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INTRODUCTION

This review as outlined in figure 1 will be a summary of effort at Ames
Research Center in researching performance and application of thrusting aug-
mentors. It represents the major portion of the NASA-wide effort in recent
years. Ames got started in 1965 when a large-scale testing program on STOL
application, which was sponsored jointly with the Canadian Government, was
initiated. The investigation has culminated in the publication of refer-
cnces 1 and 2 and the continuing study of the augmentor wing at forward speed
which 13 presently still funded by the Canadians. The early part of this
effort resulted in using the augmentor wing in the NASA Research Aircraft C8A
which is still being flown. More description of this effort is documented in
references 3 through 6 including Ames in-house research. Specific application
to VTOL was initiated with a joint Air Force NASA program in 1972 and resulted
in Ames 7- by 10-Foot Wind-Tunnel tests, some of which are reported in
reference 7, and a report by NASA currently in preparation. Support of
research in the application of thrusting ejectors to V/STOL will continue
until maximum installed performance has been achieved.

OBJECTIVES

The objectives of this effort have and will continue to be those listed
in figure 2. 1In all studies, there is a concentrated effort to understand
configuration effects on performance resulting in a general parametric descrip-
tion of thrust augmentors for effective application to STOL and V/STOL. Every-
onc tries to obtain as much theoretical as empirical data to apply to this
objective but, at present, the latter is by far more abundant than pertinent
theoretical results. All the objectives in figure 2 are very much related but
must support the principal objective of application or "Key Design Considera-
tions" which, in our current target, are not only high uninstalled performance
or large thrust augmentation numbers in the laboratory but assuring that these
numbers come from configurations which can be packaged into V/STOL aircraft —
"fighter" or otherwise.

TEST FACILITIES

To study installed performance, Ames will rely on several test facilities
which take both small- and large-scale models for static and wind-tunnel tests.
An installation in the Ames 7- by 10-Foot Wind Tunnel is shown in figure 3.
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The configuration is the Air Force design — reference 7 in a semispan model
which yield both static and wind-on data. Figure 4 shows the Ames 11-foot
wind-tunnel test section with a semispan model of the deHavilland "Cruise Aug-
mentor." This installation allowed study of the performance of the augmentor
wing at high subsonic speeds. The Large-Scale Static Test Stand is shown in
figure 5 with the Ames wind tunnels shown in the background. An additional
building is now being located to the right of the stand but will not interfere
with operation of the test stand. Figure 6 shows the de Havilland fuselage-
mounted ejector model in the 40- by 80-foot wind tunnel. For this model the
ejector 1s powered by a J-97. More will be said about the configuration and
the test results by a later speaker. An updated data reduction system and a
high pressure air supply is being added to the latter two facilities.

An additional facility, the 80- by 120-foot wind tunnel will be ready for
use in three years and should be included in plans for developmental testing.
It will share power systems with an "overhauled" 40 by 80 foot wind tunnel and
will be a through-flow no-return part of the complex extending out the right
(toward the northwest) of the 40- by 80-foot wind tunnel shown in figure 5.
Also seen in figure 5, a large full-scale model or aircraft can be tested on
the test stand, put on a trailer and transported to the 40 by 80 or 80 by
120 foot wind tunnel over a very short distance.

EJECTOR PERFORMANCE EVALUATION

Through testing both at small- and large-scale numbers on augmentor per-—
formance are summarized in figure 7. This collection of data has been shown
previously and parts of it published last year in reference 8. The gross
augmentation is defined as the ratio of total actual thrust to the actual
thrust of primary nozzle. For evaluating the primary thrust, this actual or
measured value must often be derived from the thrust bhased on isentropic
expansion from the nozzles using correction factors representative of nozzle
efficiency. The mixing length is the average distance from the primary
nozzles to the end of the diffuser and 1s nondimensionalized by the average
nozzle width t. (Total nozzle area divided by ejector throat length.) The
lower performance ejectors are either STOL application for low entrainment or
werc poorly optimized.

It is certainly possible that both the values for the XFV-12A and the
de Havilland model (fuselage ejector) can be or already has been further opti-
mized. The use of &/t as a parameter in the figure was an arbitrary choice
but was used for many years as a means of '"collapsing" data for slotted and
simple lobed nozzles to the faired lines. The spread in performance for given
mixing lengths illustrates the effects of both types of entrainment and mixing
as well as ejector configuration differences.

