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SUMMARY

An analysis is presented to calculate damping in ring seals for a compress-
ible fluid. Results show that damping in tapered ring seals (optimized for
stiffness) is less than that in straight bore ring seals for the sameminimum
clearance. Dampingin ring seals can promote fractional frequency whirl and
can, thus, be detrimental. Thus, tapered seals can benefit rotor and seal
stability by having lower damping as well as higher stiffness. Use of incom-
pressible results leads to large errors.

INTRODUCTION

Ring seals (annular seals) can have a considerable influence on the dynam-
ic behavior of rotors. This is not surprising whenone considers that such a
seal has the appearance of a journal bearing, although with larger clearances
than usual bearing practice. With a large pressure difference across the seal,
most of the force generated is due to the high velocity throughflow of sealed
fluid. In a series of papers (refs. 1 to 3) Black and coworkers calculated
stiffness and damping in annular seals having constant clearance in the axial

direction and sealing an incompressible fluid. In references 4 and 5, it was

shown that stiffness could be considerably increased by tapering the seal bore

so that clearance is greater at the inlet than at the exit. The higher stiff-

ness can be beneficial in stabilizing rotors by shifting critical speeds;

floating-ring seals can also benefit from higher stiffness with resulting

longer life. Such a tapered bore configuration solved a wear problem in the

hot gas seal of the Space Shuttle high pressure oxygen turbopump.

Damping, as well as stiffness, influences seal and rotor behavior. As pre-

viously mentioned, damping coefficients were calculated by Black, et al.

(refs. 1 to 3), for constant-clearance seals and incompressible fluids. Refer-

ence 6 presented damping data for tapered ring seals with incompressible fluids.

Heretofore no damping information has been available for seals passing compress-

ible fluids. The purpose of this work is to provide such data for both

constant-clearance and tapered seals.
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S YMBOLS

damping coefficient

dimensionless damping, BC_/RL3_0

dimensionless damping, BL/Re0C 2

seal radial clearance

specific heat at constant volume

seal eccentricity

seal force

Fanning friction factor

seal force per unit of circumference, eq. (40)

clearance ratio, C1/C 2

seal local film thickness

seal stiffness

dimensionless stiffness, KC2/P0LD

entrance loss coefficient

seal length

Mach number, u/yV_-T

pressure ratio, pt/Ps

pressure

2
M
s

heat flux

seal radius

"sonic" Reynolds number, 2PoC2Y_-_-_O/_O

gas constant

absolute temperature

time



U velocity ratio, ut/u s

u axial velocity

v _h/_t

W Mach number ratio Mt/M S

z axial coordinate

seal taper angle

¥ specific heat ratio

c eccentricity ratio, e/C 2

i + k

e circumferential coordinate

dynamic viscosity

O fluid density

o density ratio, 0t/Os

altitude angle, tan -I (_r/K)

orbital frequency
P

shaft rotational speed
r

Subscripts:

e entrance

rad radial

s steady state

t perturbed

tan tangential

x seal exit

0 upstream stagnation condition

1 seal entrance

2 seal exit

3 downstream reservoir condition

171



ANALYSIS

The configuration to be analyzed is that of a tapered bore ring seal whose
clearance decreases in the flow direction (fig. i). Around the circumference
the clearance is given by

h(z,8) = C(z) + C2e cos

where C is the clearance when the seal is concentric.
with axial coordinate z is

The variation of

(i)

C

c(z) = cI - ez (2)

The analysis is applicable to a straight seal by setting the taper angle

to 0.

When the seal has a velocity relative to the shaft in the radial direc-

tion, a damping force is generated. To determine this force, the pressure dis-

tribution within the seal will be calculated and integrated over the seal area.

The following assumptions are employed:

(i) Eccentricity is small compared with the concentric clearance; that is,

e <<i.

(2) The fluid behaves as a perfect gas.

(3) Rotational effects on the flow field are neglected; the flow is one-

dimensional in the axial direction.

(4) The friction factor is constant everywhere within the seal.

(5) Time derivatives of the fluid properties and velocity are neglected;

that is, the flow field is quasi-steady-state. Reference 6 examined this as-

sumption for an incompressible fluid and concluded that acceptable accuracy re-

suits.

