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MAGSAT ATTITUDE DYNAMICS AND CONTROL:
SOME OBSERVATIONS AND EXPLANATIONS

Thomas H. Stengle
Goddard Space Flight Center

ABSTRACT

The Magsat spacecraft was placed into an elliptical sun synchronous orbit

on October 30, 1979. Before its reentry 7 months later, Magsat had trans-
mitted an abundance of valuable data for mapping the Earth's magnetic field.
As an added benefit, a wealth of attitude data for study by spacecraft
dynamicists was also collected. Because of its unique configuration, Magsat
presented new control problems. With its aerodynamic trim boom, attitude
control was given an added dimension. Minimization of attitude drift, which
could be mapped in relative detail, became the goal. Momentum control,
which was accomplished by pitching the spacecraft in order to balance aero-
dynamic and gravity gradient torques, was seldom difficult to achieve.
However, several interesting phenomena were observed as part of this activity.
This included occasional momentum wheel instability and a rough correlation
between solar flux and the pitch angle required to maintain acceptable
momentum.

This paper presents an overview of the attitude behavior of Magsat and some
of the control problems encountered. Plausible explanations for some of
this behavior are offered. Some of the control philosophy used during the
mission is examined and aerodynamic trimming operations are summarized.
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I. Introduction

Managed by NASA's Goddard Space Flight Center, the Magsat spacecraft
was a 3-axis stabilized spacecraft placed into a sun synchronous elliptic
orbit of 350 X 560 km on October 30, 1979. During its lifetime which ended
with reentry on June 11, 1980, Magsat met its scientific goals and also
provided valuable information regarding spacecraft attitude dynamics and
control in the lTow altitude flight regime. Goddard's Attitude Determination
and Control Section (ADCS) was charged with the responsibility of daily
attitude control operations and monitoring the health and safety of Magsat's
semiautonomous control system. As a fallout from this activity and definitive
attitude processing by the ADCS, an abundance of attitude data was accumulated.
Continued analysis of this data is providing practical insight into such items
as aerodynamic drift characteristics, drift minimization, and momentum control.
Another benefit from this mission was the operational experience gained from
controlling a spacecraft which had a large amount of control autonomy, yet
still required 24-hour monitoring and numerous ground supplied control system
updates.

Built by the Applied Physics Laboratory (APL), the. Magsat spacecraft
pictured in figures 1 and 2 utilized a SAS-C type bus. In flight, the space-
craft's Z axis (pitch axis) was nominally pointed near negative orbit normal
(NON). Angular momentum provided by the body and a momentum wheel was
directed along the -Z axis. In contrast to SAS-C, Magsat was given additional
attitude control autonomy due to anticipated high aerodynamic torques. An
Attitude Signal Processor (ASP) performed the onboard control system functions
and required occasional updates via ground command by the ADCS. The ASP will
be discussed in more detail later. Ground commanding of the spacecraft's
magnetic coils for rol1/yaw or momentum control served as a backup mode which
was never required following initial ASP acquisition.

Activation of the spacecraft's magnetic coils for roll/yaw control or
momentum dumping by either the ASP or ground command was not desired for
two reasons. First, this activity corrupted science data gathered by the
experimenter's magnetometer. Second, nutation was increased which had the
potential for impacting fine attitude determination required by the experi-
menter. In order to achieve the goal of minimizing magnetic coil activity,
several control capabilities were available and were utilized by the ADCS.
As an aid to balancing yaw torques and thus Z-axis drift, a variable
length aerodynamic trim boom was built into the spacecraft. The length of
this boom was controlled by ground command and was adjusted on several
occasions during the mission. Also available for drift control was the
capability to target the spacecraft's Z axis to some point off negative
orbit normal where the spacecraft might be better trimmed aerodynamically.
It was suggested in prelaunch analysis that the Magsat spacecraft might be
trimmed with its Z axis at a point between 2 to 4° above NON. While actual
experience presented later will show that this trim point varied considerably
throughout the mission, the importance here is that control requirements
were flexible enough (and, in fact, necessary) to allow placing of the
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spacecraft spin axis where roll/yaw control could be minimized. The amount
of acceptabie drift from the target attitude before ASP activation of controi
coils was also variable. By changing this control threshold, the drift could
be highly restricted at the expense of control torques or given no tight
bounds. Another major capability which aided in minimizing coil activity

was associated with momentum control. On a near daily basis, the spacecraft's
pitch was biased so as to alter the relative effects of the gravity gradient
and aerodynamic torques on the spacecraft, thus affecting momentum build-up
or loss.