The challenge in sorting out the differences in ejector performance shown
in figure 7 must be met by evaluating some of and more than the parameters
listed in figures 8, 9, and 10 which have been separated into geometric, per-
formance, and operating definition, respectively. For geometry, one can
organize these into nozzle, shroud or diffuser, and general configuration.
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What is, obviously, absent is the type or specific design or "scheme" such as
whether or not the configuration promotes strictly turbulent mixing or is the
entrainment accomplished through shear alonme. For each ejector configuration,
the performance evaluated, using some or all of the parameters listed in
figure 9, must be documented for as many of the geometric parameters as pos-
gsible. Tests must be made at the operating conditions (parameters) in fig-
ure 10. A primary problem in the experimental study of the potential of a
given ejector concept is not just the complexity of the hardware required but
the amount and sophistication of the instrumentation needed to document this
performance and operation.

INVESTIGATIONS AT LARGE SCALE

Many of the operating or test conditions can be obtained only by install-
Ing the ejector in an aircraft configuration and testing it both statically
and at airspeed. It seems essential to investigate installation effects with
a particular ejector configuration even though the isolated ejector is still
not completely optimized in order to insure that all performance parameters
have been evaluated properly. To do this, a significant amount of basic
research using smaller models (cold or hot air supply) and analytical develop-
ment should be continued vigorously, however, large-scale testing is a valuable
tool in evaluating installation effects.

Current experimental and theoretical programs are being carried out on the
V/STOL fighter configuration shown in figures 11 and 12. The NASA XV-12A
static tests are complete and some of the results will be discussed here. The
wind-tunnel tests on a large-scale model of the wing root or fuselage-mounted
ejectors (installation shown in fig. 6) were completed in February and will
be discussed in this workshop by Mr. D. C. Whittley. Installation of the
short diffuser or Alperin ejector will be studied using the fighter design
shown in figure 12,

It 1s intended that this be a parallel program with large-scale tests on
a RALS plus deflector nozzle configuration. This latter program will be
initiated next February with test in Ames 40- by 80-Foot Wind Tunnel on the
STOL configuration having blowing over a deflected flap plus spanwise blowing.
All of these models will be powered by J-97's. As shown in figure 12 an
alternate configuration might be the combination of an ejector with the VEO or
vectored direct thrust in the rear.

A more detailed sketch of the ejector fighter configuration is shown in
figure 13. FExcept for the strakes, it is a configuration that is meeting
requirements of the Navy and Air Force supersonic fighter, particularly for
subsonic high maneuverability needs. A strake is a natural spot to place the
ejector but the ejector diffuser must be short, or, if not, diffuser scheme
must be designed into the aircraft such that it can be retracted for cruise.
For the latter option, a primary emphasis on the complete model tests will be
one of integration into the ailrcraft mission both mechanically and aerodynam-
ically. The program is being started with both NASA and Contractual work
using isolated and small-scale ejector models. This will be followed by
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large-scale static tests (at the scale of the complete model) using the com-
plete ejector propulsion system. And only after acceptable installed ejector
performance 1s obtained statically will the complete model be tested.

CONCLUDING REMARKS

Ames Research Center will continue to take the lead in NASA's effort to
explore several applications of the thrusting ejector. Figure 14 lists areas
in future effort where research and development will be supported both in-house
and contractually. It seems evident that the major application will be to the
V/STOL fighter and our large-scale testing is currently organized on this
basis. However, it 1s felt that other applications such as that of control
thrustors, and augmenting circulatory 1lift in the STOL mode should be contin-
ually considered.
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Figure 4.- de Havilland cruise model in Ames 11-Foot Wind Tunnel.
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Figure 6.- de Havilland fuselage ejector model in Ames 40- by 80-Foot Wind
Tunnel.
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Figure 7.- Thrust augmentor performance.
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Figure 8.- Thrust augmentor geometry parameters.
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DUCT PRESSURE LOSS, AP/P (Pin—Pout)/PIN
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Figure 9.- Thrust augmentor performance parameters.
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DUCT MACH NUMBER, M
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Figure 10.~ Thrust augmentor operating parameters.
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