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• " SUMMARY

This paper reports on the ongoing efforts to model the human operator in
the context of the task during the enroute/return phases in the ground based

control of multiple flights of remotely piloted v_hicles (RPV). This is a part

of our research aimed at investigating human performance models and at modeling

command and control systems.* .f

The approach employed here uses models that have their analytical bases in

control theory and in statistical estimation and decision theory. In

particular, it draws heavily on the models and the concepts of the optimal
control model (OCM) of the human operator. We are in "_heprocess of extending

i the OCM into a combined monitoring, decls_on, and control model (DEMON) of the

human operator by infusing Decision theoretic notions that make it suitable for
application to problems in which human control actions are infrequent and in

which monitoring and decision-making are the operator's ma4n activities. Some
results obtained with a specialized version of DEMON for the RPV control problem

i are included. /1

I. INTRODUCTION

I 1.1 Modeling Goals

We are involved in a program of research aimed at _nvestlgating human- !

_erformance models and approaches to modeling command and control systems (see
reference I). A part of our research effort concerns the study of the

,, feasibility of modeling the human operators in command and control systems via
_ control and decision theoretic models. This paper describes the salient aspects

of this part of our ongoing research effort.

_ The approach _mployed here uses models that have their analytlca] bases in

control theory and in statistical estimation and decision theory. In

oartlcular, it draw_ heavily on the models and concepts of the OCM (references
: 2-6). The modeling approach is normative, in that one determines what the human

operator ought _o do, given the system objectives and the operator,s _

* The research reported in this paper was supported by the Air Force Office of' _

i Scientific Research under contract F44620-76-C-0029. !_
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limitations, and this serves as a prediction of what well-trained, motivated

• operators will do.

In the basic OCM concern is more with the operator's continuous interact._
with the system, as demanded by closed loop analysis, than with his response to
discrete events. The development of the basic OCM and its model structure has
been dictated by th_ principal areas of its previous application, viz., vehicle
control. We shall extend the OCM by incorporatingstructures and notions that
make it suitable for application to problems in which human control actions are
infrequentand in which monitoring and decislon-makingare the operator's main
actlvities.W The expected end product is a combined monitoring, decision, and
control model for the human operator in a command and control task.

I_3 Task definition

In this paper we shall discuss our modeling effort as it relates to the
task facing the human operator during the enroutelreturn phases in the ground
based control of multiple flights of remotely piloted vehicles (RPV).

The enroutelreturn phases together with a terminal control phase
constitute an "RPV mission". An RPV-mission consists of coordinated flights of
several RPV-triads. Each triad has a strike vehicle (S), an electronics
countermeasuresvehicle (E) and a low- reconnalsancevehicle (L). Each RPV is
automatically controlled along a pre-programmed flight plan assumed optimal
with respect to terrain and defenses. The RPVs deviate from their flight plan
due to navigation system errors, position reporting errors, communication
Jamming by the enemy, equipment malfunctionsetc. These deviations are kept in
check by external monitoring and control from the ground station. This
supervision is provided by human enroute controllers,who are equipped with CRT
displays for monitoring flight path and vehicle status and with keyboards and
light pens for introducing changes in RPV fllght parameters. The ultimate
objective of the enroute controllers is to ensure that the S and E RPVs fly on
schedule over the target 15 seconds apart followed by the L RPV two minutes
later to assess damage. This time-phaslng at the target is accomplished by
tlme-phasedhandoffs at designatedhand-off coordinateson the fllght plan. The
S RPV's are handed off to the terminal controller (pilot) equipped with a
televised view from the nose of the RPV and with standard aircraft controls and
displays in order to direct each vehicle to a specific designated target,
release its payload, and hand it back to one of the enroute controllers.

Terminal phase control is achieved only if the S RPV is within a 1500'
corridor around its flight plan. It is the responsibillty of the enroute
operator to command "patches" to alter the flight plan as necessary to achieve
termlnal phase control. These patches are acceptable ("GO") only if they
satisfy constraintssuch as turning radius, available fuel, command llnk status
etc.

m This type of extension is feasible because of the basic informationprocessing
structure of the OCM. Indeed, there have already been applications of OCM to
account for visual scanning(references 7,8) and decision making(references
9,10).
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In summary, the enroute operator's task is to monitor the trajectories and

ETAs of N vehicles, to decide if the lateral deviation or ETA error of any of

these exceeds some threshold, and to correct the paths of those that deviate

excessively by issuing acceptable patches.