From a control standpoint, Magsat's mission might be divided into three
phases. First was an initial acquisition and trimming phase which took place
the first 3 weeks of the mission. During this time, the spacecraft was placed
into the ASP mode of operation, both the experiment and aerodynamic trim booms
were deployed, and momentum control was established by biasing the spacecraft
in pitch. This was also an active period of attempting to stabilize the
spacecraft's drift with relatively frequent target changes and trim boom
positioning.

Following this initial period was a time lasting roughly 4} months which
might be classified as the nominal operations phase. During this phase,
control torques were kept to a minimum with active pitch biasing of the space-
craft and six trim boom operations. Magsat's target attitude remained nearly
constant at a position 49 above NON.

The final 2 months of the mission were not nominal by any standard.
Originally designed as a 5-month mission, orbit decay was less than predicted,
thus giving the spacecraft an additional 2 months of life. This resulted in
two complications. First, the orbit had time to precess enough so that the
spacecraft encountered increasingly larger periods of darkness which had not
been anticipated under the prelaunch mission plan. The second complication
was that the Sun angle increased so as to create problems in fully charging
the spacecraft's battery. These two factors necessitated a Project Office
decision to move the spacecraft's target attitude roughly 100 td improve solar
array position relative to the Sun. While the ASP successSu]]y maintained
the spacecraft Z axis at this off-nominal target roughly 6 below NON, the
spacecraft drift and relative frequency of control torques increased
drastically. Also as a result of the low power conditions that existed, a
considerable amount of full orbit attitude data was lost due to tape recorder
turn-offs. The off-nominal target was held until 2 weeks before reentry when
it was decided that drift had to be reduced to insure successful attitude
control during Magsat's final days. At that time the Z axis target attitude
was returned to a point 49 above NON. Attitude drift and control activity
benefited considerably. Approximately 27 hours before spacecraft reentry,
the target attitude was changed due to Sun sensor calibration limitations
to a point 20 above NON. The subsequent increase in drift could not be
corrected by the ASP resulting in a nonrecoverable loss of attitude control
20 hours before reentry.

22-5



The primary intent of this paper is to summarize some of the dynamics
and control phenomena observed by the ADCS during Magsat's 7-month mission.
Specifically, items associated with roll/yaw control and momentum control
are discussed. Where possible, flight data is presented and actual flight
experience is compared to prelaunch expectations. Postmission analysis by
the ADCS is continuing with emphasis being placed on obtaining a more
thorough understanding of the nature of Magsat's aerodynamic trim point
and in studying flexible boom dynamics.

II. The Attitude Signal Processor (ASP)

As mentioned before, the ASP performed the onboard control system
functions and required periodic updates via ground command by Goddard's
Attitude Determination and Control Section. While the ASP is not the
subject of this paper, its general operation and capabilities should be
summarized. For a detailed description, the reader is directed to refer-
ences 2 and 3.

Pitch control was maintained with a momentum wheel tied into a control
loop which included an Ithaco IR scanner, a filter, and a gyro. While
pitch control was active throughout the spacecraft's orbit, activities
associated with roll/yaw control and momentum dumping were keyed to 14
control points in the spacecraft's orbit referenced from the ascending
node. These control points are depicted in figure 3. Of these 14 control
points, four were roll sample checks, two were momentum checks and the
remaining eight were points for possible magnetic coil commands by the
ASP. Rol1l samples were taken by the IR scanner at the poles and nodes and
indicated to the ASP any attitude error from a ground supplied target
attitude. Note that a roll error at the poles represents a declination
error from negative orbit normal. Likewise, a roll error at the nodes
represents a right ascension error from negative orbit normal. If the
ASP determined that the Z axis had precessed beyond some ground supplied
threshold from the target attitude then the Z axis coil was commanded on
at an appropriate torque zone. Right ascension torque zones were located
around each node while declination torque zones were located between 220
and 400 in latitude. The duration of the Z coil on time was a ground
supplied parameter but was typically 5 minutes. A similar procedure was
followed for momentum control. If the speed of the momentum wheel exceeded
the nominal speed of 1500 rpm by some ground supplied threshold (usually
200 rpm), spin/despin coils were commanded on. The duration of the coil
on time for momentum dumping could be as high as 40 minutes. This outline
of roll/yaw and momentum control represents the nominal operational ASP
mode. Certain variations in roll/yaw, pitch and momentum control existed,
but will not be covered here. One operational restriction which should be
noted is that the spacecraft had to be maintained within 12° in roll
in order to avoid an IR scanner failure due to calibration limitations.

