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SUMMARY

| During the past few years, the direct-inverse technique has been de-

. veloped into a numerical method, called TRANDES, that is suitable for the
analysis and design of subsonic and transonic airfoils and for the evaluation
of design concepts. This paper provides a general description of the method,
demonstrates its application to a design-analysis type of problem, and
finally, discusses a new usage of the method for the low speed high 1lift case.

INTRODUCTION

The basic concept of the present method (refs. 1-4) is to have a tech-~
nique which can be used in either the direct (analysis) mode in which the
airfoil shape is prescribed and the flowfield and surface pressures are de-
termined, or in the direct-inverse (design) mode in which an initial nose
shape is given along with the pressure distribution on the remainder of the
airfoil. 1In the latter case, the flowfield and actual airfoil shape are
computed.

The resultant computer program, called TRANDES, (ref. 5), has several
unique features. In order tc achieve accuracy, the method utilizes the full
inviscid potential flow equation; and in order to remain simple, it solves
the problem in a stretched Cartesian grid system that maps the infinite
physical plane to a rectangular computational box. Further, to avoid at
supersonic points difficulties associated with nonalignment of the coordinates
and the flowfield, a rotated finite difference scheme 1is used in the solution;
and the resulting transformed finite difference equations are solved itera-
tively by column relaxation sweeping from upstream to downstream. Finally,
the method does include the effects of weak viscous interaction. The basic
idea in the design case is to treat the airfoill determined by the inverse
method as the displacement surface and to subtract from it a displacement
thickness determined by a Nash-Macdonald (ref. 6) turbulent boundary layer
computation in order to obtain the actual airfoil coordinates. It should be
noted that the present program determines the airfoil shape simuitaneously
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with the flowfield relaxation solution. For the analysis case, the approach
is to calculate a boundary layer displacement thickness and to use it to
correct the location of the displacement surface (i.e. airfoil ordinate plus
§*%), The flowiield is then solved iteratively with the displacement surface
being updated every ten relaxation cycles.

Now, in the design mode, the shape of the nose region (typically 6~10%
chord) is specified and a pressure distribution is prescribed over the re-
mainder of the airfoil. Thus, the appropriate airfoil boundary condition in
the direct region near the leading edge is the surface tangency requirement
and in the inverse region, where the pressure is specified, it is essentially
the specification of the derivative of the perturbation potential in the x-
direction. In order to satisfy these at the airfoil boundary, which in
general will not coincide with the Cartesian grid points, the derivatives in
the boundary conditions are expanded as two term Taylor series about a dummy
point inside the airfoil. The derivatives in these series are then written
in finite difference form using second order formulas for all first
derivatives and at least first order ones for higuer derivatives. In the
direct region, central differences are used for :c-derivatives and forward
(on the upper surface) for the y-derivatives. However, to prevent numerical
instability, the inverse region uses a second order backward difference
formula for the first term of the Taylor series representing the x-derivative.
For details concerning the finite difference formulation, boundary conditions,
etc., see references 2-5, and 7.

Currently, the program can be easily used to design or analyze an air-
foil at a specific flight condition. Figure 1 shows such a result for the
design of a low lift airfoil having a sonic rooftop Ffollowed by a linear
recovery. Supercritical shockless airfoils have also “»ezen designed and
examples are presented in reference 7.

Now any numerical method needs to have its accuracy verified. As a
result, comparisons with other methods (refs. 8,9) have been conducted for
airfoils ranging from 4 to 16% thick and Mach numbers up to 0.85. Some of
these results are presented in references 2, 4, and 10; and, in general,
the agreement is excellent. In addition, comparisons have been made with
transonic experimental data obtained at the NAE (Ottawa) (ref. 7) and at the
Ohic State University. A typical comparison with the OSU data is shown fo.
the GA(W)-2 airfoil in figure 2. In general, the agreement for CP, CL,

CD’ and CM is quite acceptable.

Symhol definitions are given in an appendix.

APPLICATION TO DESIGN

To demonstrate the usefulness of the present combined design-analysis
method, consider vhe problem of designing an airfoil having a rooftop plateau
followed by a Stratford recovery (ref. 11). (It should be noted that a Strat-
ford recovery is used here only for example purposes. While such a pressure
distribution has the advantage that it maintains the Loundary layer at a
constant margin from separation, it also h.s several disadvantages which will
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be mentioned later). 1In addition, two design concepts will be compared. In
the first case, the airfoil will be designed at a low C, with a sonic upper
surface rooftop pressure plateau; while in the second case, the airfoil
will be designed with a supercritical plateau at a moderate C.. The airfoils
will then be analyzed and compared at conditions other than the design
point to see which one has the better characteristics.

