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SU_RY

Fluid forces on a centrifugal impeller, whose rotating axis whirls with

a constant speed, have been calculated by using unsteady potential theory.

To simplify the problem, it is assumed that the flow is incompressible and two

dimensional, the impeller is surrounded by vaneless diffuser and the

eccentricity is constant and small. Calculations are performed for various

values of whirl speed, number of impeller blades and angle of blades. Some

typical examples of results are shown in vector diagrams. Although the results

of this paper are obtained for simplified geometries under idealized

assumptions,they will suggest us the nature of fluid forces acting on whirling

impeller.

INTRODUCTION

Recent advances in rotor dynamics made it possible to analyse very

complicated rotor system like multi-stage pump rotor and multi-bearing

turbogenerator shafting. In these analyses the largest weakness seems still to

lie in the assumption of radial fluid forces acting on rotor elements such as

seal rings, balance pistons and impellers. Many studies have been made and are

being carried on this subject; just to mention a few, contribution of Black to

pressure seal and centrifugal impeller (ref. 1,2) and of Acosta to centrifugal

impeller (ref. 3).

As to radial forces acting on centrifugal impellers, numerous studies and

informations have been accumulated on their steady part caused mainly by asym-

metric configuration of volute casings. To the contrary limited studies (ref.

2,3) have been published on the unsteady part of radial forces, which is caused

by the whirling motion of rotating impeller. This is the very information

sought for the improvement of rotor analysis. Most of them are, however,

quasi-steady analyses, in which the effect of shed vortices is disregarded.

In this paper, the radial force of a rotating impeller with arbitrary

whirling motion is reduced from the flow fields in and outside of the impeller,

applying familiar singularity method for the calculation of unsteady potential

flow. Though the flow in a real centrifugal turbomachine is very complex

because of asymmetric geometry of casing and strong viscous effect in impeller

passage for example, following simplifications and assumptions are introduced

in the present theory.

*Not presented at workshop.
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(1) The fluid is incompressible and inviscid, and the flow is two
dimentional and irrotational in the absolute coordinate system.

(2) The region outside of the rotor is unboundedand free of vanes.
(3) The ratio of whirl eccentricity to the radius of the impeller is so

small that its square can be neglected.
(4) The flow rate, the prerotation of suction flow, the rotational speed

of the impeller and the whirling speedof the shaft center are
constant.

(5) Blades of impeller have no thickness and have the shape of
logarithmic spiral.

(6) Steady part of the flow satisfies the condition of shockless entry
at the leading edges of the blades and Kutta's condition at the
trailing edges is assumed.

(7) Free vortices are shed from the trailing edges and are carried
downstreamalong steady streamlines with steady velocities.

After having derived formulations of radial forces for given parameters
of whirl to rotational speed ratio, numberof impeller vanes and blade angle,
typical numerical results are demonstrated in vector diagrams.

SYMBOLS

N

r
1

cO

_q

g

rp

Y

i

number of blades 8 angle between radius and blades

inside radius of impeller r2 outside radius of impeller

angular speed of impeller, positive clockwise

angular speed of whirling motion, positive clockwise

eccentric radius Q

prerotation p

strength of vortices z

complex unit with respect to coordinate

j complex unit with respect to time

Subscripts

component normal to blade

steady component

t

0

component caused by free vortices

component caused by rotation effect

n

s

w

03

flow rate

density of fluid

complex conjugate of z

component tangential to blade

quasi-steady component
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ANALYSIS

Basic Consideration

The centrifugal impeller shownin figure 1 is considered. It rotates
with a constant angular speed m and its center whirls with a constant eccentric
radius c and a constant angular speed _. The boundary condition to the
velocity field is in this case unsteady, and the flow around the impeller
should be determined by unsteady analysis.

