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SUMMARY 

A physical interpretation of the observed form of the pressure distribu- 
tion beneath a two-dimensional "short" separation bubble (which modifies the 
external inviscid pressure distribution only locally) is given in terms of 
boundary layer concepts (i.e., constancy of static pressure across the layer as 
long as the layer is "thin"). At the mean separation and reattachment points 
(which lie on the same mean streamline), the local static pressure equals the 
local stagnation pressure, since the velocity is zero at these points. The 
boundary layer hypothesis then implies that reattachment can only occur at a 
point x - xs downstream of the separation point xs if the jump in external 

P 
inviscid static pressure 2 u2 (xl c - U2(x,) 3 is less than or equal to the rise 

in stagnation pressure H(x) - H(xs) along the separation streamline after 
separation. A simple method for estimating the growth of H(x) along a mean 
streamline entrained into the underside of a growing shear layer through the 
transition region is discussed, and predictions of bubble bursting conditions 
and a lower bound on the bubble length are compared with experiment. 

INTRODUCTION 

Since the early work of Melvill Jones (ref. 1), it has been known experi- 
mentally that a laminar boundary layer on an airfoil, after entry into a region 
of adverse pressure gradient strong enough to cause laminar separation, will 
separate in the laminar state, sometimes achieve transition to turbulent flow 
in the separated shear layer, and (if the adverse pressure gradient is not too 
severe) reattach to the surface to form a closed recirculating flaw eddy known 
as a separation bubble. In a typical case (fig. 1), the turbulent boundary 
layer downstream of the reattachment point R either does not separate at all 
over the remaining portion of the upper surface or separates only a short dis- 
tance upstream of the trailing edge. In such a flow, the form of the external 
static pressure distribution outside of the region of separation is approximated 
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reasonably well by the potential flow pressure distribution, though the magni- 
tude of the actual pressure is somewhat smaller. It follows that the lift of 
an airfoil with this type of bubble separation is approximately equal to the 
value predicted by inviscid theory. Following Tani (ref. 2), we will refer to 
this flaw phenomenon as a separation bubble of the "short" type, to distinguish 
it frcm another type of closed recirculating flow in which the entire pressure 
distribution differs radically from the potential flow form. The latter is 
referred to as a "long" bubble. 

Separation bubbles are of great importance in engineering because of the 
role they play in the phenomenon of airfoil stalling, which may sometimes be 
identified with a transition of the flow from a short type of bubble separation 
to the long type. This abrupt transition, known as "bursting" of the short bub- 
ble, is in some cases responsible for producing the well-known "critical" Reyn- 
olds number region in the plot of drag coefficient versus Reynolds number for 
circular cylinders and spheres (ref. 2) and for moderately thick airfoils at 
Reynolds numbers lower than about lo5 (refs. 3 and 4). 

Reference 2 contains a thorough background discussion of the phenomenon of 
separation bubbles and a review of the experimental work prior to 1964. Refer- 
ence 5 reviews most of the more recent experimental work up to 1976. The reader 
is referred to these sources for general information about the subjects treated 
in this paper. 

In recent years, there have been several attempts to develop semi-empirical 
calculation methods for predicting the length and bursting conditions for sepa- 
ration bubbles of the short type. These range in sophistication from solution 
of the full time-dependent two-dimensional Navier-Stokes equations (with model- 
ing of the turbulence), as in reference 7, to simpler modifications of existing 
boundary layer calculation methods incorporating iterative methods to account 
for viscous-inviscid interaction between the external stream and the flow within 
the bubble (refs. 6 and 8). All of these methods use experimental data on sepa- 
ration bubbles to fix the values of certain numerical coefficients appearing 
in the theory. In each case, the shape of the separation streamline and the 
external pressure distribution between separation and reattachment are unknowns 
in the problem and are not determined until the calculation is finished. Since 
the distributions of these quantities play a crucial role in determining the 
length and bursting of the bubble, there is some difficulty in using the numerical 
prediction methods (or the theories on which they are based) to deepen one's 
understanding of the fundamental physical processes controlling the flow. 

The objectives of the present study are to explain why reattachment occurs 
at all, to explain why the observed pressure distribution has its characteristic 
form, and to develop a shortcut method for calculating the length of a short 
separation bubble, if one exists, or to determine the conditions under which a 
short bubble cannot exist. 
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PHYSICAL M3DEL 

The Cause of Reattachment 

The principal cause of turbulent reattachment following laminar separation 
has been discussed by Cebici and Bradshaw (ref. 9). Consider the separation of 
a laminar boundary layer frcm a smooth surface as shown in figure 2. The edge 
of the shear layer has been drawn to show the spreading of the shear layer in 
the downstream direction due initially to laminar and later to turbulent mixing 
of manentum. This spreading results in a greater mass flux across the seg- 
ment BB' in figure 2 than across the segment AA'. In two-dimensional flow, 
mass conservation requires that there be a net inflow across the segment AB. 
This entrainment of fluid into the underside of a growing shear layer will be 
greatly increased by the transition from laminar to turbulent flow. If this 
entrainment rate is greater than any reversed flow coming frcm far downstream, 
then the shear layer simply sucks itself back onto the surface from which it 
separated (ref. 9, p. 366) to form the short separation bubble shown in fig- 
ure 3, in which the entrainment flaw is supplied by the splitting of the shear 
layer at reattachment. 