The results for the critical rooftop design, which had a target C_ of
0.35, are shown in figure 3. The golid line is the design C_ distri-
bution, and the final airfoil shape after accounting for the” boundary layer
is the one shown. Notice the reverse curvature on the upper surface and the
resultant airfoil thinning. This behavior is typical of airfoils employing
Stratford distributions, and frequently it leads to shapes that are struc-
turally too thin in the vicinity of the trailing edge.

How was this shape obtained? Since the method requires the specification
of the leading edge region, the nose shape can be used to control the trailing
edge thickness. This approach is demonstrated in figure 4 and worke easiest
if an analytical nose shape controlled by a single parameter is utilized.

Here the nose shapes are those associated with NACA 00XX airfoils. Notice
that as the shape parameter increases, the trailing edge thickens. In ad-
dition, it should be noted that all the results in figure 4 were obtained
using the same C boundary conditions and that each case is completely
independent. Thus, obvious physical unrealities such as traiiing odge

crossing do not affect the final design shape. Also, aaymmetric nose shapes
may be used.

As indicated by figure 4 and shown specifically in figure 5, there is a
unique relationship between the values of the nose shape parameters and the
trailing edge ordiunates. Usually the variation is essentially linear; and
thus, after obtaining the results for two cases, the desired trailing edge
ordinates can be obtained on the third try.

Sometimes in an aft-camber design case if the computed upper and lower
surfaces are not almost parallel near the trailing edge, the flow in that
vicinity will deviate from the desired pressure distribution and try to
stagnate, with resultant separation. Usually by slightly adjusting back
and forth the starting point of the upper surface recovery, a location can be
found which will yield acceptable trailing edge slopes and pressures. This
procedure may require a few extra iterations and some adjustment in nose
shape, but it is normally not difficult.

Figure 6 shows ti.> design pressure distribution and resultant airfo:l
shape obtained when thc .irfoil was designed for a higher C. and with a Mach
1.1 supercritical rooftop. Since this airfoil was designed™” at higher lift
(C, = .55), the lower surface pressure distribution had a larger aft bucket.
This case demonstcates the disadvantage of using a Stratford recovery on a

highly aft-cambered airfoil in that the airfoil thickness is less than 2% aft
of 80% chord.

Now an essential requirement of a design method, from an engineering
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standpoint, is that when the designed airfoil is analyzed at the design
condition, the computed C_ distribution should agree with the C_ distribution
used for the design. Such analysis results are shown in figures 1, 3, and 6
and were obtained using the present method with viscous interaction included.
As can be seen, the agreement is excellent. It I3 believed that these com-
parisons verify the engineering consistency of the method and, since the
analysis regults usually agree with experimental data, that the airfoils
designed by this method should perform as predicted.

APPLICATION TO ANALYSIS

One of the difficulties associated with using a Cartesian grid for an
analysis computation is that such a grid does rot place a large number or
points near the leading edge. Thus, the wave drag coefficient, which is
determined by integration of the pressure coefficient, has an inkerent exror.
Previous studies have determined this error is consistent and primarily a
function of airfoil shape and grid spacing; and thus, correction factors
can be determined from calculations at subcritical speeds where the wave
drag should be zero. Unfortunately, the correction procedure suggested in
reference 5 may be partially in erior; and while research is continuing,
the results presented in this section have been obtained using the following
technique.

At a Mach number, Mws b? for which the flow is entirely subcritical,
u -
determine for each angle of attack, o, the normal, CNsub o and axiai,
14

CAsub o’ force coefficients. Then find the drag correction from
L]

AC = C + C tana
Dwsub,a Asub,c.' Nsub,a

Next find the correction at the desired supercritical Mach aumber, Mm, by

14

- sub
MCpyy - = Ay 2
Mo sub,a Y 1-Mg
Then correct CA at M_ by
C =C - AC
corr Aorig Dme,a
and find
c = C sina + C cosa
DWMQ,G NMw,a cory

The total drag is then given by
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Cp = Cow * Cpp

where C_ is the skin friction drag determined by the Squire-Young method.
While not perfect, this approach seems to yield good estimates. Also, the
investigation is continuizg and the method does not as yet include a correc-
tion for non-conservative differenciag. Finally, M, used to determine

the correction factors should be as high as possible.sUb

Some typi-zal analysis results are shown in figures 7-9., Figure 7 shows
the effect of varying angle of attack at the design Mach number for Airfoil
109B (critical rooftop design), while figure 8 portrays variations due to
changes in M_. As a increases, the flow on the upper surface goes supercrit-
ical and a shock forms. However, there is a desirable pressure plateau aft
of the shock wave (ref. 12) which will permit boundary layer recovery. While
the analysis results indicate no separation for the conditions shown, thére
probably would be shock induced separation at higher a's. Because of the
Stratford recovery, such separation would probably lead to a large separated
region and a very sharp break in the CL (a) curve.