If this occurred, the pitch control loop was disabled and had to be re-
activated by ground command.
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Nineteen ASP parameters were uplinked to the spacecraft on a near daily
basis. Most frequently changed were the spacecraft's orbital period, ASP
clock correction, pitch bias, and percent Earth values used for roll deter-
mination. It should be pointed out that the spacecraft's target attitude
was controlled with the percent Earth values. Other parameters which were
changed, but with less frequency were the thresholds used by the ASP to
determine the necessity for momentum dumping or roll control. Loads to the
ASP were generated on tape and quality assured by the ADCS. These tapes
were hand carried to Goddard's Multi-satellite Operations Control Center
(MSOCC) for uplink to the spacecraft at a scheduled station pass. Although
a minimum of one ASP load could usually be expected each day, updates to
the pitch bias and orbit related parameters were not regularly scheduled
" events, but were the result of an attitude control analyst's decision to
improve ASP performance. Changes in target or control threshold parameters,
however, always followed consultation with the Magsat Project Office.

III. Momentum Control

Although conceptually easy to understand, momentum control activities
often presented some perplexing problems operationally. Because automatic
momentum dumping could result in coil activity for as long as 40 minutes,
it was very desirous, and became a goal to eliminate the necessity for
automatic dumping through proper biasing of the spacecraft in pitch. This
approach to controlling momentum was advanced early in the mission planning
by the APL and during most of the mission was handled with success by the
ADCS. By pitching the spacecraft, the magnitude of the gravity gradient
and aerodynamic torques could be altered so as to affect a wheel speed change
advantageous to momentum control. An average of one pitch bias update was
uplinked to the spacecraft each day. While this exceeded the APL's estimate
of one every two days, there were periods of up to 4 days in which there
were no pitch bias changes. As a measure of the success of this approach
to momentum control, the spin/despin coils were inactive between November 10,
1979, and May 15, 1980. During much of the mission the primary control
function was one of fine tuning the bias. Wheel speed changes were usually
held to less than 5 rpm/orbit. Nominal changes in the pitch bias were on
the order of .1-.20,

The aerodynamic model of the Magsat spacecraft used in simulations and
both prelaunch and postmission analysis decomposes the spacecraft into ten
elements. While its accuracy is questionable, it is useful in showing general
trends and in providing theoretical estimates of torque magnitude as shown
in figure 4. Aerodynamic torques were addressed in several technical memos
before launch and formed an integral part of the control philosophy. In-
tuitively, these torques can be expected to exhibit the largest daily
variations due to the wide range of altitude dependent atmospheric variables.
Successfully predicting these variations and their effect on the required
pitch bias for momentum control does not appear practical. Plots of the pitch
bias and averaged daily flux as given in figure 5 appeared to show some rough
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correlation early in the mission. A 28-day cycle associated with the
pitch bias activity was evident and was phased similar to the Sun's 28-day
cycle. However, this correlation did not hold true nor did the pitch

bias history show any likeness to the nature of the atmospheric density

at perigee computed using a flux dependent Jacchia model (figure 6).

Gravity gradient and aerodynamic torques act in opposite directions
which makes possible the use of these torques for momentum control. It
must be kept in mind that the purpose was to balance net orbital torques.
Variations over the orbit in wheel speed could be expected due to the
altitude dependent aerodynamic torques. (Altitude variations in gravity
gradient torques were relatively small). The orbital variation in the wheel
speed was nominally less than 15 rpm, but went higher than 100 rpm when the
pitch bias was increased to 80 late in the mission. The magnitude and
direction of the torques were such that to spin up the wheel the spacecraft
was pitched in a negative sense when average orbital gravity gradient torques
dominated during the first 6 months of the mission and a positive sense
when average orbital aerodynamic torques dominated at the end of the mission.
The transition period in which the relative roles of the gravity gradient
and aerodynamic torques reversed was one of two noteworthy items observed
as part of momentum control activities. This period occurred 6% months
into the mission with the spacecraft in a 270 km X 365 km orbit and lasted
2 weeks. During this time the momentum could not be controllied by biasing
the spacecraft in pitch. The reason for this can be shown both theoretically
and graphically. Tossman of the APL described the average orbital torque
about the pitch axis as:

T = Kg + Kgg P *+ Kagro P
where Ko = torque at zero pitch
Kgg = °T6G/ 3P
KagRo = 9TAERO/ 3 p
P = pitch angle
Teg = average orbital gravity gradient torques

TAERQ = average orbital aerodynamic torque

Theoretical results show that the coefficients Kgg and Kapro are linear

and of opposite sign over the range of pitch bias angles used operationally
(figure 4). By defining Kapro 2nd Kg as coefficients derived from average
torques over an orbit, orbi%a? variations in these coefficients are avoided.
Solving for the pitch angle required to balance the two torques results in
the following expression:

P = -Ko/(Kgg + KAERO)
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longer effective. Also, depending on which torque dominates, the spacecraft
must be pitched in opposite directions to achieve, for example, an increase
in momentum.

Returning to the available wheel speed data during the mission and the
pitch bias history, it is instructive to determine actual values for the
coefficients Kappg and Kgg. The sum of these two coefficients, Kgg + Kpppg
is plotted in figure 7 for the period between January 1 and May 1, 1980,
The results do not clearly show what might intuitively be expected but do
reflect the randomness and variability of the spacecraft's aerodynamics. A
gradual decline in Kgg + KAERQ would be expected as the aerodynamic torques
gradually increase in importance. This, however, is not obvious from the
flight data. Unfortunately, definitive values for Kgg + KAERO beyond May 1,
1980, cannot be easily determined. This is due to a scarcity of good data
resulting from poor spacecraft health and the fact that with the higher
pitch biases used, it is difficult to determine with some confidence the
net wheel speed acceleration.

The transition period is depicted graphically in figure 4. Plotted
are average gravity gradient torques and aerodynamic torques over an orbit
versus pitch angle. Three theoretical curves are featured for the average
aerodynamic torques corresponding to conditions found throughout the mission.
As the mission progressed, the magnitude of these torques increased, thus
effecting the magnitude of the slope of the aerodynamic torque curves given
in figure 4. This plot shows graphically the proper pitch angle for zero
torque about the pitch axis (and thus, no acceleration in the momentum wheel)
and also the trend towards a more negative pitch as aerodynamic torques gain
in relative importance. Figure 4 also shows the need for a positive pitch
when this torque dominates the system.

One surprise associated with the transition period was how rapid the
aerodynamics changed. In the 1-week period immediately preceding the loss
of momentum control, the required pitch bias increased from 20 to its
operational limit of 8°. Previous to that time momentum control activity
had been relatively stable with pitch biases ranging between .50 and 2°.

Once it was concluded that wheel speed had been lost, the pitch bias
was returned to zero. This was done to reduce orbital variations in the
wheel speed caused by orbital variations in the aerodynamic torque. With-
out the momentum control capability with pitch biasing, automatic momentum
dumping using electromagnetic coils occurred several times a day. Some
degree of control over the momentum was achieved by biasing the spacecraft
pitch following the 2-week transition period. It should be pointed out
that this was approximately 1 week before spacecraft reentry and time did
not permit the establishment of tight control over the momentum which was
exhibited during the first 6% months of the mission. Nevertheless, there
was a reduction in momentum dumping activity the last week of the mission
by biasing Magsat's pitch.
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A second noteworthy phenomenon associated with momentum control was
occasional instability in the momentum. This required more active monitoring

of the momentum wheel speed and numerous ASP loads with large pitch bias changes
to bring the momentum back under control. At least three periods of wheel speed
instability were encountered during the mission. These periods can be observed
in figure 6 as sudden changes in the required pitch bias following a period of
relatively small pitch bias changes. This feature was characterized by a