The Form of the Pressure Distribution 

In trying to identify the most important factors controlling the dynamics 
of separation bubbles, it is useful to see how many of the qualitative features 
of the flow can be accounted for adequately by simple boundary layer concepts. 
If, for example, simple boundary layer theory is found to account adequately 
for the observed length and pressure distribution of a bubble, then one can 
infer that the direct effects of streamline curvature and nonzero pressure gra- 
dients in the cross-stream direction (which are neglected in boundary layer 
theory) are indeed unimportant, at least in determining the gross qualitative 
features of the flaw. This process of testing hypotheses that certain terms in 
the equations of motion are negligible will serve to increase our understanding 
of what a separation bubble is if it allws us to identify the few important 
from among the many unimportant effects operating at once in the flow. 

In this spirit, we attempt to explain the characteristic pressure distri- 
bution beneath a short separation bubble (cf. fig. 1) by supposing that the 
assumptions of classical boundary layer theory hold. In particular, the static 
pressure across the separation bubble in figure 3 is assumed to be constant, and 
the velocity component in the direction normal to the wall is assumed to be an 
order of magnitude smaller than the component parallel to the wall. With these 
assumptions, the pressure distribution along the wall between points S and R 
in figure 3 can be inferred. The pressure gradient between points S and K 
must be small since the velocities and shear stresses in the slwly moving 
interior of the bubble are driven only by entrainment and are, therefore, mall. 
In the region downstream of the point K, the streamwise velocity along each 
closed recirculating flaw streamline will be iero at the downstream extremity 
of that streamline. Since the vertical velocity at such a downstream extremity 
is small, the static pressure is very nearly equal to the local stagnation pres- 
sure at that point. It follws that the distribution of pressure along the line 
connecting all such downstream extremities of streamlines (represented as the 
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dotted line in fig. 3) will approximately equal the distribution of stagnation 
pressure between the lower edge of the shear layer (at point K) and the sepa- 
ration streamline (at point R). This difference in stagnation pressures may 
be substantial because the velocity on the separation streamline (which lies 
close to the center of the shear layer at the streamwise station K) will typ- 
ically be much larger than the velocity on the lower edge of the shear layer 
at any given streamwise station. 

In general, we expect the pressure distribution beneath the separation bub- 
ble in figure 3 to be as shown in figure 4, which is in good qualitative agree- 
ment with the examples of short separation bubbles in reference 2. The rather 
sharp corner in the pressure distribution in figure 4 is interpreted here as 
the point where the lower edge of the shear layer impinges on the wall. Accord- 
ing to our model, this point also coincides with the center of the innermost 
closed streamline in figure 3. Note that the point K is not identified with 
the transition from laminar to turbulent flaw (which we assume takes place some- 
where upstream of the point K). 

It has been assumed in all experimental studies on separation bubbles known 
to the author that the sharp corner in the pressure distribution coincides with 
the transition point. Gault (ref. 10) proposes this as a means of experiment- 
ally determining transition, while Van Ingen (ref. 11) uses the same assumption 
to fix the numerical values of the adjustable constants in a form of his "e to 
the ninth" method for transition prediction, developed especially for use in 
separation bubbles. In view of the fact that transition fran laminar to turbu- 
lent flow occurs quite readily in a free shear layer in zero pressure gradient 
without modifying the static pressure, one is at a loss to see why transition 
as such should have any effect on the pressure distribution at all, much less 
account for the abrupt, nearly discontinuous pressure rise that occurs at the 
rear of a short separation bubble. The rather arbitrary and ad hoc character 
of the conventional interpretation of the pressure distribution renders it less 
favorable from a fundamental viewpoint than the interpretation in terms of stag- 
nation pressures given above. 

Length and Bursting of Short Bubbles 

We have included among the defining features of short separation bubbles 
the condition that the bubble modify only locally the static pressure distribu- 
tion about the body on which the bubble occurs; that is, the pressure distribu- 
tion everywhere ahead of and behind the bubble is approximately equal to the 
value predicted by potential theory. In particular, the pressures at the sepa- 
ration and reattachment points (which are the inner limits of the portion of the 
pressure distribution lying outside the bubble) must both be points lying very 
near the inviscid pressure distribution curve. These endpoint conditions, 
together with our model of the pressure distribution within the bubble in terms 
of stagnation pressures on the recirculating flaw streamlines, provide a clue 
as to what determines the length of a short separation bubble, when it is pos- 
sible for one to exist, and why it is sometimes impossible for a short bubble 
to exist. 
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NW the difference in static pressure between the points S and R in 
figure 3 equals the net rise in stagnation pressure along the separation stream- 
line, since the velocity is zero at both endpoints. It follws that if a plot 
of the rise in stagnation pressure along the separation streamline downstream 
of separation is drawn on the same graph as the rise in inviscid static pressure 
downstream of the same point, then an estimate of the bubble length is the 
streamwise distance from separation to the first point where the curves cross. 

