DOUBLY-PERIODIC ORBITS IN THE SUN-EARTH-MOON SYSTEM

R. Farquhar and D. Muhonen
Goddard Space Flight Center
and
D. Dunham
Computer Sciences Corporation

Abstract

A series of periodic orbits in the Earth-Moon circular restricted problem of three bodies has been found which is ideally suited for exploring the Earth's geomagnetic tail. The mean apsidal motion of the basic highly elliptical Earth orbit is maintained at about one degree per day by a sequence of lunar swingbys, keeping the apogees in the anti-Sun direction. Hence, the orbits are periodic in reference frames rotating at both lunar and solar rates. Apogee distances are alternately raised and lowered by the lunar swingby maneuvers. Several categories of these "Sun-synchronous" double lunar swingby orbits are identified. The strength and flexibility of this new trajectory concept is demonstrated with real-world simulations. A large variety of trajectory shapes can be used to explore the Earth's geomagnetic tail between 60 and $250 \mathrm{R}_{\mathrm{E}}$. Some of these orbits will be shown in a movie. NASA plans to use this technique during its proposed four-spacecraft program called Origins of Plasmas in the Earth's Neighborhood (OPEN). More details can be found in AIAA Paper 80-0112, "A New Trajectory Concept for Exploring the Earth's Geomagnetic Tail."

The following plots are a representative sample of the many existing types of these doubly-periodic orbits. The gravity model employed consisted of the Earth and Moon point masses, and the Moon's orbit was assumed to be circular. A patched-conic method was used for orbit computations. All trajectories are in the moon's orbital plane, and a projection of the SunEarth line is shown as a fixed reference. A classification scheme is used whereby each periodic orbit is specified by four numbers, [A, B, C, D], where:
"A" is the approximate number of months between lunar swingbys in the inner segment.
" B " is the number of complete circuits (apogees) in the inner segment.
"C" is the approximate number of months between lunar swingbys in the outer segment.
"D" is the number of complete circuits (perigees) in the outer segment.
"D" equals zero with most orbits applicable to magnetospheric studies, so these are specified by only three numbers, [A, B, C]. For "D" larger than zero, the orbits become butterfly shaped, with the spacecraft spending most of its time far from the anti-Sun line outside the geomagnetic tail. For "C" greater than 3 and "D" equals zero, the outer loop extends well beyond the Sun-Earth L_{2} libration point, where strong solar perturbations make the restricted Earth-Moon model unrealistic.
DOUBLE LUNAR SWINGBY ORBIT - (1.1.1) CLASS

$-(1.1 .2)$ CLASS

PERIGEE
APOGEE-1
APE
APOGEE-2
205 RE

KM
18.104
SWINGBYS
LUNAR
AT
DOUBLE LUNAR SWINGBY ORBIT - (1.1.3) CLASS

KM

LUNAR SWINGBYS
AT
RADIUS
PERILUNE
$\begin{array}{ll}-(2.3 .1) & \text { CLASS } \\ \\ \text { PERIGEE } & 6.0 \\ \text { AE } \\ \text { APGEE-1 } & 75 \\ \text { APOGEE-2 } & 141 \\ \text { RE }\end{array}$
DOUBLE LUNAR SWINGBY ORBIT

DOUBLE LUNAR SWINGBY ORBIT - (2.4.2) CLASS

PERILUNE RADIUS AT LUNAR SWINGBYS 19.712 KM
DOUBLE LUNAR SWINGBY ORBIT - (3.5.1) CLASS

kM

SWINGBYS
LUNAR
RADIUS AT
PERILUNE
CLASS

double lunar Swingby orbit - (3.7.3) CLASS

kM

N
0
0
0
3
3
3
LUNAR
AT
RADIUS
PERILUNE

PERILUNE RADIUS AT LUNAR SWINGBYS 13.404 KM
DOUBLE LUNAR SWINGBY ORBIT - (4.9.2) CLASS

KM
6.944
DOUBLE LUNAR SWINGBY ORBIT -' (5.10.3) CLASS

DOUBLE LUNAR SWINGBY ORBIT - (5.11.1) CLASS
KM 몽 SWINGBYS LUNAR
AT RADIUS FERILUNE
(1.1.3.1) CLASS DOUBLE LUNAR SWINGBY ORBIT

perilune radius at lunar Swingbys 27.354 KM
DOUBLE LUNAR SWINGBY ORBIT - (2.4.2.1) CLASS
PERILUNE RADIUS AT LUNAR SWINGBYS 11.448 KM