As can be seen in figure 8, as M_ increases a supersonic bubble forms
and grows and eventually terminates in a shock wave for M, 2 0.79., Aft of
the supersonic zone, the pressures closely follow the original design dis-
tribution with no separation. These, and other studies, showed that at a CL
of 0.35, drag divergence occurs at M_ of 0.78.

Similar studies were performed for Airfoil 209 (supercritical rooftop
design), and the angle of attack variation is shown in figure 9. Note that
the pressure distribution variation at positive angles of attack is consid-
erably different from that of Airfoil 109B (fig. 7) in that a shock wave
forms immediately and C_ increases rapidly. Interestingly, the upper surface
pressure continues to follow the original Stratford recovery aft of the
shock wave. Also, other studies indicate possible shock induced senaration
for M_ 2 0.77 even at zero angle of attack.

Aaalysis results such as these can also be used to compare airfoils ob-
tained using l{ifferent design philosophies. An example for the two designs
being considered here is shown in figure 10. Notice that for Airfoil 1098,
Cp is relatively constant up to CL's of 0.55, while Airfoil 209 exhibits &
steady increase in Cp. In addition, other calculations indicate that 109B
has little or no drag creep for 0.5 < M, £ 0.7% and €y < 0.5. However, Air-
foil 209 has 6-18 counts of drag creep in the same range.

Now it should be pointed out that these results are not critical of
supercritical airfoils. In fact, Airfoil 199B, whose shape was determined by
the inverse method using a "“critical rooftop could be used at CL's up to
0.55 with low drags. Thus, it is in essence a supercritical airfoil and
could be used at design 1lift coefficients up to 0.55. The point is that with
the design philosophy and assumptions used in these examples, the inverse
technique appears to yield the best results by designing the shape with a
critical rooftop at a low CL' The airfoil then can, at least in this case,
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be used at higher 1ift coefficients.

APPLICALTON TO THE HIGH LIFT CASE

A few years ago Barnwell (ref. 13) demonstrated thut the direct-inverse
technique could be successfully applied to the low speed high 1ift case. By
specifying the separation point, he was able to obtain excellent agreement
with experiment by solving the small perturbation equation with direct
boundary conditions upstream of separation and inverse boundary conditions
(pressure spe.ified) downstream of separation. Thus, the- question arose —-

With these ideas, the low speed high 1ift case has been modeled as shown
in figure 11; and TRANDES has been appropriately modified. On the lower
surface, the flowfield is determined using direct boundary conditions (airfoil
specified) including the effects of weak viscous interaction. On the. upper
surface, the flowfield is also computed directly, with viscous interaction up
to the separation point, which is determined as part of the solution. Down-
stream of separation, inverse boundary conditions are utili ed: and the
Pressure is assumed to be constant in the separated zope. Iae present studies
have shown that the separated zone pressure, which is compuied as part of the
solution, must be determired by conditions at both the separation point and
at the trailing edge and not just on conditions in the vicinity of separation.
This result is in agreement with the conclus.!on of Gross (ref. 14) that
conditions at the downstream end of the separi.tion bubble determine bubble
pressure. For the present studies, it has been found adequate to approximate
the separated pressure by

C 2O - e
P Ax

sep

where ¢ITE and ¢sep are the perturbation potentials at the trailing edge and
the separation point, respectively.

Now in principle, the Separated wake region should probably be accurately
modeled with respect to physical phenomena and details; and this approach
has been taken by other investigators (refs. 14-17). In the present model,
however, the wake is treated very simply in that it is assumed to be inviscid
with a constant pressure across the pseudo trailing edge formed by the upper
and lower displacement surfaces.

Finally, initial calculations with this model have indicated that the
separation point location, and thus the lift, is strongly dependent upon the
boundary layer transition point. Thus, the viscous interaction scheme in
TRANDES has been modified to include an initial laminar boundary layer (com-
Puted by a compressible Thwaites method), natural transition, and then a
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turbulent boundary layer computed by the Nash-Macdonald method. For those
cases where laminar separation occurs prior to separation, a long or short
bubble, depending upon local flow conditions, is empirically modeled, and
then transition is assumed.