The analysis begins from the time-dependent equations of continuity,

momentum, and energy as presented by Shapiro (ref. 7). For a channel, which

the seal passage approximates, these are, respectively,

_-_ (puh) + (ph) : 0 (3)

_z (ph) + p _z - f0u2 - _t (puh) + (pu2h) (4)

q = _ ph v T +
+

_z puh v T + +P
(5)
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The momentum equation may be simplified by using the continuity equation. In

turn, the energy equation may be simplified through use of the continuity and

momentum equations. Additionally, for a perfect gas

P = _T (6)
O

and

c = -- (7)v y - i

The seal taper angle is

Defining

_h

- _z (8)

_h
v - _t (9)

allows the continuity, momentum, and energy equations to be written as, respec-
tively,

_t + +u +P_z - h =

= _u _u_P f_u2+ _ + _u (ll)
- _z h _ _z

h y- i +U_z- p (12)

The next step is to invoke the small perturbation assumptions and write

the pressure, density, and velocity as the sum of a steady-state value plus a
small perturbation

P = Ps + Pt I

O = @s + Ot

U = U + U

s t

(13)

The steady-state equations are

do s du s
u +
s -_z @s dz - o (14)

2

dP s fPsUs

dz h

an

s

--+ @sUs dz (15)
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3

fPsU s u s (.dis YPs d!s_

qs/h + T = y - i \ dz @s dz/
(16)

The steady-state equations were solved (for q = 0) in reference 5 and will not

be dealt with further. The perturbed equations of continuity, momentum, and

energy are, respectively,

_pt J v _z
s PsUt_ PtUs_ 0 (17)

St + _ + (PtUs + @sUt ) - h h -

_Pt fPt u2 2fPsUs u _ut _ut _us t s
- h + h + @s -_ + @sUs _ + (0sUt + PtUs ) -_z (18)_z

qt/h + --

3 2
fPtu s 3fPsUtU s Ps v

+ +--
h h h

I_Pt _Pt _Ps YPtUs _Os YPsPtUs _Os

i L'- _- + u + u _z + 2 _zs _ t _z 0s Ps
y - i

¥Ps _Pt _Pt _Ps_]

- @--_\-_- + Us -_x + ut -_-z/J (19)

In accordance with the assumptions, the time derivatives of Pt' Ot, and

u t are neglected, and the heat flow q is taken to be zero. Equations (17)

to (19) then become ordinary differential equations which may conveniently be

written in dimensionless variables

Pt
p -

Ps

Pt

Ps

U

t
U -

u
s

Additionally, the Mach number is defined as

M = vyr_T = u

(20)

(21)

As with the other variables, the Mach number may be considered as the sum of a

steady-state quantity and a small perturbation.
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M = M + M (22)s t

Defining

Mt
W = --

M
S

(23)

we find, from equation (21),

W= U+---
o P

2 2
(24)

After some algebraic manipulation, making use of equations (14) to (16), the

perturbed continuity, momentum, and energy equations become, respectively,

do dU v

d--z+ d_z + --uh = 0 (25)
S

dP dU 2W dPs

d-_ + YQ dz - Ps dz
(26)

d-7- Y G = h (27)

wherein

2
Q = M (28)

S

Thus, we have three simultaneous, ordinary differential equations in four

unknown variables P, a, U, and W. A fourth equation needed to obtain a solu-

tion may be obtained by differentiating equation (24) with respect to z:

dW- dU i (do dP)dz dz + 2 dz d_z (29)

Equations (25) to (27) and (29) may now be solved simultaneously for the

perturbed variables. As for the steady-state variables (ref. 7), the differen-

tial equations for the perturbed variables may be combined to yield a single

differential equation in the perturbed Mach number W.

Reference 8 derives a differential equation for the steady-state pressure

Ps, which may be written as

I dPs = _ yQ

Ps dz h(l - Q)
[_ + f + f(y - I)Q] (30)

With this, the equation for perturbed Mach number is
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rdW w (¥ + I)Q
- _ [_ + f + f(y - I)Q]

dz h(l Q) t i - Q

(y + l)v+ (y - 1)fQ(yQ + 1) - 2¥Ush( 1 _ Q)
(31)

From the steady-state solution (ref. 5), Q is a known function of z.

