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The design of a VAWTblade section involves primarily the selection of a
manufacturing technology, establishing structural integrity, and obtain-
ing acceptable aerodynamic performance. In this paper, a survey is pre-
sented of the practices which have been applied for designing VAWT
blades in the past. Through this presentation, an attempt is madeto
discuss strengths and weaknessesof the existing procedures. Where
appropriate, discussion is provided on planned or suggested future work
in developing improved design tools.

Selection of Manufacturin_ Technology

This important first step in the design process is governed almost entirely

by qualitative issues. Table I lists the features we at Sandia Labora-

tories have found to be desirable when selecting a manufacturing techno-

logy.

It is unlikely that a technology exists which excels in all of these char-

acteristics. Thus, the judgment of the designer is required to make a

final selection. Obviously, the relative importance of the items in

Table I depends on the particular application. For example, short-term

availability may dominate blade selection for a research machine, corro-

sion resistance for machines destined for coastal use, and so forth.

Blade cost, however, should almost always be of primary importance.

In past VAWT blade construction, many manufacturing technologies have

been used. These technologies include: aluminum extrusions (hollow and

solid), machined aluminum, aluminum extrusion/fiberglass composites,

fiberglass/steel, fiberglass, roll-formed and welded steel (straight sec-

tions only), advanced composites, and plywood. Of all these, aluminum

extrusions have been the most widely used because they possess many of

the desirable characteristics of Table I. However, the other listed tech-

nologies and promising new proposals (such as composite pultrusions and

formed steel blades) should remain as potentially superior candidates to

extrusions in certain applications.

*This work prepared for the U.S. Department of Energy, DOE, under contract

DE-ACO4-76DPO0789.
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Structural Design

Following selection of a manufacturing technology, critical structural

dimensions of the blade section must be determined. At Sandia Labora-

tories, structural performance is evaluated primarily with numerical

(finite element) models. The Canadian National Research Council (NRC) I*

has evaluated designs using experimental measurements on scaled wind tun-

nel models. Both of these methods have been applied on prototype machines

which yielded acceptable structural performance.

Considering analytical techniques, blade analysis has focused on static,

dynamic, and flutter (aeroelastic) issues. The basic approach has been

to design the blade first to static requirements followed by checking and

fine tuning (if necessary) to preclude undesirable dynamic or flutter

effects.

Static finite element blade models have been developed for quasi-static

centrifugal and aerodynamic normal operating loads, gravity loading,

and parked-rotor blade collapse in gale-force winds. The MARC non-

linear finite element package has been favored for these problems

because of significant geometric-non-linearities which occur in the

VAWT blade due to the effects of centrifugal stiffening for normal

operating loads and large deformations which occur in parked rotor blade

collapse.

Table II summarizes the criteria which have been used to determine sta-

tic acceptability. Typical results for quasi-static blade stresses

predicted by MARC are shown in Fig. i.

The suitability of quasi-static analysis requires system natural fre-

quencies to be well above the load excitation frequencies. Finite ele-

ment models (using SAP IV primarily) have been constructed to examine

resonant frequencies of the complete blade/tower/tiedown system. Typi-

cal results from such an analysis, in this case the Sandia 17 meter rotor

with two extruded blades, are shown in a fan plot (Fig. 2). Due to the

collective effects of conservative static requirements (Table II), the

support of the blade at both ends, and the inherent stiffness of the

tiedown cable support system, these resonant frequencies are quite high

relative to typical excitation frequencies.

This tends to justify the use of quasi-static models. However, efforts

are in progress to construct a complete forced-response dynamic model

to replace the quasi-static analysis. This is appropriate because eco-

nomic factors are motivating reduction of conservatism in the static

requirements, a trend toward larger rotor height-to-diameter ratios, and

*References listed at end of paper.
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consideration of alternate blade manufacturing technologies. These
changes can lower system resonant frequencies and thereby increase the
risk of relying only on static analysis tools.

