmJMnFHm177
the drop would spread to form a perfectly Adsorbed Films
wetting layer. The critical wetting tem-
perature depends on W and d. At fixed d,
T w decreases with increasing W, i.e., as
the strengtii of the solid-1liquid potential
increases perfect wetting occurs at lower
temperature. At fixed W, T, decreases
with increasing range d of the wall
potential, i.e,, the longer the range of
the potential the lower the temperature

at which perfect wetting occurs.

TEMPERATURE, T

Correspondingly, the characteristic 0.0 ~ v v L
tension v, = Ypy(Tey) decreases with o 02 DEot:"ITYO: 08 10
increasing T, (and, therefore, with Vi
decreasing Wor d). If W and/or d are
small enough, then T, 1is near the
critical point and Equation (14) should
hold if Cahn's hypothesis is true. This
was indeed found to be true (although there Figure 8. Phase and film diagram for a
is a small detail of mean-field versus Peng-Robinson fluid. Tempera-
correct scaling laws?'!'). On the other hand, ture in units a/kb, density
as VW and/or d increase, the perfect-wetting in b~!, Ref. 21.

temperature T, decreases anc Equation (14)
no longer holds. At sufficiently low temperature the interface is very sharp (narrow)

hJ

and the Good-Girifalco formula?®®

cosd = 2 /;ﬁi -1 (18)
LV

ought to hold since it is based on a discontinuous intertace approximation. This turns out
to be the case. The dependence of T ., and v, = ypyu(T ) on W and the dependence of cost on
YLV(T)/Yc for various values of W aré"shown tn Fi&ures ©® and 10 for the case d = /c/a. The

e | T
ot r 020 NEAR-CRITICAL
w \ » SCALING LAW
> z
iz o8- 016 O
& 2

i
;(MSF ~o2 <g
= g « Of GOOD-GIRIFALCO

el O | CORRELATION
2 onk <008 - ©|w >9
£ §
$oo0s| Hoos g

o
3 E
=0.075 3 10 5 - 1 L 1 L
5 W 4wb¢.n,oe 0 [ 2 , 3 4 5

a Yw 'Y
Figure 9. Variation of critical wetting Figure 1C. Contact angle versus y V(T)/yc
temperature (units a/kb) critical for various ¥W. Ref. 2%.

wetting tension (units /iE{b’)
with W (units a/b). Ref. 21.
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near-critical scaling law, Equation (14) ,holds for W < 3, the Good-Girifalco formula,
Equation (16), Lolds for W > 9. In the intermediate range, neither formula holds.

Several years ago, Zisman’"‘ suggested thaet the contact angle correlares with the ratio
yLv/Ye but that y, was a charactesistic only of the solid, not of the fluid ptLa e. The
implication of Figure 9 is that this is not 8o unless the reduced energy par.mcter Wb/a and
length parameter d//c¢/a are fixed in the series of fluids compared. As these ratios depend
both on solid and fluid, it aggeata that Zisman's scaling worked because the fluid parameters
b/a and v/¢7a were not very different for the systems compared.

Another thing gradient theory predicts is a first order transition of the absorbed
layer at the solid surface. In the temperature range T, to T.. (Figure 8), as the bulk
fluid density increases from zero towards the gas side of thé phase diagram a composition
is reached at which two adsorbed layers or thin-films of different thickness are predictead
at the same equilibrium conditions. An example is shown in Figure 11. As the bufk density
is increased beyond the thin-film co-
existence curve the thin-film grows
continuously into a thick thin-film to become

finally a perfectly wetting layer of 10 T T T T T T ?
liquid when the liquid-vapor phase dome is T=0140<T,,
reached. The temperature T., 1s a film W = 64
critical point. Above T as bulk density d =1

increases from zero to tﬁg'liquid-vapor
coexistence curve an adsorbad layer grows

[
continuously through thin-film states into >
& perfectly wetting layer of liquid phase. - 0.8 ~ng = 0.0538 -
Below T, only submonolayer adsorption g
occurs with increasing density until at ul
the liquid-vapor coexistence curve liquid o fig * 003513

appears as a drop with a contact angle.

On the liquid side of the coexistence

region only submonolayer adsorption occurs.