Equation (31) will be easier to solve if we make the substitution (ref. 5,

eq. (2))

dQ 2Q(1 + g - 1 Q)(yfQ + c_)
= 2 (32)

dz h(l - Q)

Also, u s varies according to (ref. 8)

U
e

u
s
M 2
M y - i Qes + 2

(33)

where the subscript e denotes the steady-state value at z = 0. Equation (31)

becomes

-- = c_ + ¥f + ¥Q + 1 - Q

dQ 2(i + y - i ) _)2 Q (YfQ +

(y + l)vM
e

4yUeQ3/2(yfQ + c_)¢(1 + y- 12 Q)(1 + y- 12 Qe)

(34)

The perturbed Mach number W may now be found by solving equation (34).

To determine the seal damping force, the perturbed pressure P must be

known. Equations (25) to (27) may be combined to yield a differential equa-

tion for P. Making use also of equations (32) and (33) yields

dP

dQ
yW [_ + yfQ )]

(i + y -12 Q)(YfQ + _) L i - Q + f(l + yQ - O
]

+

vM
e

e s 2 Q i+ 2 Qe

(35)

Boundary conditions. - At the seal exit it is assumed that there is no

change in the boundary conditions of the steady-state problem. Thus, for
choked flow

176



For flow which is not choked

W 0

P

(36)

(37)

At the seal entrance, the pressure and Mach number are related by (ref. 5)

-P-= (i + Y-Ip0 2 3Q)¥/(I-¥) (38)

The pressure and Mach number may be written as the sums of their steady-state

and perturbed components and a binomial expansion performed on the right side

of equation (38). After neglecting all powers of Q higher than unity and

subtracting out the steady-state terms, there remains

Y_Qe W

P = _(¥ - I) (39)

I + 2 Qe

Solution of equations. - The results presented herein were obtained

through a numerical solution of the differential equations for W and P

(eqs. (34) and (35)). For the case of choked flow, Q = 1 at the seal exit; it

is not possible to integrate numerically to this limit because of the term

1 Q in the denominator of equations (34) and (35). However, W and P may

be determined as accurately as desired by taking the solution close to Q = i

without reaching the limit. To ascertain the validity of this approach, equa-

tions (34) and (35) may be rewritten, in simplified form, for the case when

Q _ i. The resulting equations may be solved analytically, yielding solutions

for W and P which remain finite as Q _ i. Thus, the error is of the order

(i - Qlim)PQ = 1 which can be made as small as desired by taking Qlim arbi-
trarily close to i.

Calculation of seal forces. The seal force per unit of circumference due

to the perturbed pressure Pt is given by

_0 L /Qx dzg = Pt dz = PPs _ dQ

Qe

(40)

where Qx is the value of Q at z = L. The steady-state pressure Ps does
not contribute to the total seal force because it is uniform around the circum-

ference. From reference 8
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Ps h M I/1_+ y - i_ e e 2 Qe

Pe hM VI y - Is + _ Q

(41)

Making use of this and equation (32) results in

v-i
g = _ PeheMe + 2

Qe Q_e Qx

P (i - Q)dQ
3/2

Q3/2(I + y -12 Q) (YfQ + _)

(42)

The integral in equation (42) is easily evaluated numerically.

The total seal damping force in the direction e = 0 is

= _ f-j2?rF

O

gR cos e de (43)

For a seal velocity in the direction @ = 0

and, thus,

v = v 0 cos e

g = go cos e

where the subscript 0 now denotes the condition at

integral in equation (43) may be evaluated, yielding

= 0.

(44)

(45)

With this the

F = -_Rg 0 (46)

A damping coefficient is now defined:

F _Rg0
B - - (47)

v 0 v0

or

- 2v--_PeheMe

P (i - Q)dQ

Q3/2(I + y _ i )3/22 Q (¥fQ + _)

(48)

where it is understood that P is evaluated for v = v0. The actual value of

v 0 is immaterial. Since both W and P are directly proportional to v0,

it will cancel out of the expressions for the proper choice of dimensionless

variables.
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RES U LTS

The analysis of the preceding section was implemented on a digital com-

puter. The differential equations were solved using a fourth-order Runge-Kutta

integrator with automatic error control. The computer programs made use of the

results of reference 5.