One difficulty with such a graphical procedure for the calculation of the 
bubble length is that the curves may cross at more than one point, giving a 
choice of several possible bubble lengths rather than a single one. Another 
difficulty is that the stagnation pressure along the whole length of the sepa- 
ration streamline is not known under general conditions. It can, however, be 
estimated by assuming that the growth of the shear layer downstream of separa- 
tion is nearly equal to that of a free shear layerin zero pressure gradient, 
for which the mean velocity and, hence, stagnation pressure and stream function 
profiles are known from experiments on transition in a laminar mixing layer 
(ref. 12). 

A calculation based on similar physical concepts was made by Tani (ref. 2) 
to estimate the maximum attainable value of the coefficient of pressure recovery 
within a bubble (5 defined by the relation 

92 - Ps u = (1) 
P u2 
2 s 

Owen and Klanfer (ref. 13) had proposed the value amax = 0.35 from experi- 
mental evidence. By noting that the velocity along any streamline entrained 
into the lw velocity side of a growing shear layer cannot exceed the velocity 
on the dividing streamline (u/u),.,. = 0.5873 . . . . Tani argued that a lower 
bound on the nondimensional stagnation pressure rise existed and was given by 

(2) 

which is in excellent agreement with the figure 0.35 given by Owen and Klanfer. 
Tani did not suggest the extension of the stagnation pressure idea to the calcu- 
lation of the bubble length, however. 

The method of estimating the reattachment position as the streamwise coord- 
inate of the point of intersection of the curves of inviscid pressure rise and 
stagnation pressure rise on the separation streamline after separation provides 
a necessary condition for the existence of a short bubble, namely, that the two 
curves indeed intersect. A possible condition for the impossibility of a short 
separation bubble (i.e., a "bursting" condition) might then be that the inviscid 
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pressure gradient downstream of separation be so steep that the two curves never 
intersect. The borderline case in which a short bubble is just barely possible, 
but would become impossible with an infinitesimal increase in the inviscid pres- 
sure gradient, is when the two curves are tangent to each other at a single 
point. Later in this paper we will use this tangency condition to derive a 
close approximation to Gaster's "bursting line" (ref. 14), which has been found 
by several experimentalists (see ref. 5) to be a reliable empirical formula for 
predicting the boundary between the short and long type of bubble separations. 

DEVELOPMENT OF THE SBEARLAYER 

For reasons indicated in the last section, it is desirable to have an 
explicit formula for the development of the stagnation pressure H(s) along 
the separation streamline in a short bubble. 

For simplicity, we will assume that the actual distribution of stagnation 
pressure along the separation streamline can be approximated by the stagnation 
pressure distribution along a particular streamline entrained into the underside 
of a self-similar shear layer in zero pressure gradient, for which the velocity 
profile has been calculated from the Blasius equation in the laminar case 
(ref. 15), and has been measured experimentally in the transitional and fully 
turbulent cases (refs. 12 and 16, respectively). It has been found experimen- 
tally (cf. ref. 12, fig. 12) that the functional form of the mean velocity pro- 
file is experimentally indistinguishable for these three cases, the effect of 
transition being a large and abrupt increase of the rate of spreading of the 
shear layer measured by, say, the growth of the momentum thickness 8 (s) - 

Before treating the problems of the location of the transition region, the 
growth of the resulting turbulent layer, and the determination of the value of 
the stream function (relative to the reference streamline in a self-similar 
shear layer) appropriate for representing the separation streamline in a sepa- 
ration bubble, it is necessary to recall certain properties of self-similar 
shear layers, and, in particular, to obtain explicit approximate formulas for 
the velocity and stream function profiles. 

The Laminar Shear Layer 

The nomenclature for self-similar shear layers is as shown in figure 5, 
which illustrates the flaw downstream of a hypothetical splitter plate, the 
upper surface of which moves with the velocity U1 (precluding the formation 
of a boundary layer there), while the lower surface is stationary. The fluid 
above the plate (x < 0, y > 0) moves with the uniform velocity U1 while the 
fluid belw the plate (x < 0, y < 0) is at rest. The effect of these boundary 
conditions is the elimination of any length scale other than the streamwise 
coordinate x, so that self-similarity in laminar flow is to be expected. 