The calculation procedure uses the same iterative successive column re-
laxation scheme used in the basic program except that the separation point
and separated pressure level are permitted to vary. A convergence history
for a typical case is shown in figure 12, Initially some oscillation occurs
on each grid; but, as can be seeun, the values quickly converge. Normally,
four hundred iterative cycles are performed on both the medium and fine grids.
The former normally yields 66 points on the airfoil, while the latter yields
130.

Results for a GA(W)-2 airfoil are shown in figures 13 and 14. In both
cases, the lower surface remained entirely laminar, although results with an
all turbulent lower surface boundary layer showed no significant differences.
On the upper surface transition with a short separation bubble occurred near
the leading edge. In general, comparison with experimental data (ref. 18)
is good with respect to C_, separation point, separated pressure level, and
CL; and thus the method °~ is quite promising.

Figure 15 shows a comparison with experiment of C_ versus angle of attack
for the same airfoil. Similar results have also been ~ obtained at other
Reynclds numbers. At the present time, research on this approach to the high
lift problem is continuing in order to ensure that C can be determined
accurately. Lmax

As a final note, this procedure has also been applied to Airfoil 109B
discussed previously. Surprisingly, the design Stratford recovery used at
Mach 0.74 seems to also affect the low speed flow since a sharp break occurred
in C_ (a) at 19 degrees and a CL of 2.08, indicating another disadvantage of
using a Stratford recovery.

CONCLUDING REMARKS

Based upon the results presented here, the following remarks can be
stated: (1) The present viscous analysis method (TRANDES) is suitable for
engineering estimates of transonic airfoil data; (2) The present inverse
design method accounts for the effects of weak viscous interaction in the air-
foil design process and is numerically consistent with analysis results;

(3) The complete potential flow equation coupled with a boundary layer method
can be used in a direct-inverse fashion to accurately compute the flow about
airfoils at low speeds having massive separation.
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APPENDIX
SYMBOLS

CA axial force coefficient

CD two~dimensional drag coefficient

CDF profile drag coefficient

CDw wave drag cogfficient

CL two-dimensional lifc coefficient

CM two-dimensional quarter chord moment coefficient

: CN normal force coefficient

CP pressure coefficient

c chord

M freestream Mach number

RN freestream Reynolds number

a angle of attack

ACDw wave drag coefficient correction

§* boundary layer displacement thickness

Gte trailing edge thickness

Ax length of separated region

¢ perturbation potential

Subscripts

corr corrected value

ITE trailing edge

sep separation point or region

sub,o case where flow is entirely subcritical and at angle of attack «

orig uncorrected original value

M ,a at angle of attack a and Mach number M_

62

3

I S D S T S



10.

11.

12,

13.

14,

i’ - “ .
D ¢ S vy ™ R R T I S S Y T e I P R T

REFERENCES

Carlson, L.A.: Inverse Transonic Flow Calculations using Experimental
Pressure Distributions. AIAA Journal, Vol. 12, No. 4, April 1974,
PP. 571-572.

Carlson, L.A.: Transonic Airfoil Flowfield Analysis Using Cartesian
Coordinates. NASA CR-2577, August 1975.

Carlson, L.A.: Transonic Airfoil Design Using Cartesian Coordinates,
NASA CR-2578, Ap.sil 1976.

Carlson, L.A.: Transonic Airfoil Analysis and Design Using Cartesian
Coordinates. Journal of Aircraft, Vol. 13, No. 5, May 1976,
pp. 349-356. .

Carlson, L.A.: TRANDES: A Fortran Program for Tranmsonic Airfoil
Analysis or Design. NASA CR-2821, June 1977.

Nash, J.F.; and Macdonald, A.G.J.: The Calculation of Momentum Thickness
in a Turbulent Boundary Layer at Mach Numbers up to Unity. Aero. Res.
Council, C.P. No. 963, 1967.

Carlson, L.A.: Inverse Transonic Airfoil Design Including Viscous Inter-
action. NASA CP-2001, November 1976, pp. 1387-1395.

Jameson, A.: Transonic Flow Calculations for Airfoils and Bodies of
Revolution. Grumman Aero. Report 390-71-1, December 1971.