Results are presented in figures 2 and 3 for choked flow and in figures 4

and 5 for a sealed pressure ratio of 2, for which the flow is not choked. The

independent variable in all cases is Re0C2/L where Re 0 is the "sonic"

Reynolds number 2C2P0_-_/_0. This independent variable was chosen be-

cause laminar flow results are then independent of seal clearance-to-length

ratio C2/L. The specific heat ratio ¥ was 1.4 for all cases. Results are

shown for straight seals and for tapered seals optimized for maximum stiffness-

to-leakage ratio (ref. 5).

Figure 2 shows laminar flow results for small values of seal parameter

ReoC2/L. Damping is plotted in terms of the dimensionless variable

= BC3
(49)

RL3_0

There is little variation for the range of seal parameter up to I0. Damping

approaches a constant value as Re0C2/C _ O. Damping is higher in the

straight seal than in the tapered design because of the lower average clear-

ance (seals are compared on the basis of minimum clearance).

Figure 3 shows results for choked flow over the complete range of seal

parameter for both laminar and turbulent flow. In this figure, damping is

shown in terms of the dimensionless quantity

_ BL _ BC2

Re0C2 2RL2_/_000

(50)

For this choice of variable, laminar flow damping varies strongly with seal

parameter. In contrast, turbulent flow damping shows a much smaller variation.

For turbulent flow, damping depends on clearance-to-length ratio C2/L , appear-

ing to reach a minimum for the middle values of C2/L investigated, and rising

for either higher or lower values. Overall, however, variation is small even

for the extreme values of C2/L considered; thus, for all other factors held

constant, equation (50) indicates that damping is approximately proportional to

the square of seal length.

The left end of the curves for turbulent flow corresponds to a Reynolds

number in the seal passage of 3000; this is generally considered the lowest

value for which one can be assured of turbulent flow. A Reynolds number of

2300 is usually taken as the upper limit for laminar flow. Points where

Re = 2300 are shown for various C2/L values on the laminar flow curves.
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Damping for a pressure ratio of 2 is shown in figure 4 for small values of

ReoC2/L. For this pressure ratio the flow is not choked. In common with fig-

ure 2, damping does not vary greatly with seal parameter.

Results for a pressure ratio of 2 are shown in figure 5 for the complete

range of seal parameter. As in figure 3, the damping is expressed as

= BC2

2RL2_/_000

For the straight seal, damping values are lower than for choked flow, as less

mass passes through the seal when the flow is unchoked. For the tapered seal,

damping for p0/P3 = 2 is higher than the choked case when the flow is laminar
and somewhat lower when the flow is turbulent. This apparently anomalous be-

havior for laminar flow can be explained by observing that the optimum clear-

ance ratio is lower for pO/P3 = 2 than for choked flow; thus, the average

clearance is less than in the seal optimized for choked flow. Optimum clear-

ance ratios H = CI/C 2 appear in figures 6 and 7 (taken from ref. 5).

Example of seal calculation. Calculate damping for the example seal of
reference 5. Pertinent seal data are

L = i0 mm

D = 50 mm

C2 = 0.05 mm

PO = i00 bar

P3 = 4 bar

TO = 800 K

Fluid: Hydrogen gas

Thus, it was calculated in reference 5 that

C2
--= 0.005
L

Re 0 = 37 I00

C 2

Reo- _ = 186

The flow is choked; thus, damping data are taken from figure 3.
seal

= 0°89

yielding

For a straight

B = 570 N sec/m
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For the tapered seal

and

= 0.47

B = 300 N sec/m

Effect of seal rotation. - The effect of rotation was examined in refer-

ence 6 for a seal passing incompressible fluid using an approximation derived

by Black and Jenssen (ref. 2). For the analysis presented herein, fluid tem-

poral derivatives were neglected; thus, the inertia terms calculated in refer-

ence 6 do not appear in the present results. The expression for seal forces

then becomes

In equation (51)

Fy _ m0r

_r is the shaft rotational speed.