The steady two-dimensional Prandtl boundary layer equations for zero pres- 
sure gradient, 
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aLI au 3% 
u-++-=- 

ax ay ay2 

au av 
-+-=o 
ax ay 

thus reduce to the Blasius equation, 

2 f"'(n) + ff"(T-j) = 0 

in the usual way (e.g., ref. 17, p. 126), where 

Ul ( 1 
l/2 

Y 
n =y- =- 

vx R (xl 

full = 
Q (X,Y) = +(x,Y) 

(VU1 x) 112 Ul fi(x) 

a$ 1 UlL’ 
v=--=-- 

ax ( ) 
n f’(n) - 

2 x c fm!-j 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The boundary conditions appropriate for a free shear layer are 

u-t Ul+-f'+ 1 as T-l -f +a (9) 

U -fO=Sf"O as n -t -co (10) 

$=f=v=O when n = 0 (11) 

The exact solution of equation (5) satisfying the boundary conditions (9), 
(lo), and (11) has been tabulated by Lock (ref. 15) to four significant figures. 
The tabulated solution provides a useful check on the accuracy of approximate 
representations of the velocity profile in terms of elementary functions. 
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Approximation of the Velocity Profile 

For the present purpose, it is sufficient to obtain an approximate solu- 
tion to equation (5) in terms of elementary functions whose forms are chosen 
to reproduce as many of the properties of the exact solution as is convenient. 
For example, the condition f(0) = 0 implies that f"'(0) = 0 (from equa- 
tion (5)), so that the velocity f' has an inflection point at the origin, or, 
equivalently, the shear stress is maximum there. In addition, the conditions 
f 0-l) -T-I as n-t+= and f(n) f( Constant as n -t -03 imply that f' 
behaves like a complementary error function for large positive r) and like a 
simple exponential for large negative 17. These conditions, together with the 
requirement that the velocity profile be a smooth monotonic function of T-J, 
suggest the approximate forms 

T-) > 0: f'(n) =l- eBx2 dx 

T-j < 0: f'(n) = f'(0) ] 

(12) 

(13) 

each of which has an inflection point at ?l = 0 and the correct asymptotic 
behavior as 1771 + OD. Equations (12) and (13) are constructed so that the 
velocity f'(n) is continuous at the juncture n = 0. The requirement that 
the slope of the velocity be continuous at ?I = 0 provides one equation relat- 
ing the constants a and b: 

- C 1 - f'(O)] ak) = f'(O)(z), (14) 

Equation (14) provides an expression for the ratio a/b in terms of f'(O), 
where either a or b remains free to be determined by a suitable 
normalization. 

The only important unknown that remains is nw f'(O), which we will deter- 
mine by a momentum integral method. Integrating equation (5) from -a to 0, we 
obtain 

2 fvj" + ffjl - j-l (f')2 dn = 0 

while the integral from 0 to OD gives 
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w 
2 f" 3 + f(f' - 

0 
1) 1 co a0 

- f'(-1 + f') dr) = 0 
0 

J 
0 

Applying the boundary conditions for a shear layer, these equations become 

0 
2 f"(0) = 

s 
(f')2 dn = 

-aI s 

co 

f'(1 - f') dn 
0 

(15) 

which are forms of the Van K&m& momentum integral equation (e.g., ref. 17, 
p. 146) for each half of the flaw, and which have direct counterparts when the 
flaw is turbulent (e.g., ref. 18, p. 227). 

If equations (12), (13), and (14) are substituted into equation (15), then 
a cubic equation for the quantity 1 - f'(O) is obtained (see appendix), the 
relevant solution of which gives f' (0) = 0.58923, which agrees well with the 
tabulated value f'(O) = 0.5873 in reference 15. 

For our normalization condition (needed to determine either a or b from 
equation (14)), we note that equation (15) implies 

8 
_ z 0” = 
R s 

0 co 
f' (1 - f') dn + 

s 
f'(1 - f') dr) 

-a, 0 
0 = f 1 - f"(0) + f"(0) = -f(-O0) (16) 
-03 

which according to reference 16, has the numerical value -f(-") = 1.2386. 

It follws from equations (12), (13), (14), and (16) (see appendix) that 
a = 0.88544 and b = -0.30160, which ccxnpletely determines all of the constants 
in our approximate velocity profile. For n -C 0 (which is the region of 
interest in the separation bubble problem), the approximate velocity profile 
given by equation (13) is uniformly accurate to within 1 percent of the tabu- 
lated values in reference 16. 

Development of the Munentum Thickness 

The nondimensional velocity profile f' 0-l) I together with the definition 
of the transverse length scale R (xl in equation (6) and the free stream veloc- 
ity UJ completely determine the flow in a laminar shear layer. It is conve- 
nient to express R(x) in terms of information available at a station x = Xl, 
rather than in terms of the distance x downstream of the splitter plate in 
figure 5. From equation (6), 
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where RI is defined to be Q(q). Rewriting in terms of the momentum thick- 
ness 9(x1) and using the fact that 8(x)/R(x) = 8* = 1.2386, we have 

(Laminar flow) (17) 

As mentioned before, we will assume that the functional form of the mean 
velocity profile in a self-similar turbulent shear layer is the same as in 
laminar flaw. Thus, we continue to use equations (12) and (13) for the velocity 
profile, though the definition of the transverse length scale Q(X) 
equals (v~/Ul)l/~ 

(which . 
in laminar flaw) must be altered. Since the equation 

0 = 8" Q(X) holds in general, this may serve as the definition of Q(X) in 
turbulent flaw, provided that an 
of 8(x) can be found. 