A thin-f{lm transition was predicted by Saan

and Ebner’é using anfi?tegral model free 0 4 8 12 16 20 24 28

energy. Their thin-film coexistence curve

is very similar to that of described here. DISTANCE FROM WALL, x

The thin-film transition predicted by Cahn

on the basis of a two-dimensional model of

the solid is, however, qualitatively Figure 11. Density profile of fluid at a

different.?! solid wall as a function of
bulk fluid density. Ref. 21,

ng = 0.0292

Tt ghould be emphasized that according co the theory the patterns of jilm and phase
behavior of a one-component fluitd at a solid wall are geveral. Sufficiently near a
critical point of a pair o and B of multicomponent coexisting fluid phases, either « or B
will become perfectly wetting at the interface formed by a third phase vy and the nonwetting
fluid phase. The third phase vy can be solid or liquid. The critical point can be an upper
or lower critical point. 1In approaching a critical point along any field variable h, e.g.
temperature, pressure, or chemical potential of a component, there will be a critical
wetting value hﬁw' a finite distance from the critical point value h,, at which one of the
near-critical phases becomes perfectly wettin% on a third phase. Ou%lido but near the
coexistence composition region of o and 8, a first vrder thin-film transition occurs with a
coexistence curve 1yin¥ between h,, and h.., h.; being the film critical point. h., lies
between h,, and h,. If h lies between h w and , then sufficiently near the a-8
coexistence region a thin-film formed between the third phase y and, say, phase a will
thicken continuously into a layer of the perfectly wetting phase B.

An example of the structure and stress of a liquid-vapor interface a: which a thin-film
has almost grown into a layer of a second liquid phase is shown in Figure 12. This figure
was taken from the work of Falls et al.!'? in whicg theory was applied with the PR equation
to planar interfaces and spherical drops formed in carbon dioxide and decare mixtures. The
transverse pressure profile is highly structured, looking like that of a liquid-liquid
interface on the left and of a liquid-vapor interface on the right.

There is abundant evidence that the qualitative patterns of wetting transitions descrited
ere are correct?®'??'27 and the expected continuously thickening thin films have been
observed by ellipsomecry.’® However, the predicted first order thin-film transition has not
been verified experimentally, nor have the critical exponents of Equations (13) and (14)

been established experimentally.

The theory of wetting transitions and film formation at flat surfaces requires solving
only a one-dimensional density profile problem. However, if the structure and stress of
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kTby/aj; = 0.148. Ref. 19,

the three phase contact region is desired, the problem becomes of necessity greaiter than
one-dimensional, even if one phase is a flat solid. If a fluid-fluid interface contacts

a flat solid the compon: at densities depend on the distance x from the wall and the dis-
tance y parallel to the wall, Benner et al.'® have recently studied the contact region of
a one-component liquid-vapor interface at flat solid. The PR equatlon was used for the
fluid and Equation (15) for the wall-fluid interaction potential. The space available here
does not allow an extensive discussion of the paper. However, one interesting feature is
that the stress state in the liquid-vapor Interface is affected relatively far from the
interface. An example of this is given in Figure 13. The principal pressure directions

in the x-y plane are indicated by crosses,
the size of which indicates the magnitudes
of the principal pressures in the x-y plane.
Far away from the solid and the liquid-vapor
meniscus (defined as the position where
n(x,y) = 1/2(n, + n;) and indicated by the
solid curve) the pressur~ components equal
the bulk fluid value wich 1s so small the
corresponding crosses are almost invisible
on the scale of Figure 13. At a planar
liquid-vapor interface the normal pressure
component (Pyj) would be constant and
therefore the grelsure crosses would appear
as horirzontal lines (Py; large, Py smafl)
in the interfacial zone. Instead, even fc
the far right of Figure 13, a distance of
about 25 molecuiar Jiameters away from the
wall, the normal pressure component is very
large. And the principal stress pairs P13,
P2 undergo four sign changes in going from ﬂ|,ﬁn> 0 ﬁ‘:o,%zco
t%e liquid to the vapor phase. Wild and |
wondergul patterns! Are they consequential? '
Amajor conclusion from the work of Benner

et al. is that at a flat surface Young's

equation is applicable outside the contact
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region (see Figure 5). The radius of the Figure 13. Principal prescure and components
contact region is .40 or three times the in a liquid-vapor interface neara
thiclkness of the interfacial zone between the wall. kTb/a = 0.1, W = 6a/b. Wi-ith
fluid phases. of region shown is 25.¢/a. PR fluic.
Ref. 15.
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Spherical fluid microstructures