Let an arbitrary point on a reference blade be A. Then the geometry of
the points A, O and O' are shownin figure 2, where point O and O' are the
center of impeller and whirling motion, respectively. From the viewpoint of
flow field, we interpret that the inlet flow to the impeller is unaffected by
the whirling motion of the impeller, that is, the location of source Q (repre-
senting flow rate) and circulation Fp (representing prerotation) is fixed on
point O'. Defining the angles _, @i and @2 as shownin figure 2, and
introducing the lengths AO'=_, AO=rand OO'=c, £ is expressed as

£ [r2+ 2 r cos(92- @i)+ 211/2== _ r [i + e/r cos(@2- 01)]

The velocity vO at A induced by source Q in the direction of O'A is

VQ Q/ - Q/2 [I= 2 _ _ _ r - /r c°s(e2- el)] (i)

Similarly, the velocity vF at A induced by circulation Fp is

v r - FP/2 [i e7r r - /r cos(02- Ol)] (2)

where its direction is normal to the line O'A (positive clockwise).

The velocities VQ and vr are divided into two components respectively.

They are VQn and v. which ape normal to blade, and v_ t and v_ which are• in . _ Ft
tangential to blade. As the reference blade intersects the line OA at angle B,

the intersection angle between blade and line O'A is given approximately by

6 + (e/r) sin(O2-Ol). Using the above relations, VQn , Vpn, VQt and vFt can be
expressed as

VQn _ Q/2 _ r [sin B + _/r sin(@2- @i- B)] (3)

[cos _
Vrn _ FP/2 _ r - /r c°s(@2- @i- 8)] (4)

VQt _ Q/2 _ r [cos B _ /r c°s(O2- el S)] (S)

vrt FP/2 _ r [sin 8 +u C/r sin(e2- 81- B)] (6)

When point A on the blade is observed from a fixed coordinate system, A is

moving in the normal direction to OA with velocity rw, and also in the normal

direction to 00' with velocity c_. Both velocities are considered positive

clockwise. On the other hand, when observed from the relative coordinate

system fixed to the rotating impeller, absolutely still field is considered to

have velocities -rw and -c_ in the corresponding directions. These are divided

into two components in the same way as VQ and vF. Using the relations
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d@i/dt=-_ and d@2/dt=-w, normal and tangential componentsVwnand vwt are

V_n = -r _ cos 6 - _ _ cos(@2-. @i+ 6) (7)

v t = r m sin 6 + _ _ sin(@ 2- @i+ B) (8)

Hereafter only relative coordinate system fixed to the impeller will be

used. Every vector quantity such as location vector OA,force and velocity is

indicated in this coordinate system by a complex number, whose real and

imaginary (with imaginary unit i) part represents its component in two

orthogonal axes.

Imaginary unit with respect to time, j, is also introduced to indicate the

phase difference of oscillating quantities. Since two complex units i and j

have completely different meanings, they should be distinguished carefully in

the reduction of equations.

Let the location of A be z in the complex plane, normal component VQn , vFn

and Vwn of equations (3), (S) and (7) can be written as

VQn =Q/ [sin 5 +j _ T I 2eJ_e j(w-_)t2 _]zl z] ]J = VQ nl+ VQ n2
(9)

Vrn =FP/2 _ Izl[cos _ - a _I zl2 eJSej (w-_)t]j =Vrnl + VFn2
(lO)

Vwn = [-Izlw cos B -_ 2_z ]_ e-JBe j(_-_)t] _j -V_nl + Vwn 2 (11)

Since only absolute values of above three quantities are of interest, they are

expressed as a complex with respect only to j. Further, tangential component

VQt , vFt and Vwt of equations (4), (6) and (8) are written as

vqt =q/ [cos B a Y eJ_ej (_-_)t . z iB]2 _Izl - /Iz12 ]j [ /Izle i

=VQt 1+ VQt 2

VFt - Fp/2 _XlzI [sin _ +J a Z/iz] 2 ej6 ej(W-_)t]j.[Z/iz[ eiB]i

(12)

=VFtl + VFt 2

vwt = [Izlw sin B + ¢ _ j _/Iz]e-J6eJ(W-_)t ]j.[z/ iB]izI e i

(13)

=Vwtl + v_t2 (14)
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All of the equations from (9) to (14) consist of the steady term indicated by
subscript I, and the unsteady term by subscript 2. Unsteady componentsare
first order quantities in comparison with th_ steady component.

