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SUMMARY

Elastomeric elements are seeing increasing, successful use in control of
unstable rotor vibrations. Elastomers are used both as seals for squeeze film
dampers and as dissipative elements in their own right. In either application,
their success is dependent upon a correct match between rotor and suspension
dynamic characteristics. This paper presents information on the dynamic char-
acteristics of elastomeric supports. Stiffness and damping characteristics for
elastomers of various geometries including O-rings, buttons loaded in compres-
sion, and rectangular elements loaded in shear are presented. The effects of
frequency, temperature and amplitude are illustrated, as well as the effects
of material and geometry. The basis for this data is dynamic component testing.
Empirical design methods are illustrated, and several examples are presented
where elastomers have successfully controlled both synchronous and nonsynchronous
vibrations.

INTRODUCTION

In a numberof rotating machinery applications, undesirable vibrations,
both synchronous and nonsynchronous, can be controlled by simple elastomeric
bearing mounts. Belief in this statement has led to a sustained effort at
Mechanical Technology Incorporated (MTI), under NASAfunding, to provide the
necessary elastomer data to develop the meansto apply it, and to demonstrate
the vibration control capability of elastomers for rotating machinery. The
program approach has been empirical and is directed at answering the questions
of the rotor dynamicist whomust perform analysis and design synthesis to
achieve smoothly running rotors.

Somehighlights of available data are presented in this paper together
with someillustrations of effective vibration control by elastomeric elements.
For more extensive data, the reader is referred to the list of references at the
end of the paper.

COMPONENTTESTING

Componentdynamic data havebeen generated by the base excitation resonant
massmethod, whosemain features are shownin Figure i. A high-capacity elec-
tromagnetic shaker applies a sinusoidal motion to the base of an elastomeric
spring on which a mass is supported, and accelerometers measure the transmis-
sibility and phase difference between base and mass. Near resonance, these
measurementsare accurately translated into stiffness and damping of the elas-
tomeric spring.
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Various geometries have been tested, including cylindrical buttons in
compression; rectangular elements in shear; ring cartridges under radial loading;
and O-rings under radial loading. These geometries are illustrated in Figure 2.

In Figure 3 a typical set of test results, covering the frequency range
between approximately i00 and i000 Hz, is presented. These data apply to a
rectangular element of Polybutadiene loaded in shear and exhibit small, but
acceptable, scatter about a line showing steadily increasing stiffness and
dampingwith frequency. A power law variation of the form K = A_B has been
fitted to most data sets.

Shear stiffness of rectangular elements is proportional to sheared area.
However, the axial stiffness of cylindrical buttons increases more nearly as
the square of the stressed area. Incompressibility of the elastomer causes
this effect since any axial deformation of the cylinder must be accompanied
by radial deformation to maintain the samevolume. Empirical correlations with
diameter-to-height ratio for different button sizes are shownin Figure 4.

Stiffness and loss coefficients for O-rings in radial deformation are
shownas functions of frequency in Figures 5 and 6. In Figure 5, three different
materials are compared: Viton 70, Viton 90, and Buna-N (70 durometer). The two
70 durometer materials show similar stiffnesses, although Viton 70 has a steeper
slope. Viton 90 is approximately four times as stiff as the Viton 70. The loss
coefficient for Viton 70,at about 0.9, is highest, comparedwith 0.5 for Viton 90
and 0.3 for Buna-N. Figure 6 shows the striking effects of increasing tempera-
ture on dynamic characteristics of Viton 70. The loss in stiffness is severe,
and the decrease in loss coefficient even more pronounced; the excellent room
temperature damping characteristics of Viton 70 are not fully maintained at the
high temperatures which Viton can withstand.

Another important environmental parameters is the dynamic amplitude to
which the elastomeric element is exposed as shownin Figure 7 for cylindrical
Polybutadiene elements in compression. Stiffness steadily falls with increasing
strain, particularly above 0.003, but loss coefficient steadily increases;
properly exploited, strain of this material could result in increasingly effec-
tive vibration control!

It has been shownconvincingly in several test series that the changes in
elastomeric characteristics with strain are not solely the result of self-heating
Evenwhen temperature rise in the elastomer is negligible, strain effects may
be pronounced. However, under sufficiently high strains, elastomers do get hot.
A 60° temperature increase is possible, as shownby the centerline profiles in
Figure 8.

In Figure 9, the effects of strain on Viton 70 are seen to differ slightly
from those observed for Polybutadiene. Both stiffness and loss coefficients
of Viton 70 fall with increasing strain! Herein lies a further difficulty in
dealing with elastomers: generalities are dangerous!
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ROTORDYNAMICSANALYSISWITHELASTOMERICELEMENTS

Elastomeric rotor mounts must be matched to the dynamic characteristics
of the rotor to give the best possible system dynamic performance. The design
analysis and synthesis process are illustrated in Figure i0. Prior to component
analysis, the rotor itself is analyzed to determine the optimum support charac-
teristics. Componentanalysis, within environmental constraints such as tempera-
ture and available space, provides either a configuration which meets the desired
optimum or a numberof compromiseconfigurations which minimize the deviation
from optimum. From these alternatives, a final selection of geometry and
material is made, and predictions of rotor system performance, with the selected
componentcharacteristics, are made. In somecases, the final damperconfigura-
tion selection may be left to componentor system rig test since elastomeric
damperscan usually be designed to be readily replaceable.