Visible examples of spherical microstructures dre the drops and bubbles that occur in
mists, foams, beverages, manufactured glass, and basalt lavas. Invisible examples are
colloidal particles, vesicles, and micelles. The classical description of spherical
structures is based on the Young-Laplace equation and the Kelvin equation expressing
mechanical and chemical equilibrium between a bulk phase interior and a bulk phase exterior
separated by an interface having the tension of a planar interface. In a sufficiently
small spherical microstructure, however, the interior will not be bulk phase and the
tension will not be that of a planar interface. Deviation from classical behavior might be
conseguential in nucleating fluids and micellar solutiens, in which the equilibrium micro-
structures are tens of angstroms in diameter ani, to mention a couple of examples receiving
special attention at this colloquim, microdrops or microbubbles in microdrops and thin
liquid layers on the inside of glass shells.

Gradient theory provides a molecular level theory of spherical structures which estab-
lishes the point at which the classical description breaks down and determines the
structure, stress and mechanisms of stability of spherical microstructures. By way of
example, I will outline some results of the recent investigations of Falls et al.'**'® on
one and two-component microdrops and microbubbles.

For spherical microstructures suspended in bulk fluid, the boundary conditions are
In;/3r = 0 at r=0 and n;(r)—n;p as r>= nip being the bulk phase density of i in the sus-
pending fluid. With these boundary conditions and constant influence parameters, Falls
et al. have solved gradient theory for a one-component VDW fluid'® and a two-component PR
fluid.'? Figure 14 illustrates their results for the density profiles n(r) of liquid-like
microdrops suspended in a vapor phase. From the Young-Laplace and Kelvin equations, one
expects the interior of the drop to be at higher pressure, and therefore higher density,
than the saturated liquid density n€9:. This is seen to be true in Figure 14 for drops of
radius larger than about four molectilar diameters (the 'radius' of the drop does not have
a precise meaning for microdrops). However, for smaller drops, the interior density
decreases with drop size and the density
profile takes on a Gaussian-like shape with
no interior bulk region. The loss of a
bulk-like interior begins to occur when the
radius of the drop is about equal to the
thickness of the liquid vapor interface.

Because the interface is curved, the
normal pressure profile P
(g = Py(x)rr + PT(r) (; - ) in a

spherical fluid structure) is not constant
across the interface. Thus, the pressure
profiles in a spherical interface are quite
different from those in a pianar interface
at the same temperature (compare Figures 15
and 2). This leads on~ to expect strong
deviations between the tension vy of a
planar interface and the tension y(R) of a
microdrop of radius R. Similar deviations
are expected for the Young-Laplace equation
as classically applied, i.e. Py(r=0) -
Py(r==) = 2y_/R. From the thermodynamics
o¥ drops it follows that the appropriate
radius R with vhich to describe the tension
of the drop is the radius of che surfac2 of
tension.?? This radius (which does not differ
greatly from the value of r at which n(r) =
1/2(n(r=0) + ny)) and the corresponding
tension y(R) are predicted by gradient
theory.!®* As illustrated in Table 1, the
tension of the drop does differ from vy feor
small drops and the classical Young-Laolace
equation does break down. However, what is
remarkable is that already for drops
fifteen molecules wide the drop interface
has virtually the same tension as a planar
interface and the classical Young-Laplace
equation is accurate.

drops in a VDV vapor. kTb/a =
0.197, de~sity in units of b~!,
distance .. /%75.
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Table 1. Microdrops in VDW vapor.
Radius R in unics of /c/a.
kTb/a = 0.197.

P(0y = P (=)
R Y(R) /Y, & N

T
2.56 0.75 -0.079
2.88 0.83 0.017

3.26 0.87 0.19

3.76 0.91 0.43

4 .67 0.95 0.73

5.52 0.97 0.87

7.74 0.99 0.97

10.15 0.996 0.99

Figure 15. Principal pressure profiles of a
microspherical drop in a VDW
vapor. Pressure in units of a/b°,
density in b~', distance in .c¢/a.
kTb/a = 0.197. Ref. l4.