2. THE CLOSED LOOP NOBEL

A block diagram modeling the flow of information and the control and
- decisions encountered by the human operator (euroute operator) is shown in

Figure I.
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! Figure I. Block Diagram for RPV Monitorlng/Control Decision Problem

DCF: The DCF (Drone control facility) contains the stored flight plans
[ that drive the N subsystems RPVI, I=I,2,...,N. They are usually "optimal" with

respect to current terrain and other information. We will assume they can be
computed using state-varlable equations

i System: The N RPVs undergoing monitoring/control constitute the system. A
simple non-linear representation of their dynamic behavior will be _ssumed for

_ this analysis. Linearization will be carrled out if necessary for
; implementation of the model. The true status xi of the l-th RPV may be

different from the stored flight plans due to "disturbances" wi. The reported

status yl will be different from the true status xI due to reporting errc,', I
t. V •

_ The observed status _n will depend on the reported status y- and on t er
_ "monitoring strategy" _(to be discussed later o_).The disturbances wI and

i reporting error v_ will be modeled by suitable random processes. The y_ are the
:_ displayed variables corresponding to RPVt.
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Monitoring Strate_: Since the human must decide which RPV or which
display to look at, he needs to develop a monitoring strategy. This is
important because his estimates of the true status of each RPV (and hence his
patch decision strategy) will depend upon his monitoring strategy. To account
for the interaction of the patch decision strategy with the monitoring strategy
we formulate and solve a combined monitoring and patching decision problem

(Appendix B has the details).

Monitoring strategies may be distinguished by whether they predict

temporal (time histories of) monitoring behaviour or average monitoring
behaviour over some chosen time horizon. Most of the earller work in the

literature, including that with the OCM, falls in the latter category. The

monitoring strategy we derive will predict temporal behaviour which can be

simulated . Some of the monitoring strategies derived in the literature which
we expect to investigate in the DEMON setup are:

(i) A simple strategy involving cyclical processing of the various
RPVs(reference 11).

(ii) A strategy generalizing the Queueing Theory Sampling Hcdel (reference
12), which woul_ minimize the total cost of not looking at a particular RPV

at a given time. This strategy is mainly useful for maintaining lateral
deviations within allowable limits. The costs for errors and for the

different RPVs would be functions of the tlme-to-go and, possibly, RPV
type.

(ill) A strategy of sampling when the probability that the signal exceeds

some prescribed limit is greater than a subjective probability

threshold(references 13,14).

(iv) A strategy aimed at minimizing total estimation error(reference 7).
This strategy would be consistent with monitoring for the purpose of

minimizing lateral deviation errors.

Information Processor: This block models the processing that goes on in

the human operator to produce the current estimate of the true RPV status from

past observed status. This block is the well known control- theoretic model

consisting of a Kalman filter-predlctor which produces the maxlmum-likellhood,

least-squares estimate _ =(51 , _2., _N) of the true status x of all the
RPVs. It also produces the variance of the error in that estimate.(Note that an

estimate of the state of each RPV is maintained synchronously at all times.

Observation of a particular RPV improves the accuracy of the estimate of the

status of that RPV while uncertainty about the status of the remaining,

unobserved vehicles increases.) Given the assumptions generally made for this
kind of analysis, the information processor can thus generate the conditional

density of x based on the past observations y.

l)eoislon Strategy: This block models the process of deciding which, if

any, RPV to patch. We consider the decision process to be discrete (it takes 5

seo to get a new display). The cost of making a patch would reflect the lost
opportunity to monitor and/or patch other RPVs as well as breakl,_

radio-silence; the gain (negative cost) is the presumed reduction in error for

the "patched" vehicle. The decision strategy attempts to minimize the
(expected) cost. This block translates the best estimate i 4nto a decision to

(1) command a patch to one of the RPVs and/or (li) modify the future monitoring
• strategy.

7
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Patch Command Generator: This block generates the commanded patch. We

shall investigate a strategy based on minimizing a weighted sum of the time to
return to the desired path and the total mean-square tracking error. The
allowable paths would be constrained by the RPV turning radius limits. Random

execution errors would be added to the commanded patch to represent human
.E

errors.

