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SUMMARY

The Pffects of ship motion on a range of typical manual control skills

were examined on the Warren Spring ship motion simulator driven in heave,
pitch and roll by signals taken from the frigate HMS Avenger at 13 m/s

(25 knots) into a force 4 wind. The motion produced a vertical r.m.s.

acceleration of 0.024g, mostly between 0.i and 0.3 Hz, with comparatively

little pitch or roll. A task involving unsupported arm movements was

seriously affected by the motion; a pursuit tracking task showed a reliable

decrement although it was still performed reasonably well (pressure and

free-moving tracking controls were affected equally by the motion); a

digit keying task requiring ballistic hand movements was unaffected° There
was no evidence that these effects were caused by sea-sickness.

The differing response to motion of the different tasks, from virtual

destruction to no effect, suggests that a major beneflt could come from an

attempt to design the man/control interface on board ship around motion
resistant tasks.

INTRODUCTION

Ship motion typically consists of a narrow band of hlgh amplitude, low

frequency movement with a wider band of low amplitude motion at higher fre-
quencies superimposed on it. The degrading effects of the low amplitude,

high frequency motion (i.e. vibration) on manual control skill are well

known (for reviews, see Gulgnard and King 1972, Collins 1973, or Drennen
et al. 1977) and much is known about the tendency of low frequency movement

to induce nausea (e.g. O'Hanlon and McCauley 1974). But very little is

known about the effects of the high amplitude, low frequency components of

shin motion on manual control skills This is presumably due, at least in

part, to the hlgh cost of building simulators to reproduce the high amplitude
of the low frequency components.

The only studies of the effects of shlp motlo,_ on control skills are Jex

et al. (1976) and O'Hanlon et al. (1976). Jex et al. simulated the motion of
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a 2000 ton surface effect ship at a variety of speeds and sea-states. Sa11-

ors spent up to 2 days in the cabin performinK a range of tasks including

tracking, vigilance, navigatlonaJ plotting, keyboard operation and mechani-

cal assembly. Tilevarious conditions simulated produced a range of r.m.s.
vertical acceleration values between i and 3m/s2. (Note: r.m.s, accelera-

tion is the standar_ deviation of the accelerations experienced during the

run. For those who find it easier to appreciate acceleration magnitude in

terms of g, im/s2 is almost exactly equal to O.ig.)

The study reported here is si_'lar to the Jex et al. study in using

ship motion in three dimensions: heave, pitch aud roll. However, the level
of accelerations is considerably lower, in face at a level where Jex et al.

predict there will be no effects of ship motion on manual control skill. A

range of manual control skills was studied: tracing (unsupported movements

of the while arm); tracking, using either a pressure or a free moving control,

(continuous fine hand movements with the arms supported); keyboard digit

punching (ballistic movements with unsupported hands). An attempt was
_oe _o separate the effects on performance of motion itself and the effects

caused by feelings of sickness induced by the motion.

METHOD

2.1. The motion

The experimental cabin was mounted on the ship motion simulator at

the Department of Industry laboratory at Warren Spring, Stevenage, England

(see Appendix). This was driven in heave, pitch and roll by signals re-

corded from the helicopter deck of the 2040 ton frigate }{MSAvenger moving
at 25 knots (13 m/s) into a force 4 wind Under these conditions virtually
all the motion is in heave (i.e. vertical movement): the r.m.s, accelera-

tions in heave, pitch and roll were 0"24 m/s 2, 1.35°/s 2 and O-46°/s 2 res-

pectively. Given that the subject's head was about 1.7 m above the centre
of rotation of the cabin the two latter figures correspond to approximately

0.045 m/s ? and 0.015 m/s p. These values _r: so low that we have only

correlated performance with the vertical accelerations.

The peak to peak vertical motion was 2.5m. The average vertical r.m.s.

acceleration for the hundred 7 s periods used for the tracking task was 0-31
m/s2 --slightly higher than the average over the whole run. The average rate

of displacement zero crossings for the whole Derlod of the experiment corres-
ponded to a frequency of 0.17 Hz.