Bauer, F.; Garabedian, P.; Korn, D.; and Jameson, A.: Supercritical
Wing Sections II. Springer-Verlag, New York, 1975.

Freuler, R.J.; and Gregorek, G.M.: An Evaluation of Four Single clement
Airfoil Analytic Methods. Advanced Technology Airfoil Research,
Volume I, NASA CP-2045, Pt. 1, 1979. (Paper 9 of this compilation.)

Stratford, B.S.: The Prediction of Separation of the Turbulent Boundary
Layer. Journal of Fluid Mechanics, Vol. 5, Part 1, January 1959,
pp . 1"160

Whitcomb, R.T.: Review of NASA Supercritical Airfoils. Proc. of the
IXth ICAS Congress, Haifa, Israel, Paper 74-10, August 1974.

Barnwell, R.W.: Two Inviscid Computational Simulations of Separated
Flow about Airfoils. AIAA Paper 76~379, July 1976.

Gross, L.W.: The Prediction of Two-Dimensional Airfoil Stall Progree-
sion. AIAA Paper 78-155, January 1978.

63

I v S VT P T YTy T




15.

16.

17,

18.

64

B T o S S W Sy P

Henderson, M.L.: A Solution to the 2-D Separated Wake Modeling
Problem and its Use to Predict CL of Arbitrary Airfoil Sections.

max
AIAA Paper 78-156, January 1978.

Maskew, B.; and Dvorak, F.A.: Investigation of Separation Models 'or
the Prediction of CL . American Helicopter Scciety Paper 77-33-01,
May 1977. max

Zumwalt, G.W.; and Nark, S.N.: An Analytical Model for Highly Separated
Flow on Airfoils at Low Speeds. Wichita State Univ. Report AR-77-2,
May 1977.

McGhee, R.J.; Beasley, "'.D.; and Somers, D.M.: Low-Speed Aerodynamic
Characteristics of a .3-Percent Thick Airfoil Section Designed for
General Aviation Applications. NASA TMX-72697, May 1977.



Y . - AR Neg™,
;
,
g
o
Case Symbol c" CD C”
Design -~ 0.250 | 0.0062] -0.043
@J Analysts 0.205 | 0.0062{ -0.043
<4
?q

s

. -0.40

S
: 8
?u
&
: KX = 20 x 106
: I —
o
' 3 1
[] 0.5 1.0
x/c .
Figure 1.- Airfoil shape and comparison of design and analysis recults
for a low 1lift airfoil.
2
' Case Symbol CL cb C"
Theory — 0.577] 0.0103]-0.146
E Expt o ¢ 0.579{ 0.0105-0.146
(]
8
?.
g
8
?
s lu_ .03 |
RN = 5.1 x 108
. g
=
)
A 0 o.ls 1o
x/¢
Figure 2.- Comparison of TRANDES analysis results with experimental data
for a GA(W)-2 airfoil. 3
65
W '_k.




-1.60

’}.20

-0.80

-0.40

ce
-0.00

0.40

0.80

Case Symbol C

Design

Analysis |O € | 0.351]0.0072 [-0.096

e | 0,359 | ov-n-- -0.097

CRAM-109-8

M= 0.74 a0
fn » 15.8 x 10°

0.1

-0.1 nose

Figure 4.- Variation of t

Figure 3.- Profile shape and comparison of d
distributions for CRAM-109-B.

shape NACA 0009

vic o <:::::;__———__——_—_‘_f_;::::::=-_

-1 .
nose shape NACA omoz $ te .022
A
yic 0 T
_—-‘—'-———‘____'
-1 nose shape NACA 0012 «"-.072

esign and analysis pressure

railing-edge thickness with nose-shape thickness
for three nose shapes.

el

T I -
A e e aa



-~

.04 4
Q© upper surface
(1 lower surface
3 .02t ]
o
£
o
-
o
$ 0 1
o
1]
o
£
2 .02 E
-
-.04 }

8 9 10 11 12
nose shape thickness parameter

Figure 5.- Variation of trailing-edge ordinates with nose-shape thickness
for upper and lower surfaces.

