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1. Introduction

The introduction of a time dependency into a jet flow to change the rate

at which it mixes with a coflowing stream or ambient condition has been inves-

tigated by several researchers I-7 The advantage of the unsteady flow is an

increase in the mixing rate as compared to a "steady" jet. The disadvantage,

in the case of a jet nozzle, is the fact that the nozzle efficiency suffers

6
significantly

Examples of the types of jets which may be treated by the present analysis

are shown in Figures 2-4, The jet exit position of Figure 2 oscillates from

side to side and produces a relatively constant magnitude streamwise wave. In

Figure 3 the velocity vector at the jet exit oscillates in direction and pro-

duces a growing streamwise wave. The unsteadiness of Figure 4 consists of a

sinusoidal change with time of the mass flow at the jet exit and thus produces

a nominally constant amplitude wave pattern.

The mathematical complexity of time dependent flows is such that one

usually is forced to resort to one of three possible attacks:

(a) A fully numerical so]ution of the governing equations

(b) A phenomenological model

(c) The use of limiting assumptions which simplify the governing

equations.

A fully numerical solution is possible but requires the dedication of very
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significant amounts of time and effort. A recent interesting example of a

phenomenological model is presented by Simmons, Platzer and Smith 8, who as-

sume that the unsteady jet may be decomposed into a number of steady jets

which exist during short intervals at the nozzle exit and produce short bursts

along the steady jet trajectories.

Much of the unsteady flow work employing limiting assumptions is based in

principle on the celebrated work of Lin 9, who analysed the boundary layer be-

neath a time dependent external flow. Lin's technique is limited to high fre-

quencies and benefits from the fact that the particular problem allows the

specification of an unsteady static pressure distribution within the boundary

layer. The extension of Lin's analysis to the jet case is hampered by the fact

that the time dependent pressure distribution is unknown and there is no com-

parable technique to Lin's use of the unsteady Bernoulli equation.

The application of Lin's technique to unsteady jets was carried out by

McCormack, Cochran and Crane 4 for the case of a jet vibrated from side to side

at high frequenc_ (see Figure 2). However, the strict application of the Lin

analysis leads to the conclusion that the convective term in the momentum equa-

tion is negligibly small. This result is not acceptable to McCormack, et al.,

since it is _lear that the convective term is of importance as in the steady

flow case. Thus, the authors present a phenomenological argument that the con-

vective term must be included (in spite of the fact that the analysis excludes

the term) and proceed to assume a linear form for it which then results in a

linear equation. The analysis, therefore, is a mixture of types b and c above.

The present analysis follows the spirit of the linearized jet analyses due

to Pai I0. The linearization of the equations is achieved by an order of magni-

tude analysis which is rigorous and removes the need for a phenomenological

argument. The requirement of high frequency is also removed and a technique

described for including a time dependent pressure distribution which is produced
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by the motion of the jet.

2. RELATIONSHIP BETWEEN UNSTEADY AND TIME AVERAGED FLOWS

The objective of this study is to determine the effect of the unsteady

flow components on the time averaged flow. That is, what advantages does the

unsteady flow hold in terms of steady state mass and momentum transfer? The

answer should appear in a steady flow relation including time averaged effects

of the unsteady components.

The two-dimensional boundary layer equations are

1 (_2u
8u 8u 8u 1 8p . _ ___ (1)
(5---t-+ u _xx + v -6y - - p _ix R (_y2

)}u (Sv
+- = o (2)

(3x 8y

where each term is non-dimensionalized so R --Reynolds Number.

Consider the velocity profiles shown in Figure I. The initial jet velo-

city is a function of time while the coflowing stream velocity is steady. The

independent variables can then be separated into time averaged (-) and time

dependent ( )" quantities with U = coflowing stream velocity.

u(x, y, t) =U+U(x,y) +u'(x,y, t )

v(x, y, t)=v(x,y)+v'(x,Y, t)

p(x,y, t)=_(x,y)+p'(x,y,t) (3)

Substituting the expansions of the independent variables into the momentum

equation and taking the time average of each term results in

8_ 8_ 6P_ u' 8u' + v' +---- (4)
(U+U)6x + v _}y (_x (_--x- (_y] R(_y _

It may be seen that the effect of the unsteady terms on the average velocity

is the same as an additional (or artificial) pressure gradient. Thus, if the

Lime dependent velocities are known, the bracketed term can be evaluated and

the effect of the unsteadiness on the mean flow determined. The following
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section will discuss the evaluation of the unsteady flow conditions.

3. DETERMINATION OF TIME DEPENDENT VELOCITIES

The objective is, therefore, to determine the unsteady velocity compon-

ents u" and v', to evaluate the bracketed term in Eqn. 4 and thereby to find

the average velocity distribution U + u, v. Approximate solutions for u" and

v" :an be found by the following order of magnitude analysis.