(51)

In the usual case of seal motion, the seal journal describes some orbit

within the seal clearance. We will consider the case of a centered circular

orbit with orbital frequency _p. For this condition, it is easy to calculate
the radial restoring force and the tangential (whirl direction) force. Similar

to reference 6, we find

F
tan

Fra d = -Ke

= Be _r

where e is the eccentricity of the seal (fig. 8). The radial force depends

only on the eccentricity e (the minus sign appears because Fra d is defined

as positive in the outward direction). The tangential force, however, depends

on the relative magnitudes of the spin and whirl speeds. Equation (52) may be

written in terms of radial and tangential stiffnesses:

Frad

Krad e = K

F
tan

K ..... Ik_
tan e r

(52)

(53)

A positive value of Kta n will inhibit positive whirl; conversely, negative

Kta n promotes positive whirl. Equation (53) for Kta n shows that a positive

damping coefficient promotes forward whirl when _p/_r < 1/2 and inhibits whirl

when _p/Cb r > 1/2. As pointed out in reference 6,-this is remarkably similar

to the behavior of a full circular journal bearing. The seal differs from a

self-acting bearing (but is similar to an externally pressurized bearing) in
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that the radial stiffness is independent of whirl speed. Equation (53) also

shows that damping in a rotating seal is not entirely beneficial. Damping pro-

duces a tangential force which inhibits synchronous whirl but promotes whirl at

half frequency or less.

Example of whirl forces. - Seal damping has been presented in dimension-

less form, as were stiffness and leakage in reference 6. Also, damping force

varies with rotor speed (eq. (53)). Thus, the relative size of the radial and

tangential stiffness of equation (53) can only be compared for specific exam-

pies. The seal example above is similar to one of the hot-gas seals in the

Space Shuttle high-pressure oxygen turbopump. This pump has a nominal operat-

ing speed of 31 000 rpm at full-power level. For this speed, table I compares

the stiffness and damping for straight and tapered seals. Stiffness data are

taken from reference 6. As table I shows, tapered seal stiffness is much high-

er than that for a straight seal, and damping lower. This means that for a

tapered seal the force generated is more nearly in line with the displacement,

a situation that is considered to promote stability.

Difference between compressible and incompressible results. - Before the

availability of stiffness, damping, and leakage flow data for seals handling

compressible fluids, some workers used incompressible data as the "best avail-

able." It is instructive to examine the difference in results using compress-

ible and incompressible analyses. Table II compares results for the seal used

in the example above. Compressible fluid stiffness and leakage flow are taken

from reference 5. Incompressible data from references 4 and 6 are applied two

ways: first using the upstream (stagnation) fluid density and second using

fluid density as the mean of upstream and downstream densities.

The incompressible theory grossly overestimates seal stiffness, by an

order of magnitude for the straight seal. There is little difference in using

upstream or mean density° Damping is underestimated by the incompressible the-

ory more severely when the mean density is used. Leakage flow is overesti-

mated by incompressible theory, although not as much when a mean density is

used.

One would not expect incompressible theory to yield accurate results be-

cause the nature of the flow is much different than with a compressible fluid.

Fluid compressibility results in decreasing density and increasing velocity in

the flow direction, and the flow becomes choked for large pressure ratios. The

pressure gradient increases in the flow direction and, theoretically, becomes

infinite at the seal exit for choked flow.

CONCLUDING REMARKS

An analysis has been performed to calculate the damping in straight and

tapered seals for a compressible fluid. Results show that damping in optimized

tapered seals is considerably less than in straight seals for the same minimum

clearance. It was also pointed out that damping in rotating seals is not en-

tirely beneficial as it can sometimes promote whirl. Thus, for rotor or seal
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stabilization, tapered seals may confer a double benefit. Not only is tapered

seal stiffness generally higher than that for straight seals, but damping is
lower.
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TABLEI. - STIFFNESSANDDAMPINGFORHPOTP

STRAIGHTANDTAPEREDSEALS

Dimensionless stiffness,

Stiffness, K, MN/m

Dimensionless damping,

Damping, B, N sec/m

_a_r,MN/m

Attitude angle 9, deg

Straight

seal

0.015

1.5

0.89

570

1.9

51

Tapered

seal

0.095

9.5

0.47

300

1.0

6

TABLE II. - COMPARISON OF COMPRESSIBLE AND INCOMPRESSIBLE RESULTS FOR

HPOTP STRAIGHT AND TAPERED SEALS

Compressible theory

Incompressible theory,

stagnation density

Incompressible theory,

mean density

Stiffness, K, MN/-m Damping, B, Nsec/m

Tapered

seal

Straight

seal
Tapered
seal

Straight

seal

'Leakage flow, g/sec

Straight
seal

17

32

1.5 9.5

15.1 29.1

14.6 28.6

570 300

308 245

223 176 22

Tapered
seal

22

42

29
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Figure 1. - Tapered ring seal.
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