(=3
e
T
Case Symbol CL CD CM
Analysis  |O © | 0.555( 0.0088 |-0.140
v Design ——— | 0.552] cccmae -0.149
o CRAM-209
W, =074 as=0°
Rn = 15.8 x 106
8
" Vo
e+ Oq
e
(=1
=
T avoo
8
s
a
o
[=]
>
o
3 T T~
d .
1
L 1 1
0 0.5 1
x/c

Figure 6.~ Profile shape and comparison of design and analysis pressure
distributions for CRAM-209. 3

67

T, " T P b e P S L P I T I I P S S




3
' |SMBOL & Cq "
o} 0.0 L350  .0070 -.088
. Iy 0.5 447 .0071 -.097
. R 4+ 1.0 .51 o075 -.09
1 - X 1.5 .640  ,0085 -.099
[ m_ - 0.7 #n + 15.8005
8
sl
E
g".
8
<1
a
Q
Q
4
c
2 " "
S0 0.5 1.0
x/c
Figure 7.- Comparison of pressure distributions at four angles
of attack for CRAM-109-B.
: ;
" | sYHBOL Mach Rnx1076 € &
(o] 700 1409 .337  .0068
53 i .74 15.8 L350 .0070
3 - 10 16.4 .362  .0079
)

T.X .79 16.9  .394 0117

-0.40

8
?
a
(%]
[=]
I |
(-]
8 . -
o 0.5 1.0
a/c

Figure 8.- Comparison of pressure distributions at
four Mach numbers for CRAM-109-B.

68

P P S ey Sy . el Ty W N T P T S s




~
s
-~
A

[4 [4

L S
0 .555 .0088 -.140
5 .662 .0106 -.146
0 761 .0146 -.153
5 .85 .0

-.]_m

2 X .
o

J 0.5 1.0
x/c

Figure 9.- Comparison of pressure distributions at
four angles of attack for CRAM-209.

1.0
5
0.8 (cMrfoﬂ 1098)
ritical® rooftop
design
0.6 [ (Mrfoll 209)
Supercritical rooftop
dasign
.y
04 [
0.2 [ CRAM 109-B
= 0. 5
Ry < 15.8 x 10
I 1 b 1
¢ 0.004 0.008 0.012 0.016 0.020
%

Figure 10.- Comparison of drag pulars. ORXG%‘&L Q\U»lw '

‘-

69

B T S P P o P TP S P . . N M 3
e e ek il L T T IR



™
~

Direct Solution with
Beundary Layer Interaction

(Adirfoil specified)
Inverse Solution

C tant
pc.cml an

Separation Point
(Determined during solution)

C_ constant

N ~ poundary condition

T e

— o —— I

Z-;irect solution with Boundary Layer Interaction
(Alrfoil Specified)

Figure 1ll.- Problem formulation.

GA(W)-2
M, » 0.15 a8 Ry = 8.3 % 10°
1 \
] \
0.4 | !
1 |
S i ]
\ \
$-0.2 | ' !
B ) !
S i \ I Grid 4
] ]
0 I 1 L : 'y 'S 'S ! 1 'S e
0 200 0 200 0 200 400
Relaxation Cycles
1.0 T 1
\ |
0.8 t ] ]
L ._
0.6 | ! '
' T
v 04} | :
g Grid 2 | erid3 l
Pl r : r | Grid 4
0 [ [ I : . I [ 1 i A A
0 200 0 200 0 200 400

Relaxation Cycles

Figure 12.- Separation point and pressure behavior
during relaxation process.

70

e beil L aembed gl gl L
RS IR N RL L
e
T N S YIS ¥




Transition

8 Case Sy..001 CL
]
' e |5T | b6
. CA(M)-2
mbL A T E =018 a-12°
?mn Q‘”J 7 RN 4.3 x 20

x/e

8
@
l
a-
Q
8
=
7
g
I 4
b
' Turbulent Separation
Laminar Instability:
8 \
&1
8 : \
o 0.3 1.0

Figure 13.- Theoretical and experimental pressure-d
comparisons. Laminar turbulent case; Q = 12°.

—.

2.00

5 Case |Symbol [
Tu'“lﬂ.“lﬂn Theory|=————1 1.93
xpt. (O O 1.9
8 cA(W)-2
< o
R M_=0.15 a=18
Wowdb)x 10‘
8
o4
1
g
@
.
(=]
8
¥

0 0.5

Figure l4.- Theoretical and experimenta
comparisons. Laminar turbulent

istribution

1 pressure-distribution

<}
case; o = 187,

L e

4



.4
——alXparimant

2.0 Theo

1.6 L .

1.2

0.8

0.4 GA(W)~2
M, = 0.1%
RN = b.]ll()6
e A ————

o A A i 5 A . s

-8 [} [ ] 16 2%

a, degrear

Figure 15.- Comparison of theory and experiment for C; plotted
sgainst o for a GA(W)-2 airfoil.

RIG
72 00? ?C&‘