Patch Cheek: Thls consists of a GO/NO GO check on the patch using

conditions on turning radius, co_and llnk status, etc. ._

3. MATIg_ATICAL DETAILS OF THE MODEL i
!

3.I System

The system under study consists of the N-RPV subsystems and may be

described by the state equations:* _ _

i R = Ax + dBu +Ew +Fz ,x(tO) : x0 (I)

where the state vector x includes the states xi of the N-RPV subsystems. Here d

is a vector of decision variables (to be explained below) and z is a non-random
input vector which will be used to model non-zero means of the random inputs w[
as well as any predetermined command inputs. In the present RPV context z will

be used to generate the flight plan for the RPVs. The vector u denotes the

patch control input to the RPVs. In partitioned form equation (I) appears as
follows:

I For the system under study, the following observations hold:

i At: Only one of the N-RPV subsystems may be controlled by the
patch-control u at any given time. A decision to control the i-th RPV subsystem

then implies the following conditions on the decision variables:

di = I , dj = 0 , J g I (3)

i A2: The N-RPV subsystems are decoupled (except for the interdependence ofthe decision variables via (3)), that is,

i

* For the purpose of discussim_ a linear model is assumed. In actual
implementation, we may use a simple non-linear model In which case (I) would

! represent a linear perturbation equation for the system about some nominal

i traJctory.
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Aij = O, Eij = 0 , FiJ = O, i_j (4)

The N-RPV subsystems may thus be described by

Ri = Aii xi + diBiu + Eiiwl + Fiizi, xi(to ) = x_ (5a)

dt = 0 or 1 (5b)

dI = I or 0 (5c)

3.2 Flight Plan (DCF)

When there is no disturbance wi and no (patch) control u then the N-RPV
subsystems follow the flight plan _i

_i = Aii _i +Fiizi , _l(to) : _ (6)

Flight plans made up of straight lines are easily generated using a piecewise

constant time function for zI and x_ as the launch point.

3.3 Patching

Any disturbance wi causes the i-th RPV to deviate from its flight plan.

Denoting these deviations by ei = xi - _i it follows from (5) and (6) that

&i : Aii ei + dlBiu + Eiiw i , el(to ) = x_-x_ (Ta)

di : 0 or 1 (?b)

dt : 1 or 0 (7c)

It is the purpose of the (patch) control u to correct any such deviation. Since
wi is an unknown random disturbance and dt is nonzero for at most a single RPV
subsystem, it is not possible to maintain ei=O for all 1. The operator thus
faces the patching problem which consists of the following three sub-problems:

(i) Monitoring decision - which RPV to monitor?

(ii) Patching decision - whether to patch the monitored RPV?
(ilL) Patch computation - what patch command to issue?

3.3.1 Honltorlng Decision

As mentioned before, the monitoring decision is intimately connected with

the patching decision because it restricts the available patching options. For
example, in the present RPV context only a monitored BPV can be patched. The

combined monitoring and patching decision problem is analyzed in appendix B.

t
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3,3.2 Patching Deetsion

A patching decision consists of deciding if the monitored RPV subsystem is
to be patched. At most one of the RPVs may be patched at a given time. One

idea of patching is to reduce deviations from the flight plan to below some
threshold values. Some facts to note are:

(i) Cross-track error of less than 250' is desired for type-S RPVs
(ii) Terminal-phase control not possible if cross track error exceeds 1500'

We assume a normative model, in which the operator attempts to optimize some

1 (subjective) measure of performance via a patching decision. This performancemeasure would depend on his understanding of the mission objectives. Some of the

objectives of the RPV mission are: Don't lose an RPV, maintain ETA, maintain
lateral position, maintain radio silence. We consider two alternative cost

functions to help in arriving at a patching decision:

Pieeewlse constant cost f_notion

C(ei) = _i if ei E e_, a threshold set

C(e i) = Ci if e i ¢ e_

Ouadratie Cost function

C(ei) = eI' K ei

The choice of e_ and K will be made based on facts of the type (i) and (ii)
noted above. The costs Ci, _i, C(ei) will be chosen to be functions of mission

time to reflect the importance of ETA. As mission time gets closer to ETA for J

RPV-i, Ci will be made larger and/or e$ will be shrunk to reflect "urgency".

The optimal patch decision will be chosen to minimize the expected cost using
subjective probabilities computed with the help of the information processor.
The details are in Appendix B.

3.3.3 Patch Control Computation and Ceneration

Once a decision is made to patch a particular RPV-subsystem, it is

necessary to compute and execute the patch control. The purpose of a patch

control is to guide the aircraft from its initial location and heading to
intercept and fly along the planned flight path. Various criteria may be

I considered to compute the optimal patch control, for example, a strategy that
minimizes the time to return to the planned flight path (see appendix A and also
reference 15).