rapid rise or fall in the wheel speed as high as 30 rpm per orbit requiring
large, immediate changes to the pitch bias to avoid spin/despin coil activity.
Thus far, there has been no confirmation that a sudden change in atmospheric
conditions affecting aerodynamic torques caused these rapid changes in the
wheel speed. This does, however, appear to be the only plausible explanation.
There also has not been any consistent correlation found between these periods
of wheel speed instability and significant changes in the spacecraft Z axis
drift. This might be expected since Z axis drift should be affected by large
changes in aerodynamics which might suddenly change spacecraft momentum. A
rough correlation can be found for one case around March 25, 1980. On that
day, the spacecraft drift suddenly increased from 20/day to 8°/day. At that
time, there was also a larger than nominal drop in wheel speed. The importance
of the occasional momentum instability is that it illustrates the need for
active monitoring of a spacecraft such as Magsat while in low altitude flight.
Real time monitoring and near real time response was often necessary to avoid
magnetic coil activity. This phenomenon also adds evidence to the extreme
variability of atmospheric conditions.

IV. Spacecraft Drift

Drift minimization became the most challenging aspect of Magsat's control
activities. The goal was to eliminate all attitude control torques by using
the trim boom and by properly adjusting relevant ASP parameters for attitude
target placement. Of course, this goal was not achieved. However, with the
exception of the few weeks following launch when active trimming operations
were underway and the final 9 weeks of the mission when the spacecraft had to
be held at an off-nominal attitude, the number of control torques was below
most prelaunch expectations. In fact, there were periods in excess of 2 weeks
in which there were no control torques. These periods can be seen in a
histogram of the attitude control torques given in figure 8. Part of this
success must be attributed to the fact that a 6° control threshold was used
during most of the mission rather than the 2° bounds suggested before launch.
This allowed more overall drift, but did not jeopardize control or safety of
the spacecraft. Prelaunch estimates of the control torque activity were as
high as three torques per day with a control threshold of 20,

The daily Attitude Determination and Control Section role in drift control
was one of processing a minimum of one orbit of playback data to track the
spacecraft Z axis drift in right ascension and declination coordinates. De-
cisions regarding trim boom operations and target changes were made by the
Attitude Determination and Control Section following consultation with the Magsat
Project Office and on occasion, the Applied Physics Laboratory. In general,
there was considerable caution by all organizations involved during the early

22-15



uoLssiiy jesbely ayy 404 AU03SLH 99bLuay

pue weabojsly anbuaol [043U0) MBA/[|OY 8 3unbi4
(0861) 31va (6261)
~ N v N
> ° R IRy SRS R RN O OER OIS
P el @ @ P PSS
rtr 1 1 1.1 1 1 1 1T 1 11T 1 1 17 1T 17T/

08/0L/9 LSO TOHLNOD MVA/T10H

64/1/11 A3HINDOV TOHLNOD dSV
Q3LVIILSI 34V 0L/9 '8/9

‘LL/¥ '9L/p 'S/v HO4 V1vad INDHOL

3JONVHO 1394HVL O

HOrMVIW S3LVvDIANI

NOIlvd3d0O WOO08 8

WiH1 S31VOIANI

S3NOHOL T0HINOD 40 HIGNNN

AHIN33Y
¥

AL
yi—
9l

8l—

0c—

O

h

\f

¥ :310N

oe-

0c-

06

(8334YH3A) 33D143d 40 3ANLILY]

22-16




months of the mission towards overuse of the aerodynamic trim boom and in
actively changing the spacecraft target attitude. This initial conservatism
was the result of several factors. First was the uncertainty in the
physical reliability of the trim boom system following a large number of
extensions and retractions. A second factor was the lack of experience in
controlling a spacecraft such as Magsat with its unique configuration and
control capabilities. Although the amount of prelaunch analysis by both
the Applied Physics Laboratory and the Attitude Determination and Control
Section was considerable, large uncertainties in modeling aerodynamic
effects seemed to demand a certain degree of hesitancy in making changes

to trim boom length or target location until more experience and confidence
could be gained with these operations.