Consider the case where the steady state jet velocity deviates only

slightly from the coflowing stream velocity and, as well, the unsteady velocity

components are small compared to the coflowing stream velocity.

Mathematically -

_,_,u',v',<< U (5)

Expanding the momentum equation (1) by the steady and unsteady velocity

components (Eqn.(3)) results in

6u___[+ (U+O+u') _x (U+_+u')+ (O+v')_y(U+O+u')6t

6 1 62
=_(Sx (P+P') + R _(_y2 (U+_+u')

(6)

In view of the assumptions (5), all products of small variables in Eqn.

(6) are neglected and only terms up to first order in the small variables are

retained.

(Note also that U = constant)

6-( ax a× n \ay aye!
(7)

The steady and unsteady portions of Eqn. (7) may be separated by takino

the time average of (7):

I a2-u (8)6fi 6p +_ _
U 6x - 6---x R 6y 2
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and subtracting this from (7) to yield

6u' 6u' _p, i 62u' (9)
8t + USx - 8x + n 8y2

This, then, is the governing equation for the unsteady velocity distri-

bution for the jet in Figure 1 with the small perturbation assumptions of

equation (5). The initial condition may be seen from Figure 1 to be a top

hat velocity profile whose magnitude is a function of time. The lateral

boundary conditions are that

lim u' = 0 (10)
y--_± oo

The unsteady pressure gradient may, in general, be a function of posi-

tion and time,

6p' _ f(x,y,t) , (I I)
6x

but is not known directly in the jet case. In a later section a technique

is described which allows an approximation to the unsteady pressure distri-

bution. For the present, the pressure will be neglected and thus the govern-

ing equation reduces to

6u____'+ U 6u' _ 1 62u ' (12)
6t 6x R 6y 2

This equation is similar to that developed in Reference 4, but in this

case it is not limited to high frequencies and requires no phenomenological

arguments. The initial and boundary conditions are the same as those for

Equation (9). The solution to the linear Equation (12) is

u, = ozU e '(WT-wx) [erf(_'_+ erf //1+ y'_] (13)

where u"
T = t/R, X = x/RU, _ = U

and the error function is defined as

x = 0

2 .)For/ e-T/2 d 17erf "q =
(14)
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The actual form of the exponential depends upon the initial condition on

the jet. If the initial condition is that the unsteady flow varies about some

mean as a cosine function, then the solution is -

u,_cos wT-wx,[er,(22 I-Y

4. DETERMINATION OF THE STEADY ARTIFICIAL PRESSURE GRADIENT

The overall continuity Equation (2) can be expanded by the velocity defini-

tions, Eqn. (3), and then split into steady and unsteady forms,

+ = 0 and + = 0 (16)

from which it follows that

v'= _[y _(_u' dy (17)
Jo (_x

Then from Eqns. (15) and (17)

- _ w wX)_oY [erf (I -- y_ (I+ y_]
v'= sin(wT -- + err dy

T [ \2w/ _2v_/j

[4V-_ X 3/2 exp t_] /

1

( (.1 + y._2_ (1+ Y)I dy+ exp -t--_-_] ]
(IX)
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The resulting artificial pressure gradient term is

= F 1 Fscos(wT-wx) sin(wT--wX)

+ F_ F4 cos2(wt -- wX)

+F 6 F9 sin(wt-- wX) cos(wT--wX)

+ F z F_ cos 2(wT -- wX) (19)

where the F i terms are independent of time, The averaging of the trigonometric

terms over one cycle results in

cos2(wT - wX) = _/2

sin(wT -- wX) cos(wT -- wX) = 0 (20)

SO-

u,_U' v,_U_ I F, F4+ 1
_xx + _y j = 2- _ F, F_ (21)
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where

F, =-'_ erf 5_'_ erf _T_

--o_
F.=

4V-_- X %

o_
F 7 =

2_ X b2 exp [-- (--
+ exp

2

F9 = - U F7 (22)

With the artificial pressure gradient known, the steady state velocity

distribution may be found numerically from Eqn. (4). The numerical results,

however, are not yet available.

It should be noted that the final solution of Eqn. (4) cannot be a

function of magnitude of the jet frequency since none of the terms in Eqn.

(22) depend on frequency. The importance of this fact will become apparent

in the next section.

5. EXPERIMENTAL OBSERVATIONS

The jet flow illustrated in Figure 3 has been investigated experimentally,

as shown schematically in Figure 5, to determine the unsteady inputs into the

time averaged jet behavior. The data are taken by a two channel hot wire

anemometer probe, linearized, averaged, and read out on a set of digital volt-

meters. The average is found by an electronic filter designed for this ex-

periment by McCormack II The jet nozzle is fluidically controlled, as shown

in Figure 6, and is based on a design by Viets 5.