Since all the unsteady terms contain eJ{w-_) t, this problem can be thought
to be the periodic phenomenonwith angular speed (w-a). All quantities within
[ ]j are complex with respect to j, and therefore their argument corresponds
to the phase of sinusoidally oscillating phenomenon.

Steady Flow

As thickness of blades is disregarded, blades can be replaced by the
distribution of vortices. The distribution of steady vortices Ys has to
satisfy the boundary condition that there is no crossing flow through blades.
This leads to

iTys(Z ) Re( N zN eiB ) dz'+
L 2 _ zN- z'N Izl VQnl + VFnl + Vwnl = 0 (15)

where zL and zT are the complex coordinates at leading and trailing edges of
the blade. The integral should be carried out along the blade. For the
calculatio5 of the integrand of the above integral, the following relation is
also used

N 1 _ N zN-I
Z i2_k/N N N
k=l z - z' e z - z'

(16)

Combining equation (15) and the Kutta's condition at the trailing edge, Ys can
be determined. As shockless entry at the leading edge is assumed in this

analysis, Ys is restricted to finite value. Once Ys is obtained, the velocity
v(z) at an arbitrary point z can be calculated by

zT 2-_ N-I
z z(Q-iFp)

v(z) = ZgYs(Z, ) ( N N ) dz'+
z z' 2 _r lz]2

+i z w (17)

Unsteady Flow

First we consider the flow field shown in figure 3, in which N discrete

vortices with phase difference 2F/N are ranged on a circumference with equal

distance. Let the location of a reference vortex be z', the complex conjugate
velocity at an arbitrary point z is given as

f(z,z') =u -i v-
i F

2 7T

N

Z e- j 2_k/N
i2_k/N

k=l z-z' e
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iNF (z/z')N/2-1+ N/2-1 N/2-1 z)N/2-1

=4_z[ _ ;7_7/_7 (z:/z) --i j (z/z') -(z'/ ] (18)(z/ (z'/z) N/2 (z/z') N/2- (z'/z) N/2

The above function f(z,z') is very useful for determing unsteady velocity,

because the unsteady distribution of vortices Yu has also the phase difference

2v/N at the corresponding points on the blades.

Unsteady distribution of vortices Yu consists of quasi-steady term TO and

wake effect term Yw' Yu = Y0 + Yw (19)

The induced velocity by 70 has to cancel YOn2'-is VFn2 and V_n 2 of equation (9)
(10) and (11) on each blade. This relation "." expressed by a integral

equation as

f1770(z') Im[f(z,z') ei@z/ ,z, ] dz' + VQn2 + VFn2 + V_n2= 0 (20)
L

Introducing the Kutta's condition at the trailing edge, YO can be finally
determined.

The free vortices Y1 are assumed to be carried downstream along the

steady streamline starting from the trailing edge, which can be calculated by

equation (17). All wake streamlines have the same geometry, but free vortices

on them have also 2v/N phase difference with one another. Considering the fact
that the strength of free vorticies is inversely proportional to the velocity,

the distribution of free vortices 71 of the reference blade can be written as

l v(zT) ej(m-_)t j h(s)T 1 = C v(z) e-
(21)

Here, C is a complex constant with respect to j, Iv(z) l the absolute velocity

on wake streamline, s the length of the streamline measured from the trailing

edge zT. The function h(s) in the above equation is defined further as

S

h(s) = (w-_)/ ds'/lv(z')] (22)
J 0

Assuming C=I provisionally, the velocities on the blade induced by free

vortices, Vwn are written as

Vwn(Z ) =In,[ _]V(ZT) I -j h(s)f( (23)
jzTlv_ e z,z')dz' eiBz/ Izt]