Figure I shows the amplitude spectrum for the heave input. It can be

seen that the bulk of the energy lles between 0.I and 0.3 Hz. Figure 2
shows a typical period of llOs motion in heave. The upper trace shows the

displacement slgnals recorded on HMS Avenger whlch were used to drive the

experlmental cabin. The superlmposltlon of high frequency low amplitude

¢ompo,ents on the lou frequency waves is clear. The centre trace shows the

vertical ac, >leration of the cabin while belng driven by the upper trace.

It _an be seen that a jolt, a brief period of higher than average accelera-
tion, sometlmes followed the start of an upward movement by the cabin. The

average d,,ratlon of the jolts was 0.28s, range 0.12 to 0.38s. The average
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Figure |. Amplitude versusf,'cclucncyplot for the heavedisplacclncnt input.
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Figurc 2. A 110s periodof heavemotion. The upperplot _howsthe displaccmentinput to thc
cabin.The centreplot showsthe vert,calaccelerationof the cabin. The bottom line shows
the points at which tracking runs wen=initiated during this part of the motion.

peak acceleration was O.16m/s 2, range 0.I to 0"2m/_ °. This non-line@rity

introduced by the simulator was unfortunate but not disastrous. For the

tracking task it was possible to examine the effect of the Jolts by compar-

ing perfornance on those trials where they occurred with those where they did

no t.

2.2. Motion sickness

As figure i shows, the motion used lles mainly between 0.I and 0.3 Hz.

This is the region which is most efficient at inducins motion sickness

(O'Hanlon and McCauley 1974). (It should be noted that their data were

obtained with single slnusoids: quantitative data for complex motion do not

exist.) The r.m.s, acceleration value used is slightly less than that which

would be expected to produce vomiting in 5% of young men after 2 hours

exposure (0.33m/s 2) at the most nauseogenic frequency (0-167 Hz). However,

since feelings ot nausea are likely to degrade performance, it is important

to try and separate these from any biomechanlcal effects of motion. Reason

and Graybiel (1969) have reported the commonest subjective sensations which

precede nausea. These sensations are a chm_ge in general well-bein_, dizzi-

ness, stomach awareness, headache, salivation, sweating and blurred vision.

Before, during and after motion subjects rated their feelings on eoch of
these dimensions. The subjects were given a booklet with a line 100 nm long

on each pare corresponding to one of the sensations with the two end points

appropriately marked, e.g. 'fine' and 'awful' for the general well-being
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scale. They placed a mark on each line to indicate how they felt. Changes

in the position of the marks were used as an indication of which subjects
felt nauseous.

2.3. The experimental cabin

A cabin measuring 2.3 m x 1-85 m with a curved roof, minimum height

1.85m was mounted on the moving platform. This was enclosed so there were

no visual cues to motion for the subjects. During an experimental run the

subject was strappec to a modified Sea King helicopter seat facing a con-

sole holding the CKT display for the tracking task and the LED disnlay for

the number punching task (see figure 3). Forearm restrainers, the Jo stick

and a numerical keyboard were attached to the deck of the console; _L_

subject used the forearm restraints for the tracking task but not for the

key punching task. An mnergency button to stop the rif, a vomit bag and

the booklets for subjective ratings were also attached to the console.

The patterns for the tracing task were pinned to the back wall of the cabin.

Connaunlcatlon between subject and experimenter was via headphones; the

subject was observed throughout the experiment by a closed-clrcult TV camera
mounted over the console.

2.4. The tasks

2.4.1. Tracl, task. The subjects stood upright and tried to trace along

a variety of patterns drawn on a sheet of paper pinned to the wall at

shoulder height. The subjects stood at approximately arm's length from the

wall and were not a11owed to steady themselves by holding onto the cabin or

to try and support their _Iriting arm on the wall. They performed a set of

six tracings twice over on each occasion. Measures Laken were accuracy and
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time to complete each set of six. The accuracy was measu_ .d by sampling

the perpendicular distance from the tracing to the llne _he subjects were

trying to follow at 31 points distributed across the six patterns, Figure
4 shows four attempts to follow the tracing patterns, the upper two static
and the lower two made under motion.