In Figure ii, typical optimization curves show log decrement for a flexible
rotor (a turboshaft engine dynamic simulator) as a function of elastomeric
support damping. At first and second critical speeds, i00 ib-sec/in, is a
clear optimum for both first and second criticals. The stiffness in this case
is i00,000 Ib/in., and Table 1 shows the damping which can actually be achieved
in a I00,000 ib/in, elastomeric mount at the second critical speed. For Viton 70
and Polybutadiene, the damping will be 38 and 7.2 ib.sec/in., respectively, and
the corresponding system log decrements will be 0.31 and 0.075 respectively,
comparedwith the optimum of 0.965. A clear compromiseis necessary for either
material.

Figure 12 showshow componentdata are presented in the selection of
diameter and height to achieve the desired stiffness of I00,000 ib/in.

APPLICATIONSEXAMPLES

Turboshaft Engine

Figure 13 shows, schematically, a test rotor designed as a dynamic simulator
for an advanced, flexible rotor, turboshaft engine. The large disc at one end
simulates the power turbine. The rotor runs in ball bearings which are them-
selves either hard-mounted or mountedin elastomeric dampers. The elastomeric
dampersdesigned for this rig are shownin Figure 14. Around each bearing three
groups of three cylindrical buttons support the bearing housing. These individual
cartridges could be readily replaced, and several configurations were tested.
Variable preload was achieved by meansof a preload screw.

Figure 15 showshow elastomer material affects predicted response to
unbalance. The higher loss coefficient of the Viton achieves a significantly
lower response than Polybutadiene, corresponding to the higher log decrement
presented in the previous section. The test data of Figure 16 showhow sensitive
to unbalance excitation the rotor was when first mountedon rigid metal cartridges.
The response at around 20,000 rpm rises sharply to a peak of about nine mils.
Figure 17 shows the drastic improvement in dynamic sensitivity when the rotor is
flexibly mounted in Viton dampers. The largest response with half a gram of
unbalance is less than 3-1/2 mils, and the shape of the response curve is very
broad, indicating good system damping. The linear variation in amplitude with

455



unbalance is also apparent from these curves. It should be noted that the
rotor was readily balanced to the lowest vibration curve in Figure 17 with a
peak amplitude of only about one-third mil. These results are considered to
be strong evidence for the potential benefits of elastomers in controlling
flexible rotor vibrations.

Supercritical Power Transmission Shaft

Figure 18 shows, schematically, a test rig designed to evaluate flexible
power transmission shafts for helicopter tail rotors. The test shaft was 12
feet long, 3 inches in diameter, with 1/8 inch aluminumwalls, and had three
critical speeds below i0,000 rpm. The rotor was initially hard-mounted, by
meansof angularly flexible couplings, from rigid shaft support spindles.
Figure 19 shows the sharp response to unbalance at the first critical speed.
Limiting amplitudes of about 75 mils peak-to-peak were reached with very small
levels of residual unbalance. With great difficulty, the rotor was balanced
through this first critical speed, but, as shownin Figure 20, whenrunning
at 20 percent above this first critical, the subsynchronousvibration level
was almost as high as whennegotiating the critical speed and seven or eight
times the synchronous amplitude. Violent unstable motion occurred at these
and higher speeds and there was no possibility of running the hard-mounted
shaft any faster.

A damperwas designed for the shaft, and, to ensure motion at the damper,
a short extension was added to the test shaft as shownin Figure 21. Initially
a squeeze film damperwas used with somesuccess, but the present discussion
centers on a replacement elastomer damper. This damperconsisted of six small
elastomeric buttons deployed at 120° intervals in two rings, one of which is
shownin Figure 22. The combined stiffness of the elastomer damperwas designed
to be 4000 ib/in, with a loss factor of 0.75 (selected as a conservative value
for Viton 70). Figure 23 shows that this elastomeric damper lets the rotor
run to 13,000 rpm without any problem from subsynchronousvibrations. This is
about twelve times the speed at which intolerable subsynchronousvibrations were
encountered when the power transmission shaft was hard mounted. Figure 24 shows
a frequency spectrum at 13,000 rpm where the first critical subsynchronousvibra-
tions are still less than 30 percent of the synchronous vibrations. Again, these
results are considered impressive evidence of the ability of elastomeric dampers
to control undesirable vibrations in flexible rotors.

GasBearing MountedHigh-Speed Rotor

Striking success was achieved by flexibly mounting the gas bearings used
to support a high-speed rotor required to run to over 120,000 rpm. In its hard-
mounted configuration, this rotor encountered severe subsynchronousvibrations
at about 280 Hz long before it reached its desired running speed. However, by
flexibly mounting both gas bearings in O-rings, the rotor could be run all the
way to its desired operating speedwith only very small amplitude vibrations.
The left-hand photograph of Figure 25 shows the 1.4 mil subsynchronousvibration
orbit when the hard-mounted rotor was running at 108,600 rpm. The right-hand
photograph shows the predominantly synchronous vibration orbit of 0.2 mil when
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the O-ring mountedrotor was running at 114,600 rpm. These results are regarded
as further strong evidence for the potential benefits of using elastomeric mounts
to control instabilities.

CONCLUSIONS

With good material and componentdata, effective system and component
design, and appropriate consideration for the application environment, elas-
tomeric dampershold considerable promise as simple low-cost devices for con-
trolling undesirable vibrations in rotating machinery, both synchronous and
subsynchronous.
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TURBOSHAFT DYNAMIC SIMULATOR COMPARISON OF LOG DECREMENT FOR

POLYBUTADIENE AND VITON-70 WITH OPTIMUM DAMPING

(2nd Critical Speed; Stiffness = i00,000 ib/in.)

B (ib-sec/in.) 6

(i) OPTIMUM i00 O. 965

(2) POLYBUTADIENE 7.2 0.075

(3) VITON-70 38 O. 31

TABLE 1
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SCHEMATIC OF ELASTOMER DAMPER
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