To cancel this normal component on the blade, the unsteady distribution of

vortices Ywl (Ywl=Yw/C) is to satisfy the following integral equation

f iTYwl
(z')Im[f(z,z') el@z/ Izl ldz' + Vwn(Z) = 0 (24)

The above equation should be solved under the additional condition that the
vortex strength is continuous at the trailing edge.
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Introducing the circulations Fs, F0 and Fwl, which are caused by Ys, Y0

and Ywl, the total circutation F is

F = F + F0 + C Fwl (25)s

Differentiating both sides of the equation (25) with respect to time and using

d/dt=j (_-_),

dF/dt = j (_ - 9) (r 0 + C Fwl) (26)

is obtained. Further, Kelvin's law for the conservation of vortices leads to

the relation that the rate of total circulation change is equal to the total

shed vortices from the trailing edge within unit time. This is expressed by

- dr/dr = ClVtZT) I e-j h(0) (27)

where IV(ZT) I is the stead}' velocity at the trailing edge. Substitution of

equation (27) into equation (26) yields,

-j (_ - _) ?0

C = j (m - _) ?wl+lV(ZT) I (28)

Once C is determined in the above, whole unsteady flow field can be solved

completely.

Forces Acting on the Impeller

Forces acting on the impeller can be determined by integrating the

pressure distribution on the blades. The assumption of infinitely thin blades

makes this calculation comparatively simple. Let A and B be upper and lower

surface of a blade point, the pressure difference between these points is

expressed as

2 2

PB/P - PA/P =(v A - v B )/2 + S(_ A- CB)/at

=(v A + VB) y/2 + j(m-g2)/

zA

(Y0 + Yw )dz

zL

(29)

where vA and vB are the local velocities, and CA and CB are the velocity

potentials. Here (VA+VB)/2 , the mean velocity of the both sides, is denoted

by Um and is separated further into steady component Uml and unsteady component

Um2. Uml can be obtained from equation (17),

Uml(ZA) = v(zA) (30)

Now Um2 can be obtained by adding VQt2(ZA) , VFt2(ZA) and vwt2(ZA) from equation
(12), (13) and (14) to the tangential component of the velocities induced by

Y0' Yw and Yl"
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[I/zTUm2(Z A) = ZL (T0(z')+Tw(Z') Re[f(zA,z') elBzA/[ZAI].dz'

oo )eiBzA / ]+ y1 (z')Re[f(ZA, z' ZAI ]idz' ] e j (_-_)t

z T

+ VQt2(z A) + VFt2(z A) + vwt2(z A)

J" [zAeiB/iZA[] i

(31)

Consequently, the first term of the right side of equation (29) may be written

as

(VA + VB)Y/2 = (Uml + Um2)(Ys + Y0 + Yw )

UmlT s + UmI(Y 0 + Yw ) + Um2Y s (32)

where Um2(Y0+Yw), which is second order quantities, is neglected. Integrating

the pressure difference along all blades, and adding them up as vector

quantities, the total force acting on the impeller is given as

_N-I e-J2_k/Ne i2_k/N fz TF = p __

k=0 ZL

[Uml (z')[Yo(Z') +Yw(Z') ]

Z !

÷Um2 (z ') Ts (z ') +J (a°-_) / IT0 (z)+Tw (z)] dz]j" [iz'ei6/I z' I ]idz'

z L
(33)

Obviously the total force obtained is purely oscillatory without any steady

component. This is because steady component vanishes by adding up for all

blades.