( ",f-.,t ) t J

(?+?>

FIgurc 4 Four attemlxs to folh)w the tr,_mg pattern. The upper two were done with the cabln

statumary"l"hclowertwowh,lc_twasundermortonTheyshowtheapproximaterange
from bestto _,'orstunderboth_:ondltlons

2.4.2. Tracking task. This was a pursuit task, with each trial lasting 7s.

The seated subjects face a IOO mm x 8Omm screen at a viewing distance of .;
about 60f_nm. Their forearms were supported by arm restraints. Each trial

was preceded by the word READY on the screen for Is. Then the target, a
circle radius 2.5m_, and a cross (arm length 5 ram) which was controlled bv
the subiect appeared on the screen. The cross and circle started in random
positions with the proviso that the circle was inside a central area measuring

50 mm by 40 rnm and the cross was outside this area. Throughout each trial
the circle cont{nued to move at rand_m within this inner area. The algorithm
used to control the movement of the circle was that every _OOms its vertical
and _)rizontal velocities were changed independently by a random amount with
;t random sign up to a maximum in either direction of 0.75cm/s. The subject's
task was to place the cross inside the circle as quickly as possible and keep
it there for the reI_ainder of the trial.

There were two grouns of subjects, four hen and one woman in each. One

group tracked with a pressure control (i.e. a Joy-stick which does not move,
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but which Rives an output proportional to the force applied to it); the other
tracked with a spring-centered free-moving Joy-sti_k, the output of which was

; proportional to its dlspl_cement from the central point. The relation of

the position of the cross on the screen to the outpu= of the Joy-stlck was

Pc=Pj+3fPjJt+ffPjdt

where P is the position of the cross and P. the output from the Joy-stick.
The control, therefore, was basically a vel_city control, with small com-

ponents of position and acceleration.

The performance measures taken were the time to acquire the target and

the modulus mean error after acquisition. "Acquisition' was defined as hold-

ing the centre of the cross within 5 mm of the centre of the circle contin-
uously for 1 s.

The tape driving the cabin lasted for 22 min. During this time there

were 50 tracking trial_ occurring at fixed positions at intervals of 20-30s.

During an experimental run of i00 trials the subject experienced the tape
twice through separated by a static period of about 25 s. The cabin went

through the same motion on any particular trial for every subject.

2.4.3. Digit keying task. The subjects were presented with a series of 50

four digit numbers which they entered on., conventional calculator key-
board. Their arms rested on a horizontal surf;ire but were not restrained.

The keys were 9 mr square with a vertical and horizontal Inter-key spacing

of 6.Smm. In pre-motion training the numbers were spoken aloud by the ex-

perimenter. Under motion they appeared on the LEDs in front of the subject

(see figure 3). In both cases the subjects were required to say the number

aloud and then enter it as a group of four keystrokes. They were instructed

to go as fast as wa_ compatible with error freu performance. Entry time of
each key stroke and any errors were recorded.

2.5. Experimental design

2.5.1. Pre-motion practice. The subjects practiced the three tasks over a

period of 3 months before going to the motion simulator. On eight separate
clays they performed a block of 20 tracking trials. They performed the trac-
ing task twice and also had two blocks of 50 numbers on the digit keying task
on each of two days.

2.5.2. Motion. Each subject performed the t_sks under motion on two con-
secutive days. The complete session including stationary control trials,
filling in well-being questionnaires and taking transanissibllity measures
lasted about 2.5 hours. The experimental design for the nmtion sessions is
shown in table 1.

2.6. Subjects
The subjects wece eight men and two women iron the Applied Psychology

Unit staff. They all claimed not to be prone to sea-stcknes'. They were
right-handed, and thetr ages ranged from 21 to bO years. For the tracking
task they were d_vtded into two groups of four men and a women, one group
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using the pressure control and the other the free-moving control.

Table 1. Thr _.rderof tasks during a motion session.