The implication of the one-component studies just outlined is that microdrop
curvature affects the interfacial structure and the interfacial tension very little once
the drop radius is larger than 10 molecular diameters. In multicomponent systems this con-
clusion may or may not follow. Consider for example the bubble in liguid CO; and decane
shown in Figurc 16 (from Falls ¢t 2l.'")., The radius of the bubble is only &bout 12 carbon
dioxide diameters, but its component density profiles are almost identical to those of the
planar liquid vapor interface (indicated as a bubble with R=«~).

C.8 1

0.54

;T\\\g\ .
\

N

5\
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Figure 16. Density profiles in a planar liquid-vapor interface (R=«)
and in 4 bubble (R = (2) in a C0,-decane PR fluid. Density
n; in units of b;' distance in w1717 kTby/aj; = 0.148.
R%f 19 i 1711 1°°11
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The tensions cf the bubble and planar interface agree within 10%. Thus, this bubble
behaves as expected from the one-component results.

However, as was discusseu iun the previous section (Figure 12), in a multicomponent fluid
conditions can be such that a thin-film of an incipient third phase may be formed at an inter-
face. These films are very sensitive to a change in a field variable. Curving an interface
changes the chemical potential of the system (this follows from Kelvin's equation in the
classical theory), and so it can be anticipated that under conditions of high adsorption or
thin-film formation the interfacial structure and stress will be very sensitive to drop
size. Comparison of the drop component density and pressure profiles of Figure 17 (from
Falls ¢t al.'") with the corresponding planar case, Figure 12, illustrates that this is

st

>
ha
;‘;0.3
z 0.008
us
Qo4
0.004
o7 o.0024
0.04— - b & ot 4
NISTANCE FROM OROF CENTER DISTANCE FROM DROP CENTER

Figure 17. Densityv and pressure profiles of a drop in a COy-decane PR
fluid. Density n; in units of b]', pressure in"a;,/b,

distance in 1173{{. kTb,/ay; = 0.148. Ref. 19.

indeed the case. At this temperature, it has been estimated'® from the theory that the
drop structure will not begin take on the planar form until it is larger than 100 carbon
dioxide molecules in radius. The important implication of this result is that i=n regions
of thin-fiim formation the interfacial composition ocan lte greatly modified by curvature.
This fact might be quite important in the manufacture of objects with thin, uniform layers
of a desired material.

Although space does not allow discussion, gradient theory predicts the work of forma-
tion of drops and bubbles, a quantity important to the theory of homogeneous nucleation.
In fact, the theory was used by Cahn'' to support his theory of spinodal decompositicn. He
showed that the barrier expected for the nucleation of microdrops is not there owing to the
size dependence of the interfacial tension and that as a result a homogeneous material at
the spinodal density can transform continuously into a multiphase system. In heterogeneous
nucleation, it is likely that thin-film formation will be an important intermediate step in
the process when conditions are right. These matters are ripe for future work.

Closing remarks

In closing, I would like the point out a few problems to which gradient theory might
profitably be applied next.

1. Thin, uniform layers of fluid in a spherical solid shell. A fluid-solid potential
will have to be introduced for shell. For uniform thin-films and thin layers of phase only
spherically symmetric solutions need to be sought, so the problem remains one dimensional.
By a different method Kim, Mok, and Bernat address this problem in their paper.

2. Fluid microstructure at rough or chemically heterogeneous sclid surfaces. For this
problem a two-dimensional solid-fluid potential will have to be introduced. Thus, the prob-
lem is two-dimensional.

3. Contact angles with rough or chemically heterogeneous solid surfaces. This invol-
ves the same solid-fluid potential as in Problem 2 and a fluid interface in the vicinity of
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the solid and so is a three-dimensional problem. The problem will pose a challenge to

computer-aided mathematics.
4, Drop shapes on inclined rough or chemically heterogeneous surfaces. This again is
a three-dimensional problem and an even greater challenge than Problem 3.
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