From the data of Sato (ref. 
We may take, for example, in the 
the flow 

where, for (x - x&e, 1 Nt, 

adequate empirical formula for the development 

121, such a formula is not hard to develop. 
transitional and fully turbulent regions of 

1 extra 

~C]extra = 0.046[$ - Nt) + z tanh [T - 'j 

S 

(18) 

(19) 
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and where cTe(x)~%Lm is given by equation (17) with xl = xs. A plot 
of eguation (19) with the numerical values X1/8, = 34, X2/0, = 135, and 
Nt = 56 is shown in figure 6. Also shown are the measured values of 
fmm, - k(x) &llam for three different flows in reference 12. The agree- 
ment is seen to be quite reasonable. 

The condition (s - xs)/8, = Nt represented a transition criterion and 
appears to hold quite generally for two-dimensional laminar separated flows of 
the type under discussion. For example, figure 12 of Freymuth (ref. 19), which 
shows the growth of the streamwise fluctuation velocity component lullmax in 
a free shear layer downstream of separation for a variety of separation Reynolds 
numbers, indicates that the range of (X - x&es in which the disturbances 
grow exponentially is almost completely independent of Reynolds number for 
61 6 Qs 6 334. This range was found to be 0 S (x - xs)/8, 5 60. Strong non- 

linearity (indicating the onset of transition) appears for (x - xs)/8, 2 60, 
which agrees well with the value Nt = 56 used here. A similar independence 
of the onset of transition with Reynolds number can be found in separation 
bubbles. For example, Gaster's results (ref. 14, fig. 11) of intermittency 
measurements in seven short separation bubbles in the range 136 6 R8, 5 394 

show that the onset of transition occurs for 50 6 (x - xs)/8, 6 80 for all but 
one of the bubbles. Unlike the case of fully attached flaw, it therefore 
appears that transition in fully separated flw is relatively easy to predict 
in terms of the critical value of a single parameter, at least in the case of 
nominally two-dimensional incompressible flow in the Reynolds number range 
under discussion under conditions of small background turbulence and acoustic 
noise. 

VELOCITY DISTRIBUTION ALONG A STREAMLINE 

The stream function q can be obtained from our approximate velocity pro- 
file (13) by integration. Applying the boundary condition $ = 0 on n = 0, 
we have, from equations (7) and (13), 

Ul R(x) 3 
4J = Ul R(x) f(n) = b 2 f'(O){anhFn + tanh-l(i] - i] (20) 

NW the value of the stream function at n = -03, which represents the mass 
flaw across the entire lwer half of the shear layer in figure 5, is a function 
of x and may be used to define the (constant) stream function along the 
streamline that just enters the underside of the shear layer at any station x. 
In our model of the separation bubble , we will suppose that the separation 
point x = xs corresponds to the point where the separation streamline enters 
the underside of the separated shear layer in a bubble in just this way. That 
is, we will take 

QS = us R(x,) f(-m) = -uses (21) 
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as the value of the stream function (relative to the shear layer) that repre- 
sents the separation streamline in a bubble. 

The distribution of velocity along the streamline $ = Qs can now be found 
easily. Fran equations (20) and (21) (with Ul = Us), we have 

tanh (22) 

It fOllWs from equation (13) and the identity se&2 (x) = 1 - tanh2 (x) that 

Figure 7 is a plot of equation (23) for various separation Reynolds numbers. 
Equations (17) through (19) have been used to evaluate the quantity 8/e,. 

STAGNATION PRESSURE ALONG $ = & 

Equation (23), which was calculated from the known behavior of a free shear 
layer in zero pressure gradient, provides a measure of the stagnation pressure 
distribution along the streamline $ = $s, since in zero pressure gradient, the 
stagnation pressure H(x,$J), defined by 

P 
H(x,$) = p + 2 u2 (24) 

is simply equal to the dynamic pressure (P/2) u2- 

We recall that in a general shear flaw, the stagnation pressure varies 
along a mean streamline according to the approximate equation 

aH aT 
-=- 
as an 

where 'I is the combined viscous and turbulent shear stress 

au T =lJ - - pu’v’ 
an 

(25) 

(26) 

188 

.-- . . . .- . . _ . --_ 



and where s and n are orthogonal curvilinear coordinates in the plane of 
the flaw oriented in the streamwise and cross-stream directions, respectively. 
Equation (23) thus represents the cumulative effect of such cross-stream stress 
gradients in the downstream direction. 