It is well kno_cn from thin airfoil theory that the direction of lift

acting on an airfoil is perpendicular to the inlet flow direction, and the lift

cannot be calculated by merely integrating the pressure difference between

upper and lower surfaces along the airfoil. It is because the infinite

strength of vortex at the leading edge generates a finite force in the

chordwise direction. In this analysis, Ys does not become infinite at the

leading edge because shockless entry is assumed throughout. Even in this

case, YO and Yw become infinite at the leading edge. Calculation shows, how-
ever, that the effect remains always within second order quantities, and thus

can be neglected. From the above considerations, it is evident that the

integration of the pressure difference leads to the force acting on the

impeller.
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Method of Numerical Calculation

In the practical calculation the vortex distrbution on blades and wakes
are replaced by finite numberof discrete vortices, thus transforming the
integral equations to simultaneous equations. In the calculation of unsteady
vortices, it is noted that the coefficients of simultaneous equations become
complex with respect to j. Numerical integrations should resort to trapezoidal
method by separating the integrands into real and imaginary part. The inte-
gration of Y1 in equation (23) and (31) can be terminated at a proper distance
from trailing edge, since the effect of free vortices diminishes rapidly as
they get away from the impeller.

Numerical Results

Calculations are carried out for blade angle B of 30°, 45 ° and 60 ° .

Some examples are given in figure 4,5 and 6. Figure 4 is the result for the

case of N=6, rl/r2=0.5, B=45 °, Fp=0 and the flow coefficient 4=0.25. The
absolute values and the directions of dimensionless forces acting on the

impeller at the moment when 00' is in the direction of x axis are shown for

various values of fl/m. Though the forces acting on each blade are unsteady,

the combined forces become always constant, provided the number of blades is

greater than three. Observing from the relative coordinate system, the force

changes its direction clockwise with the angular speed (_-m). While, observing

from the fixed coordinate system, the direction changes clockwise with the

angular speed _. The angle between force vector and OO' remains constant.

Figure 5 is the result for the case of N=6, rl/r2=0gS, B=30 °, Fp=0 and 4=0.443,
while figure 6 for the case of N=6, rl/r2=0.5, B=60 , Fp=0 and _=0.1443.

In the stability analysis of a rotor system, hydrodynamic damping force

acting on each element of the rotor plays a predominant role. In the present

case damping force corresponds to the component of fluid force on the impeller,

which is parallel and is in opposite direction to the whirling velocity of

shaft center. When damping force is negative, that is, when the fluid force

has such component that pushes the shaft center toward its whirling motion,

there exists a danger that the rotor system runs into severe whirling.

In the results shown in figures 4, 5 and 6, damping force corresponds to

the fluid forces in +y direction for _>0 and in -y direction for £<0. As seen

from figures, fluid force acts as damping throughout the calculated cases.

When _ is equal to m(_/m=l), flow through the impeller becomes steady and

no free vortices shed out from the blades. In all other cases (_/_,i), blades

are always under unsteady condition and the influence of _/_t term in equation

(33) cannot be neglected. Quasi-steady treatment seems to be inappropriate

especially for centrifugal impeller, because the wake vortices shed from one

blade pass in the proximity of the next blade, thus resulting in a substantial

interference. This tendency becomes more remarkable when blade angle is large.

Besides the examples sho_m in figures, calculations were performed for

various combinations of parameters. From these results it becomes clear that
the number of blades has little influence on the total forces.

CONCLUDING REMARKS

Fluid forces on a centrifugal impeller, whose rotating axis whirls with a

constant speed, was solved by the singularity method. Some typical examples of
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results were shownin vector diagrams. Although the results of this paper are
obtained for simplified geometries under idealized assumptions, they will sug-
gest us the nature of fluid forces acting on whirling impeller.

_e present study is expected to be extended to those cases in which the
condition of shockless entry is eliminated and the effect of volute or guide
vanes is taken into account. Experimental study is also under way by the au-
thors and is expected to furnish data to be comparedwith the present analysis.

This study is supported by Scientific Research Fundof the Ministry of
Education and by Hitachi, Ltd.
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Fig. 6 Vector diagram of radial forces on whirling
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