Use of definitive data can now give a more complete picture of Magsat's
drift characteristics. As predicted by simulations conducted by the Applied
Physics Laboratory, Magsat's drift track is characterized by two distinct
circular motions as illustrated in figure 9. One circular track which is
traced out over an orbit is of varying size, but typically around 19 in
diameter. This orbital motion can be attributed primarily to variations in
the aerodynamic torques as the spacecraft travels through its orbit. While
gravity gradient torques were present and affected roll/yaw torques, their
effect appears to be of lesser importance when compared to aerodynamic
torques. If the spacecraft were properly trimmed such that total environ-
mental torques averaged over the spacecraft's orbit were zero then the orbital
drift circle was closed. If the net torque was nonzero, then in addition
to the orbital drift track, the spacecraft's Z axis would also precess about
a larger, secondary circle with a period ranging between 4-7 days. The size
of this circle varied, but was typically observed to be between 2-62 in
diameter. Figure 10 is another example of this secondary Z axis precession.
The orbital motion has been removed for clarity. In figure 10, not only
can the circular drift track be observed, but also the consequence of drift-
ing outside the control bounds as specified by the ground supplied target
attitude and control threshold. Both a right ascension and declination
control torque are shown.

The center of the secondary circle was referred to in prelaunch analysis
and during the mission as the spacecraft trim point. While the location and
uniqueness of this trim point is still being studied, the apparent trim point
during the mission was not stationary, although it always remained above
negative orbit normal in declination. The Applied Physics Laboratory pre-
dicted that net orbital Z axis motions would center about a preferred trim
point. The desirability by the Z axis to remain above NON has been attributed
to superrotation of the atmosphere. Dynamic analysis by Tossman (references
4 and 5) indicated that minimum attitude perturbations would exist if Magsat
flew into the relative wind. Thus, Magsat wanted to fly at a biased
declination angle, directed into the westerly wind caused by atmospheric
superrotation. In effect, this superrotation of the atmosphere introduces
a "side" component of wind which is variable in direction and magnitude as
the spacecraft passes through its orbit. Figure 11 shows the X, Y, and Z
components of the spacecraft wind vector in spacecraft body coordinates

22-17




0861 €(6-G Adendgaj) 0y-9¢ SAeQ 404 33140 SIXY Z 6 4nBi4

(S334H3A) L3S440 NOISNIOSY LHODIYH

0’8 09 ot 0¢ 00 0'¢c 0v-
_ | [ _ \\\_ [
TYWHON LIGHO
JAILYOIN
— 0¢
0)7
s
6¢ MOVHL :
/€ 40 0¥
VL1940
L\
®
INIOd A
WIdL
1NIHVddY Jo9
8¢
—0'8
— 00t

(S334D3A) 135440 NOILVYNITO3a

22-18




08

0861 “(SL-LL A4enuep) G-L SABQ 404 33140 LBILGUQ 39N 0L d4nbLy

(S334H3A) 13S440 NOISN3OSV LHOIY

09 oy 0¢ 00- 0o¢- O'v-
_ _ I q 2 ﬁ 00
IVWHON LI8HO
3AILYO3IN
an
\ 3aNLIL1Y 10¢ o
\ 139HV1 mﬂ
/ \®\ —
\ Z
— -3
—7 77 sl 19 o
3INDHOL <
NOISN3OSY LHOIH 3N0OHOL O
NOILVYNI1D3a a1 ﬁ
®<— | NIOd WIHL @
LINIHVddY 109 4
(o)
m
0)
o
9 m
—08 4

— 00!}

22-19



(31940 UOLSSLW A|4e3) [PWMON 31quQ dAL3ebaN 1y

pajabue] qesbey 40} 40397 PULM PIZL|eULON

TLL @4nbiyg

(3AON ONIAN3IOSY LV 33DIH3d)
S334D3A NI ATVIWONY 3Nyl

000°09€ 000042 000°08} 000°06 00
. . . 1. .= .= 000}~
— 008°0-
ININOJNOD A

— 009°0-
— 00¥°0-
LNINOJWOD X — 0020~
Ilh\ﬁ\\\\\ - mES—— 000°0
/ 0020

IN3INOJNOD Z

- 00¥°0

ALIOOT3IA 3I3DIHI4/HOLOIA ANIM

22-20



which were calculated for a Magsat orbit with the target attitude at NON.
These components are normalized with respect to the spacecraft velocity at
perigee. As can be seen, a considerable component of the wind vector is
present in a direction parallel to the pitch axis. With Magsat's relatively
large (.28 m) center of mass-center of pressure offset along the roll axis,
density variations due to the orbit's eccentricity, and superrotation,
significant variations in the yaw torque could be expected. Simulations
show that the Z component of the wind vector is significantly reduced by
targeting above NON. This results in yawing the spacecraft into the
relative wind.