The use of equation (23) to model the actual stagnation pressure distribu- 
tion along Q = Q, in a separation bubble involves the assumption that the 
modification of the shear stress distribution due to the abrupt rise in static 
pressure at the rear of the bubble is small, or, equivalently, that the turbu- 
lent shear stresses are dominated by "memory" effects. Such an approximation 
of memory-dominated shear stresses is familiar in many analyses of turbulent 
flws follwing entry into a region of severe adverse pressure gradient (see 
especially refs. 20 and 18). The validity of this approximation when applied 
to the bubble problem has yet to be established, however. 

With due regard for this uncertainty, we may take the nondimensional form 
of equation (24) as our working equation for the distribution of stagnation 
pressure along the streamline Q = 9,: 

(27) 

where the last term on the right-hand side is given by equation (23). 

GASTER'S BURSTING CRITERION 

M. Gaster (ref. 14) has obtained an empirical correlation in terms of the 
parameters ws and the pressure gradient parameter P, defined by 

p= 
ur 

2 
- Us es (Ur - Us)A-Js uSeS 

-= (28) 
xr - xs v tXr - xs)/fl, Y- 

that distinguishes between flaw conditions permitting a short separation bubble 
and the conditions when a short bubble is not possible (i.e., a "bursting" con- 
dition). Figure 8 shows Gaster's so-called "bursting line," which we will 
attempt to derive from equation (27). 

If we define a pressure coefficient c$ relative to the free stream con- 
ditions at the separation point in a bubble, then 

P - P, 2 
U - = 

p_ u2 
c;,=l- - 

( ) 

cP - cPs 

US 
Zlac 

ps 
2 s 

(29) 
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where- co = 1 - W/U,) 2 is the conventional pressure coefficient. In terms 
of r$, &quation (27)- becomes, on 9 = 4Js, 

* /u \2 fu I2 

At the reattachment 
so that 

- = - L ) US plane 
layer 

(30) 

point, the streamwise velocity u on $ = $, equals zero, 

(31) 

layer 

where the pressure recovery coefficient CT is the same as in equation (1). 

Equation (31) together with equation (28) , which at reattachment can be 
written as 

J 1 
p= 

- cir - 1 

QS 
(32) 

(x - “sm. 

define the largest possible 6 that can be achieved by a short bubble at a 
given Qs. That is, if c& from equation (31) is substituted into egua- 

tion (32) and the resulting 5 tabulated as a function of (x - xs)/8, for a 
particular ws, then an extremum of p is found. For the Reynolds numbers 

R(), = 100, 200, 300, and 400, we find that the extreme values of 6 are 

-0.0996, -0.1868, -0.2732, and -0.3593, occurring at (x - xs)/8, = 103, 111, 
115, and 117, respectively. A faired curve through these points is shown in 
figure 8 and exhibits suprisingly good qualitative agreement with Gaster's 
empirical curve. 

The agreement between theory and experiment is particularly pleasing in 
view of the fact that all of the empirical input to the present calculation 
method was obtained from measurements of transition in free shear layers in 
zero pressure gradient at a remote distance from any wall. Our calculations 
therefore lend support to the view that the processes of bubble bursting and 
shear layer reattachment are linked to the processes of laminar-turbulent 
transition and shear layer growth in a fundamental way. 
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ODMPAEISCN WITH EXPEEIMENTAL BUBBLE LENGTHS 

As a caution against overly optimistic conclusions drawn from the present 
analysis, we present in figure 9 the results of an attempt to verify the 
reattachment condition (31) directly. In the figure, we have plotted the mea- 
sured pressure recovery coefficient c and length (Xr - xs)/9, for a number 
of separation bubbles fran various sources. On the same scale, we have drawn a 
copy of figure 7, which represents the nondimensional stagnation pressure along 
the separation streamline for a plane layer. If equation (31) held exactly, 
then all of the experimental points would lie on the dashed curves. 

In fact, the experimental points are scattered quite widely about the 
analytic curves. More serious than the scatter in c, however, is the discrep- 
ancy between the measured length of the bubbles, which are typically in the 
range 150 s (Xr - xs)/8 s 6 300, and the values calculated frcm our analytic 
derivation of Gaster's bursting line. We have indicated the latter points in 
figure 9 by "plus" symbols, which lie, to within graphical accuracy, on the 
family of straight lines drawn through the origin and the points of tangency 

with the various curves of for the plane layer. As can be seen, 

the calculated bubble lengths are typically a factor two or three too small. 
This error is significant, and indicates that the present theory is not suf- 
ficiently refined for practical use in the quantitative prediction of bubble 
lengths. 

It is not clear which of the many effects neglected in the theory are 
responsible for this discrepancy. We may speculate, however, that the neglect 
of changes in the shear stress gradient a-r/an on the separation streamline 
during reattachment is important. Sane such change must occur, since in the 
real flw the shear stress on $ = $, vanishes at reattachment, which places 
the reattachment point below the point of maximum T in the layer. The crude 
theory developed above assumes that as the separation streamline gets swallowed 
up into the underside of the shear layer, the shear stresses on the streamline 
tend asymptotically toward the value of the center of the layer (which is the 
maximum value). It follows that aT/an is underestimated by the crude theory. 
This implies (from equation (25)) an unrealistically lw prediction of the stag- 
nation pressure H. It is not obvious how the present theory could be refined 
to take such effects into account. 