Aeroelastic flutter instability has been observed1'2 on VAWTblades.
Approximate analyses3 and experimental data on scale modelsI have indi-
cated that blades meeting the static requirements with section proper-
ties similar to aluminum extrusions will have critical flutter speeds
well above normal operating speeds. However, there are destabilizing
factors which may lower the flutter speeds if alternate sections are
considered with substantially different properties than aluminum extru-
sions. These factors include: the ratio of aerodynamic forces to blade
massand elastic stiffness, the ratio of blade bending to twisting stiff-
ness, and the ratio of blade stiffness to. tower torsional stiffness.
Efforts are in progress both analytically 4 and experimentally (at Sandia
Laboratories) which should yield more quantitative data on the influ-
ence of these and other factors on flutter speed.

Aerodynamic Desi6n

Aerodynamic design of the blade section is related to the structural

suitability of the blade through the shape of the section and the blade

chord.

Most Darrleus blades have utilized symmetrical NACA 0012, 0015, or 0018

airfoils, the last two digits representing the percentage ratio of blade

thickness to chord. Of these three high lift to drag ratio sections, the

0018 has the advantage (used on the Canadian 200 kW Magdalen Island

rotor) of a somewhat higher ratio of flatwise to edgewise stiffness

which can improve structural performance. There are insufficient data

to clearly distinguish the subtle differences in aerodynamic performance

which probably exist between these three airfoils. At Sandia Laboratories,

we have favored the OO12 and OO15 airfoils primarily because of a rela-

tively large data and experience base for these airfoils. Undoubtedly,

future research should yield a more definitive answer for the most ap-

propriate airfoils, including investigation of series besides the 0012,

0015, and 0018.

A much more significant variable influencing the structural, aerodynamic,

and economic performance of a blade is the blade chord, or, more generally,

the ratio of blade chord to rotor radius. In general, reducing the

chord to radius ratio causes structural section properties of the blade

to deteriorate rapidly (see Fig. 3_ and the resulting lower rotor soli-

dities also reduce overall aerodynamic performance. These effects tend

to drive design toward higher chord to radius ratios. However, blade

costs tend to increase as chord to radius ratio increases, which poses

a classical trade-off problem for the designer. For extruded aluminum

blades on two-bladed rotors, current design practice suggests that the

"best" solidity is in the range of lO to 15%. Based on the trade-offs
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involved in this selection, it is apparent that different blade techno-

logies may well yield a different optimum solidity, so the iO to 15%

practice should not be interpreted as a design invariant.

Concludin 6 Remarks

The available practices for designing VAWT blades have been applied in

designing blades which have provided excellent service on research-
oriented machines. However, this is a developing technology and all

conceivable phenomena are not included in the analyses. Future efforts

at Sandia Laboratories will be directed toward improvement of existing

techniques guided by experimental data and operating experience. The

output of such an effort can lead to a reduction of technical risks and

conservatlsms required to cover analysis uncertainties.
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Table I. - Qualitative Issues Governing Selection of

Manufacturing Technologies for VAWT Blades

Economics

- Low Raw Material Costs

- Low Labor Intensity

- Low Tooling Costs

Mechanical Properties of Materials

- Endurance Limits

- Yield Strength

- Density

- Ductility

- Stiffness

- Corrosion Resistance

- Weldability or Joinability

Formability

- Capability to Fabricate High Moment of Inertia, Low Weight Sections

(1/4 Chord Balance Not Required)

- Capability to Form Curved Blade Sections

- Blade Root Attachment and Shipping Joint Hardware Compatability

- Size Limitations on Chord and/or Blade Length

Availability

- Short-Term R&D Time Requirements

- Long-Term Raw Material Supply

- Energy Intensity for Fabrication and Raw Materials

Table II. - Static Structural Performance Criteria

- Quasi-static vibratory blade stresses less than l08 cycle endurance

limit (approximately 6000 psi for 6063-T6 aluminum extrusions) at

normal operating rpm in 60 mph winds.

- Quasi-static blade angle-of-attack changes due to aerodynamic loading

less than 3° at normal operating rpm in 60 mph winds.

- Parked upwind blade survival for 150 mph static gusts.

- Parked gravitational stresses below 40% of yield.

- Blade survival (no yield) at operating rpm + 20% in 80 mph winds (ac-

cident conditions).
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Table II. Blade Wall Thickness Ratio is the Ratio

of Wall Thickness to Chord Length. The Effect of

Support Struts is Shown. "Critical Rotor Diameter"
is the Rotor Diameter Above Which Gravitational

Loads Become Excessive.
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