A set of time averaged velocity profiles showing the typical develop-

ment of the jet in the streamwise direction is shown in Figure 7. The double
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peaked profiles are caused by the time dependent flow inclination at the

nozzle exit and disappear as the mixing progresses downstream. Although

these profiles are for a jet streaming into an ambient condition, upcoming

experiments will address the coflowing stream situation.

The most important data from the point of view of the present analysis

is shown in Figure 8; the comparison of steady half width growth rates for

the same jet at various oscillation frequencies. The half width is defined

here as the distance from the jet centerline to the position on the profile

where the velocity is half the maximum velocity found on the profile. It

may be seen that there is an appreciable effect of frequency on the jet half

width growth, with the minimum growth at a frequency of zero, i.e. the steady

two dimensional jet.

If one examines the time averaged term which reflects the effect of un-

steadiness on the mean velocity distribution, Equation (21), it can be seen

that this term is not a function of frequency. This is true since none of

its components [Eqn. (22)] depend on frequency. There are three strong

possibilities for this discrepancy.

a. The analysis is linear while the jet is non-linear.

This effect will be investigated in upcoming tests which will feature

an experiment satisfying the linearizing assumptions.

b. The analysis is applicable but the eddy viscosity is not the same as

the steady state (a very likely situation) and is, in particular, a

function of frequency.

This point may be clarified by comparison of the analysis to the ex-

periments in a.

c. The time dependent pressure distribution in Equation (9) is not zero

as was assumed earlier in the analysis but is really a function of

frequency.

This possibility is examined in the following section.
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6. EFFECT OF A TIME DEPENDENT PRESSURE VARIATION

The basis for an unsteady pressure distribution is the interaction between

the unsteady jet and the coflowing stream. If one considers the simplest case

of a jet which does not mix with the ambient fluid, then the jet surface appears

as a traveling sinusoidal wave to the coflowing stream. The inclusion of mix-

ing modifies the shape of this wave but near the jet exit the shape is still

very nearly sinusoidal.

The simplest model for the pressure variation produced by a wave pattern

is that produced by the inviscid flow over a wavy wall, shown in Figure 9. A

linearized treatment of this problem is given by Liepmann and Roshko 12 and re-

sults in the pressure distribution

P = P_o(1 -- B Eo_ sinex) (23)

where B depends upon the freestream conditions, P is the freestream pressure

and the other variables are defined in Figure 9. It may be seen that the pres-

sure variation is in phase with the wall shape.

The real jet case is, of course, a viscous problem (as is the real wavy

wall case). Thus, the pressure dependence is not as straight-foreward as in-

dicated above. This has been demonstrated experimentally by Kendall 13, who

studied a mechanical wave traveling relative to a free stream. Kendall's

results indicate a phase shift between the wall shape and the pressure dis-

tribution. The magnitude of the phase shift depends upon the ratio of the

wave speed to the coflowing stream velocity. For a wave speed approximately

equal to the coflowing stream velocity, the phase shift is approximately I0 °

downstream.

With the velocity varying as a cosine function as in Eqn. (15), the

static pressure should vary as a sine function. In addition there must be a

phase shift and the boundary conditions require that the pressure approach
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the limit of the free stream pressure as the distance from the jet increases.

The pressure dependencesatisfying these conditions as well as the requirement

that the pressure be proportional to the square of the velocity difference be-

tween the coflowing stream and wave speed is

p,=_ Cpp(U--c) 2 e_VSW, sin [w(T--_))--wX ] (24)
2

13
where Cp may be obtained from Kendall Including this term in the governing

differential Equation (9) gives rise to another term in the solution for u" in

order to balance the -_x term.

Then

C,pp(U _ C)2 e-k/R lYl cos [w(T -- T{_)- wX 1
U/w

(25)

The main point here is that u" now is a function of frequency and therefore the

bracketed term in Eqn. (4) is also a function of frequency. Thus the inclusion

of the time dependent pressure allows the prediction of an average velocity u

which depends upon frequency. The numerical results for this case are not yet

available.

7. CONCLUSION

The foregoing analysis shows that the unsteady flowfield generated by a

time dependent jet can be treated by a linearized attack which is not limited

by frequency constraints and evolves through a rigorous simplification of the

equations of motion. The numerical integration of the full non-linear equa-

tions to produce the time averaged solution is currently underway.
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Figure I. Initial and downstream velocity profiles.
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Figure 2. Schematic of the vibrated jet studied by McCormack,

Cochran and Crane 4.

217



Figure 3, Flapping jet with angular time variation at the exit

studied by Viets et a1.5-6 and Platzer et a1.7-8

Figure 4. Jet with time dependent mass flow studied by Binder

and Favre-marinet I and Curtet and Girad 2.
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Figure 5. Experimental Setup.
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Figure 9. Flow over a,wavy wall.
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