The significant point here is that no matter how far the spacecraft
was placed from the trim point, the precession of the Z axis was always
such that it circled a trim point located above negative orbit normal.
Generally speaking, the larger the circle of precession, the higher the
drift rate. The Applied Physics Laboratory believed that a viable control
approach for reducing drift would be to determine the trim point by tracking
the Z axis precession over a period of days and then maneuver the spacecraft
to that target. Subsequently, the net orbital Z axis motion as predicted
by the Applied Physics Laboratory's simulations would precess less than 10
from this point. Although this approach was tried, it was abandoned
primarily because the drift bounds was increased to 69 and this significantly
reduced control torques to a more tolerable level. When the Applied Physics
Laboratory's suggested control approach was tried, two problems were evident,
First, maneuvering the spacecraft to a specific target to within 19 was not
a simple task. This type of maneuver was accomplished by closing the dri ft
threshold to force the ASP to automatically torque the spacecraft to the
desired target. The coarseness of the control system and coupling of right
ascension motion with declination maneuvers and vice-versa did not permit
accurate placement of the spacecraft's Z axis. This can be seen in figure
10. A second problem was that the desired target was dynamic. This was
suspected in prelaunch analysis, but no estimates of the target's variability
were made. Figure 12 shows the location of the apparent target attitude
determined from the drift tracks during various periods of the mission.
At one time it was postulated that the target location was a function of
the latitude and altitude of perigee. This cannot yet be substantiated,
although the target appears to want an offset in right ascension when perigee
is at the poles. One period of operation does seem to validate the findings
of the Applied Physics Laboratory's simulations. Between March 5-27, 1980,
a very stable drift period existed. The net orbital drift track for 5 days
during this period is given in figure 13. During this time the spacecraft
remained close to its trim attitude, never precessing away from this point
by more than 19,

Concerning the size of the control threshold relative to control torque
frequency, evidence certainly suggests that a further reduction in the number
of control torques may have been achieved by using larger control threshold.
An example of this can be seen in figure 10. The Z axis precession was
following what appears to be a stable circular track about a trim point before
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it crossed the control threshold. Had the threshold been larger, the
precession would have probably continued on the track pattern established,
Figure 10 shows that two control torques would have been averted since
coupling from the first (declination) torque necessitated a second (right
ascension) torque. The main reason for not opening the threshold further
was the 120 roll restriction with the IR horizon scanner had to be respected.
It should also be kept in mind that real time data available during the
mission could not supply analysts with the complete picture of the drift
tracks which are now available from definitive data.

The importance of the aerodynamic trim boom cannot be minimized. In
fact, the trim boom was a vital, if not essential tool for reducing drift.
Sixteen boom operations were performed during the mission including 10 which
took place following an initial 3-week period of trimming during Magsat's
early mission phase. Boom operations have been marked on the histogram of
control torques given in figure 8 so that the effectiveness of the trim
boom can be clearly seen. Boom operations on November 20, 1979, and
March 4, 1980, were followed by extended periods of nearly 3 weeks with low
drift and no control coil activity. Perhaps the best example of what trim
boom operations can accomplish can be seen in figure 14. Presented are
drift tracks for 2 to 3 orbits on 4 days in late November 1979 with four
different trim boom positions. Net orbital drift was significantly reduced.

Because of orbit eccentricity and variations in the spacecraft attitude,
the yaw torque was always variable over the orbit regardless of the boom
length. The general approach to trimming with the boom was to assume an
imbalance in the yaw torque could be corrected only when the spacecraft was
at perigee. Thus, when perigee was at either pole, boom extensions or
retractions could be made to change yaw torque which would affect declination
drift. Likewise, changes with perigee at the equator were made to reduce right
ascension drift. Whilé in practice the above approach proved adequate, the
general lack of experience in working with a trim boom necessitated a certain
degree of trial and error with this operation. Although a large degree of
confidence was placed in the direction of boom change, the magnitude of these
changes to affect an increase or decrease in yaw torque was always questionable.
Typical changes in boom length were 25 cm. Some prelaunch analysis suggested
that command sequences for extending or retracting the boom should be in 2 cm
increments (reference 4).