Approximate
Cabin Task duration (min)

20 tracking trials 15
Stationary Well-being ratings 2

2 tracings 2

100 tra_kmg trials 50
Moving Well-belr,g ratings 2

2 tracings 2

15tracking trials 10
St_.tionary Well-being ratings 2

2 tracings 2

5min break outside cabin

Transmissibility measures taken 1.¢
from subject

Well-being ratings 2
Motion Key-punching task 20

Well-being ratings 2
Transmissibility measures taken 10

from subject
-j

Stationary Well-being ratings 2

RESULTS

3.1. Nausea

None of the subjects actually vomited. However, there was a small

but reliable drup in the feeling of well-being. Comparing the estimate made
immediately prior to motion with that made at the end of the first motion

session (see table i) gJves a drop of 9% in the scale going _rom 'Fine' to

'Awful, about to vomit'. Pooling across days and subjects this is reliable,

p<0.05, Wilcoxon test, 2-tail. None of the individual indices (dizziness:
sweating, headache, stomach awarencss, salivation or blurred vision) showed

a reliable change when pooled across subjects and days. At the end of the
second motion session the position was very similar. Compared to the pre-

motion ratings, 'well-belng' pooled across subjects and days showed a reliable
7% decline (p<O.05, Wiicoxon test, 2-tail)o But none of the other individual

indices showed a reliable change. Table 2 shows the detailed ratings.

3.2. Tracking task

_ ,'igure 5 shows the basic performance data for the tracking task. The
two left hand graphs show the performance of the group who tracked with the

pressure control; tileright-hand side shows the performance of the group with

the free-moving control. The two upper graphs show the acquisition time (in
seconds); the two lower graphs show tileaverage modulus mean error after

acquisition (in millimetres). (It should be noted that the minimum possible I
acquisition time is greater than zero, approximately 2s, but the minimum I

possible error is zero.) In each graph the average performance on the 20 I
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Table 2. Mean subjective judgments between 100=tint and 0=awful. _.

Change for

Judgment Pre-motlon Motion worse Post-motion

Well-being 91 82 9* 88
Dizzin_s 90 89 1 89

Sweaty 64 55 9 6 !
Headache 89 86 3 88
Stomach awareness 90 83 7 88 .
Salivation 43 48 - 5 46 :
Blurred vision 94 q2 2 94

*p<0-05.

pre-motion trials and the 15 post-motion trials is shown separately, before
and after the 100 motion trials. The 100 motion trials have been broken
down into ten consecutive groups of ten.

The main effect, that tracking is worse under motion, is immediately

obvious. Taking the mean of the pre-motion and post-motion trials as a

control, every subject in both groups takes longer to acquire the target :,

under motion (p<0-Ol, sign test). (Pressure control--acquisition time:

control = 2.8 s, motion = 3.1s; error: control = 1.3 mm, motion -- 1.8 mm;

free-moving control--acquisition time: control = 3.0 s, motion = 3.2s;

error: control = 1.9 mm, motion = 2-2 mm.) If this etfect were caused by

3_ r pressure fontroi Frle'm°vtn9 [ontt°l 133 -i

f,melset) 29 i ,79

27 Pre Mot,on Post _ '_ Motion Post
MOliOn MotiOn Mohon Motion

],
Pr_ Mot,on Post Pre Mohon Poit

Mehon Mot Kin Motion Mot,on "=,_

Pfr_sure r,_r,_i f-rte-mown(J Control

I-Igure 5 The re,sult_of the trackmg experiment. The two left-hand graphs ._how the data from ,
the plessure control. The free-movmg results are on the right. The two upper graphs show
tile aequr;:|lon time: the two lower one_ ,_how the error Eore. -",

on,qet of natlsea the size of the motion decrement would increase over the 100

trials (about 50 min of motion). Figure 5 shows that this is not the case. r

None of the four performan e indices show a reliable correlatlon with time

on task (the largest of the four correlations is 0.06). In other words the

decrement caused by motion appears as soon as the cabin starts moving and is

no worse after 50 min motion. Therefore we can say wlth confidence that there

Is a degradatlon in tracking performance caused by the biomechanlcal effects

of this relatively small degree of motion even for subjects who are strapped

to a chair and whose forearms are restrained.
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It was mentioned in §2.1 that the simulator introduced some jolts,

brief periods of relatively high acceleration, into the movement. It is

possible to see whether the tracking decrements were caused by the jolts

rather than the normal motion by comparing the performance on trials where

there was a jolt with that on trials where there was not.