OONCLUSIONS 

Fran our investigation of the physics of separation bubbles, we may state 
the follwing tentative conclusions: 

1. The form of the static pressure distribution about a short separation 
bubble can be explained qualitatively in terms of boundary layer concepts. In 
particular, the sharp corner in the pressure distribution at the rear of a short 
bubble is more properly interpreted as the point where the lwer edge of the 
reattaching shear layer grazes the surface than as the point of transition frcm 
laminar to turbulent flaw, as has traditionally been assumed. 
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2. The observation that the static pressure distribution about the body 
on which a short separation bubble occurs very nearly coincides with the 
inviscid pressure distribution at all points other than those between separa- 
tion and reattachment leads to a plausible hypothesis regarding the factors 
controlling bubble bursting and a simple but crude calculation method for esti- 
mating the length of a short bubble when it is possible for one to exist. Spe- 
cifically, the reattachment point x1: coincides with the earliest downstream 
station x at which the stagnation pressure on the separation streamline is 
large enough to support an abrupt rise to the local inviscid static pressure 
at x. 

3. The attempt to approximate the rise in stagnation pressure on the sepa- 
ration streamline in a bubble by the corresponding rise along a streamline 
entrained into the underside of a laminar mixing layer undergoing transition 
leads to a reasonably accurate prediction of Gaster's bursting line, but signif- 
icantly underestimates the length of short bubbles in general. This inaccuracy 
is probably due to the failure of the calculation method to take account of 
changes in the viscous and turbulent shear stress profiles occurring prior to 
reattachment that produce (according to equation (25)) an increase in the actual 
stagnation pressure along the separation streamline beyond what exists in a free 
shear layer. 

4. The present results are in every way consistent with and support the 
view of Cebeci and Bradshaw and others that reattachment is a direct consequence 
of the increased entrainment of fluid into the underside of the growing sepa- 
rated shear layer downstream of transition, the entrainment causing the shear 
layer to suck itself back down onto the surface. 
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APPENDIX 

We rewrite equation (15) in the equivalent form 

- f') - (1 - f+jdn = so (f')2 dn (Al 1 
100 

Substituting equations (12) and (13) into equation (Al) gives 

c C > 
1 f'(O)2 

l- f* (0)] I1 - [1 - f1(0)1212 - = I3 7 
a 

where 

eDx2 dx a dn -$"- Jz) 
IT 

and 

I3 = 

2 
46-9 

bdrj= 
6 

WI 

(A3) 

(A4) 

(A5) 

(assume b < 0 throughout) 

The right-hand side of equation (A2) can be rewritten by means of equation (14) 
as 

I3 f'(O)2 
= I3 

-f'(O)3 2J;; 1 -- (A6) 
b l- f'(O) G a 

Substituting the identity 

-f'(O)3 = C 1 - f'(O,3 3 - 3b - f'(O)J 2 + 3E - f'(OjJ - 1 
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into equation (A6) and combining with equation (A2) gives the cubic equation 

+ b - f'(0)] (A7) 

which may be solved numerically by Newton's method to give the solution 
1 - f'(0) = 0.41077, or f'(O) = 0.58923. 

The constants a and b may be calculated from the normalization condi- 
tion (16) in the following way. The first integral on the right-hand side of 
equation (16) may be written 

0 SC f' (0) f'(O)2 
f' - 

-al 
(f@)q dn = b I4 - --b-- I3 

where we have used equation (14), and where 

I4 = 11: sech2b +tanhml(kjbdn =v (A91 

The second integral on the right-hand side of equation (16) is just the left- 
hand side of equation (A2). According to equation (16), the sum of these two 
integrals equals -f(-a) = 1.2386, which immediately gives a = 0.88544. Equa- 
tion (14) then gives b = -0.30160. 

194 



REFERENCES 

1. Jones, B. Melvill: An Experimental Study of the Stalling of Wings. 
R. & M. No. 1588, British A.R.C., 1934. 

2. Tani, Itiro: Lw Speed Flows Involving Bubble Separations. Progress in 
the Aeronautical Sciences, D. Kuechemann, ed., vol. 5, 1964. 

3. Schmitz, F. W.: Zur Aerodynamik der Kleinen Reynoldszahlen. Jb. 1953 
Wiss. Ges. Luftfahrt. Brauschweig 1954, S. 149/166. 

4. Kraemer, K.: Fluegelprofile im Kritischen Reynolds-zahl-Bereich. Forschung 
auf dem Gebiete des Ingenieurwesens, Band 27, S. 33/46. 

5. Young, A. D.: Some Special Boundary Layer Problems. 20th Ludwig Prandtl 
Lecture. Zeit. Flugwiss. u. Weltraumforschung, Band 1, S. 401/414, 1977. 