Current postmission analysis is involved in a more detailed examination
of the aerodynamic effects using definitive attitude data which is now avail-
able, and also critiquing drift control operations with the spacecraft's
aerodynamic trim boom. Here, it is instructive to point out the nature of
the drift patterns observed. Also, rather than take a theoretical approach
to explaining how drift might be reduced, periods of relatively low drift
can be examined with special attention to the trim boom configuration and
target attitude which provided low drift. Two periods of low drift are
summarized below. One period corresponds to a very stable drift period
beginning around March 5 and lasting until March 27, 1980, During this
period, perigee was located at or near the descending node. The second
period covers the first week in January 1980 when perigee was at or near the
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South Pole. Examination reveals the existence of different conditions for
minimal drift as perigee altitude and Tocation change.

The March period is interesting because it was a time during the mission
with very Tow drift (less than 29 net drift per day) and perigee located near
the descending node. The trim boom was retracted 25 cm to 489 cm immediately
preceding this period. Figure 15 shows right ascension, declination and yaw
versus time for two Magsat orbits on March 17, 1980. Time of perigee crossing
is also marked. Plots of these parameters for other orbits during this March
period are nearly identical. The plots seem to contradict what was once
advanced prelaunch as a possible drift control philosophy, namely to balance
out yaw torques completely at perigee. Instead, as the right ascension plot
in figure 15 shows, the spacecraft undergoes maximum drift due to yaw torque
at perigee. Thus, what becomes important is not simply the balancing of
drift at one point in the orbit, but to affect the drift at perigee in a way
such that net orbital motion is reduced. Here, the high torgues at perigee
are adjusted to zero out the torque over the orbit. As can be seen in figure
15, the right ascension versus declination plot is a closed circle indicating
lTittle net orbital drift.

During this period, the Z axis precessed in a circle about a relatively
stable trim point located 50 above negative orbit normal with little right
ascension offset. The diameter of this circle was less than 2° and was
traversed in approximately 4 days (figure 13). Note that since the trim
point was located directly above negative orbit normal in declination that
the maximum yaw angle was at perigee.

The second study case with representative plots given in figure 16 is
taken from early January 1980. Although not as nice as the stable period
in March, Magsat's drift during this January period was less than 30 per
day and was relatively free of control torques. The Z axis precessed about
a trim point 5.5° above negative orbit normal in declination with a period
of 5 days and traced out a circle with diameter of 4°. The trim boom Tength
was 448 cm. Unlike the March period, perigee was near the South Pole during
early January. With the trim point still above negative orbit normal in
declination and only a small offset in right ascension, the yaw angle was
not at its maximum value at perigee. Unlike the March period, there is
drift in both right ascension and declination at perigee. Here, a balance
in the yaw torque appears to occur near maximum yaw with both declination
and right ascension drifts near minimum. The implication of this simple
examination with perigee at the South Pole is that balancing the torque at
maximum yaw is a valid, if not optimum control approach rather than balancing
the torque at perigee. This perhaps shows the significance of torques due
to high yaw angles near the nodes (where superrotation effects are largest)
relative to torques at perigee when perigee is at a pole. Certainly this
1s a simplistic conclusion which will be examined in more detail. The
eccentricity of the orbit, latitude of perigee, variation of aerodynamic
effects with altitude and target placement (which will effect the phasing
and magnitude of yaw) must be considered further.
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V. Closing Remarks

While analysis is continuing, some abstract conclusions can be drawn
regarding the attitude control of Magsat. First, the ASP was essential for
successful completion of the Magsat mission. Ground control, especially
during the closing months of the mission, would have most 1ikely been met
with frustration and failure. Although drift was often Tow and manageable
when the spacecraft was properly trimmed, this state was always achieved as
a result of active adjustment of various ground supplied ASP parameters and
the aerodynamic trim boom. In terms of performance, the ASP successfully
satisfied all onboard control requirements. During times of high drift
activity, the ASP displayed its effectiveness by maintaining Magsat within
its prescribed control bounds. Ground control would not have been able to
respond in time to violations of these control bounds. The importance of
active ground monitoring of spacecraft attitude health and safety has been
shown. The effectiveness of the ASP must be attributed, in part, to success-
ful ground support.

Any optimum control philosophy for Magsat must be complex. The effects
of boom length and perigee location on the spacecraft's trim point are not
fully understood. At least two sets of conditions may exist for minimizing
drift. Studies of the uniqueness and stability of the trim point are
currently underway.
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