For both pressure and free-moving controls the presence of a jolt

after acquisition made no difference to the error score. (Pressure control:

error--with jolt = 1.8 ms, no jolt = 1.8 ms; free-moving control: error--

with jolt = 2.2 mm, no jolt = 2-2 mm.) Clearly the motion decrement in the

error score cannot be attributed to the jolts.

The presence of a jolt did produce slower acquisition by the free

moving group (mean acquisition time with jolt = 3.3s, no jolt = 3.1s; p>O.02,

Mann-Whitmey test). There was an effect in the same direction for the

pressure group which failed to reach significance (mean acquisition time with

jolt = 3.1s, no jolt - 3.0s; p=0.125, Mann-Whitney test). Part of the re-

duction in acquisition time under motion is caused by the jolts rather than

the real ship motion. However a compariscn of acquisition time on no jolt

trials with the pre- and post-motion control trials shows that every subject

in the free-moving group was slower on the jolt-free motion trials. There-

fore, as with the error measure, it is clear that the motion does produce a

reliable, if small, change in the acquisition time.

,t is possible to examine the extent to which the two controls are

affected by the roughness of the 'sea' by correlating the average group

performance on each no-jolt trial with the mean modulus vertical acceleration

on each trial. The range of mean modulus acceleration experienced ranged from

0.03 to 0.45 m/s ?. Both performance measures for both controls show positive

correlations as would be expected but they were not particularly large, nor

were the differences betwuen the correlations for the two controls reliably

different. (Free moving: acquisition time, r =0.48,p<0.01; error, r =0.28,
S S

p.O.1; pressure: acquisition time, r =0.39,p<0.025; error, r =0.25,p<0.1.)
S S

There seems to be little difference in the effects of roughness on these two

controls although the rather small range of 'roughneqs' examined should be
no ted.

There seems to be l_ttle ground for deciding that either control is

superior under mot ion. They ahow a similar response to both jolts and rough-

hess. The pressurr control is quperEor on both performance indices under

motion but the same is true of the non-motion conditlcns. This may reflect

n different, in tracking ability between the rather small groups, or a genuine

superlor[ty of the pressure control for this particular combination of task

and control law.

3.3. Tracing task

The tracing patterns produced under mot ion were compared with those

produced immedlate[y before and after motion. The increase "n error was

large and shown by every subject_ (Mean error: no motion=O.7mm; motlon=1.qmm,

p_O.0], sign test.) There was a small increase in the time to complete each

tracing under motion, but pooled across days and subjects this was not reliable.

(Mean time to c_pletlon: contro]=46.8s; motlon=48.Ss; p=0.2, Wilcoxon test,
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2-tall.)

Figure 4 shows four tracings; the upper two were produced with the cabin
stationary and the lower two under motion. The lower two demonstrate the

range of tracings produced under motion from the very bad (which is typical
of about half the tracings produced under motion) to one which is as accurate

as the worst tracing produced when the cabin was stationary.

3.4. Digit keying task

The subjects keyed in a string of 50 four digit numbers, twice under
motion and twice static. The data given for each condition are for the

middle 20 four digit numbers on each of the days, pooled across the two days.
The standard deviations are the means of the standard deviations for the

individual subjects.

Time to enter a four digit number (static)=1069ms(S.D. 218ms)

Time to enter a four digit number (motion)=ll02,s(S.D. 249ms)

The difference in mean keying time is due to chance. Half the subjects

are faster under motion, half are slower. The increase in variability a_pro-

aches reliability (p=0.075, Wilcoson test, 2-tail). There was a small in-

crease in errors (0.5 to 1.0%) which approaches reliability across subjects

(p=0.07, Wilcoxon test, 2-tail).

CONCLUSIONS

We have examined three manual control tasks requiring movement of the
unsupported arms, continuous fine movement with restrained arms or ballistic

hand movement with unsupported arms. The extent of degradation in these tasks
caused by a comparatively mild ship motion is very different.