6. Crimi, P.; and Reeves, B. L.: Analysis of Leading Edge Separation Bubbles 
on Airfoils. AIAA J., vol. 14, pp. 1548-1554, 1976. 

7. Briley, W. R.; and McDonald, H.: Numerical Prediction of Incompressible 
Separation Bubbles. J. Fluid Mech., vol. 69, pp. 631-656, 1976. 

8. Geropp, D.; und Grashof, J.: Berechnumg von Stroemungsfeldern mit 
Ablceseblasen bei Grossen Reynoldszahlen. DLR-FB 76-52, Institut fuer 
Stroemungslehre und Stroemungsmachinen, Universitaet Karlsruhe, 1976. 

9. Cebeci, T.; and Bradshaw, P.: Manentum Transfer in Boundary Layers. New 
York: McGraw-Hill, 1977. 

10. Gault, Donald E.: An Experimental Investigation of Regions of Separated 
Laminar Flaw. NACA TN 3505, 1955. 

11. Ingen, J. L. van: On the Calculation of Laminar Separation Bubbles in Two- 
Dimensional Incompressible Flow. In AGARD CP-168: "Flow Separation," 
Goettingen, 1975. 

12. Sato, Hiroshi: Experimental Investigation of the Transition of Laminar 
Separated Layer. J. Phys. Sot. Japan, vol. 11, pp. 702-709, 1956. 

13. Owen, P. R.; and Klanfer, L.: On the Laminar Boundary-Layer Separation 
From the Leading Edge of a Thin Aerofoil. British A.R.C. C.P. 220, 1953. 

14. Gaster, M.: The Structure and Behavior of Laminar Separation Bubbles. 
British A.R.C. R. & M. 3575, 1969. 

15. Lock, R. C.: The Velocity Distribution in the Laminar Boundary Layer 
Between Parallel Streams. Quart. J. Mech. and Appl. Math., vol. 4, 
pp. 42-63, 1951. 

16. Liepmann, H. W.; and Laufer, J.: Investigations of Free Turbulent Mixing. 
NACA TN 1257, 1947. 

195 



17. Schlichting, H.: Boundary Layer Theory, 6th edition, J. Kestin, trans., 
New York: M&raw-Hill, 1968. 

18. Townsend, A. A.: The Structure of Turbulent Shear Flow. Cambridge: 
Cambridge University Press, 1976. 

19. Freymuth, Peter: On Transition in a Separated Laminar Boundary Layer. 
J. Fluid Mech., vol.{,25, pp. 683-704, 1966. 

20. Stratford, B. S.: The Prediction of Separation of the Turbulent Boundary 
Layer. J. Fluid Mech., vol. 5, pp. l-16, 1959. 

196 



I-C, 

2ao 

1.0 

ACTUAL PRESSURE DIST, 

INVISCID PRESSURE DIST. 

Figure l.- Characteristic pressure distribution beneath a 
separation bubble of the "short" type. 

--- EDGE OF SI-IEAR LAYER 

-MEAN STREAMLINES 

Figure 2.- Two-dimensional steady separation from a 
solid wall showing entrainment of fluid into the 
underside of the shear layer due to spreading in 
the downstream direction. 
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-mm EDGE OF SHEAR LAYER 

- MEAN STREAMLINES 

R ’ 

Figure 3.- Recirculating flaw pattern within a bubble 
showing splitting of the shear layer at reattach- 
ment to supply the entrainment (vertical scale 
greatly exaggerated). 

I S K R C 

Figure 4.- Pressure distribution inferred from figure 3. 
Small entrainment velocities beneath shear layer imply 
small pressure gradients between S and K. Steep 
gradient between K and R due to splitting of shear 
layer at reattachment and gradient of stagnation pres- 
sure across lower half of shear layer. 
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---EDGE OF SHEAR LAYER 

DIVIDING / 
STREAMLINE 

Figure 5.- Nanenclature for free shear layers in 
zero pressure gradient. 
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Figure 6.- Verification of empirical formula for growth of momentum 
thickness downstream of transition. Data frcun reference 12. 
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Figure 7.- Plot of equation (23) using equations (17) , (18) , and (19) . 
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Figure 8 .- Gaster’s bursting line derived fran present theory, 
which is based entirely on data frm free shear layers. 
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THEORETICAL V V 
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Figure 9.- Attempt to verify reattachment condition (31). 
Measured lengths and pressure recovery coefficients 
from various sources: 0, Gaster (ref. 14) "series I"; 
A, Gaster "series II"; 0, Van Ingen (ref. 11); V, Tani 
(ref. 2, fig. 17, based on data from Gault, ref. 10). 
If equation (31) held exactly, then all measured points 
should lie on dashed curves. Note: each set of data 
represents a series of runs at various tunnel speeds, 
which, to avoid cluttering the figure, have not been 
shown. 
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