The tracing task, involving continuous whole arm movement was very

seriously affected. The average error increased by a factor of three and
many of the individual records were so bad that without the Lar_et tracing

visible it would be difficult to guess what the subjects' it_t _ed drawing
had been_ The tracking task, which involved continuous fine .ements of the

supported alms, was reliably worse under motion, but performed dith reason-

able conpetence. The average error and the time to acquire the target increas-

ed by about 20%. The digit keying task, requlring a group of four pre-pro-
grammed ballistic movements, was virtually unaffected.

The changes in performance were not primarily due to nausea. Firstly,

the motion was below the threshold at which 5% of people vomit after an ex-
posure some"hat longer than _he duration of the motion in the experimental

period. Secondly, the subjects reported little change in their own feelings
of well-belng. Thirdly, in the tracking task there was no change in perfor-

mance over a period of about an hour° Were nausea an important factor, per-
formance would decline with time as nausea increased.

This study is clearly preliminary, It involves the dy_mmic response of

only one sort of ship to one sea-state. However, in general, it confirms the
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findings of Jex et al. with a very different sort of ship under much rougher

conditions. They found very little change in performance of a desk-top

calculator task, a consistent 20-40% drop in tracking performance and break-

down in a task requiring unsupported arm movements. The major point of
difference between the studies is that Jex et al. dismiss motion under

Im/s 2 r.m.s, as unlikely to affect performance. It is clear from our study
that there are reliable changes in performance well below im/s2 r.m.s.

There has been remarkable little work to date on the influence of ship

motion on manual control skills. It seems necessary to demonstrate two
conditions before it is worth investing a major human factors effort in

designing the man/control interface on board ship to minimize the effects of

motion. Firstly it needs to be shown that some tasks are much more affected

by motion than others, otherwise there would be no scope for optimizing the

design around tasks which are relatively unaffected by motion. Secondly, it

is necessary to show that nausea is not the major determinant of the decre-
ment. If it were, this would indicate a job for a pharmacologist rather

than an ergonom_st. This paper has demonstrated that both these conditions
can be met.

As an example of the importance o_ these results we might consider the

design of a system to allow an observer to identify a point of interest on a
radar display on board ship. A recommendation from existing human factors

wisdom, which all derives from land based experiments, would suggest, other
things being equal, that a light-pen was preferable, a joy-stlck controlled

cursor next best and a keyboard entry specifying the appropriate matrix point

on the display the least efficient. It is clear from the results of our

experiments that the results of land based experiments cannot simply be

transferred to ships, for a light pen would be the most affected by shlp

motion and keyboard entry the least. Of course, this does not mean that light
pens must not be used in moving environments. But it does mean that a proper

programme of research should be mounted to investigate the effects of likely

movements to be met under operational conditions on the tasks in question be-

fore devices which involve unrestrained limb movement are used in moving
envlronments.
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APPENDIX

Description of the Warren Spring ship motion simulator

The WSL ship's motion simulator is a counter-balanced gimbal mounted

platform system with a heave displacement capability of 3.2m and out-to-out
angular motion of 14° in both roll and pitch axes.

The heave motion is derived from a servo-controlled hydraulic motor

and reduction gear which drives the payload and counterbalance platforms
up and down each side of a central supporting mast structure. The two

platforms are coupled by a chain which hangs over the drive sprocket on

the main shaft at the top of the mast. Thus the platforms are operated as

a balanced system and backlash is minimised. Auxiliary free running cables
and pulleys are also provided as a safety measure in the event of mechanical
failure in the main chain.

Roll and pitch motions are obtained by servo-controlled hydraulic
piston actuators acting against the gimbal mounted platform. These are

double acting pistons which move through + 76mm (3 in) to Eive the out-to-
out displacement of 14°.

The motions of the simulator are controlled (i) by locally generated

sine-wave siEnals from which it can be progrannned for either single or

combined motions and (2) by external signals which includes recorded ship's

motion data or synthesized random data. Operation by sine-wave signals
allows individual control of frequency, amplitude and phase relationship for

all three motions. To prevent possible damage to the simulator, external
signals are connected through a low-pass filter and attenuator to limit

signals to within safe operating capability of the simulator.
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