)

, I

, _. INPL_f&TION OF THE NODgL

DEMON, the combined monitoring, decision, and control model of the human
operator is being implemented in FORTRAN. The program ha_ a modular structure

to facilitate ease of adding further modules to include alternative monitoring,
control, and decision strategies that may appear promising at a future date.

To accomodate the random aspects of the problem, the program will basically
have a Monte-Carlo simulation character. The specialized version of DEMON for
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the RPV problem will produce as outputs the "true" time-histories Of the RPV
flights, the sequence of monitoring and patching decisions made, and the
resulting performance.

The important aspects of the simulation proaram implementing Demon are

! INI?IM.IZA?I_
Rlk/$ _|0 F_ {JSIANC_INe

Figure 2. Flow Diagram for the aimulation program Implementing DEHON

shown in the flow dtngram in elgure 2. There are, as tndleat_d, nine major
modules Ln the program. Modules q, 5 and 7 are of special interest because they
d( not arise in the usual manual control models. The theory behind these
modules is developed in Appendices A and 9. As Indicated in Appendix A, the
patch oomand generator could involve a non-linear control law.

5. J3_Hlq_

In order to test some oF the model/ms oonoept8 and to debul the DIHOH i
proaram we oonsider a simple example which captures the else,toe oF the RFV
mtssion while dLsoardLn_ the slaty Kr/tty details, The lateral mot/on oF the

, RPVs about their tliiht plan is represented by random walk p_ooeseel over the
assumed mtsston duration of' _00 tra=es (_he display r,rame update rate Ls every S

[
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, seconds). Each RPV is observed via a single lateral deviation display and

controlled via a constant velocity comand. The permissible patch back to the

flight plan is constrained by the maximum allowable speed which represents the

turning radius constraint. The patch control strategy is to use maximum

allowable speed adjusted by a "safety factor" which depends on the "NO 60"
, patches issued previously by the operator for that RPV.

Some preliminary results have been obtained using DEMON on the above
simplified RPV mission. The flavour of the results we obtained is indicated in

Figure 3 which shows the combined effect of ETA dependent (shrinking) threshold

and different RPV priority on the simulated simple RPV mission. As mission time

increases RPV monitoring frequency increases . But there comes a time when

monitoring resources are not adequate to satisfy the increasing needs of each of
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Figure 3. Effect of Shrinking Threshold and RPV Priority

the RPVs and then the highest priority RPV demands most of the attention it can

get while the lowest priority RPV gets no attention from the operator.

r _ COHCLUSION

We have developed DEMON, a combined monitoring, decision and control model

for the human operator in the context of the enroute phase of an RPV mission.

Since the monitoring strategy derived from DEMON is temporal it has obvious

applicat!on to developing instrument scanning strategy for flight control and

I management. We have structured the model to have wider applicability (than the
problems addressed by the basic OCH or the RPV control problem) and expect it to

i be useful to model human operators whose control actions may be infrequent but
i whose monitoring and declson making may be the primary activities. We

i _ntlclpate testing and refining the DEMON model furthur using an existing data
base for the RPV control problem(reference 16).
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7. APPEMlYXXA: PATCHCONTROLSTRA_

7.1 System Dynamics and Patch Computation

Xn Section S, the H-RPV system dynamics were considered in general terms.
Here, we shall use a simple model for the RPV-subsystem dynamics and derive a
specific patch control strategy. Considering only the projected motion An the
horizontal plane we shall re-write the normalized equations of motion derived in

Figure q. Choice of Co-ordinates for System Equation

reference 15, using the state variables(see Figure 4) Xl = ground-speed error,
x2 - cross-track error, x S = velocity component along track, xq -- heading
relative to track:

_1 " cos xq - 1 , Xl(O) given, Xl(T) free

i 2 = sin x_ , x2(O) given, x2(T) =0

_3 =u sin xq , x3(O) given, x3(T) =1

i_ =-U , x_(O) given, xq(T) =0

T £ree

x_ + x_ = 1

Once a decision is made to patch a particular RPV-subsystem, it is
necessary to compute and execute the patch control. The purpose of a patch
control Is to guide the aircraft from Its initial location and heading to
intercept and fly along the planned flight path. Various criteria may be
considered to compute the optimal patch control. Many criteria may be written
An the form,

= �1/2K2--/3 dt �KSOf'-"dtJ

which is a weighted sum of the square of the ground speed error, integral square
of the crosz-traok deviation, and time to return to the planned flight pr-th.We
shall only solve the special problem of minimum time to return to the flight
path by choosing the weights to be KI=O=K2 and K3:1.

6.56
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7.2 Ktntmum Time Patch Strategy

Using the necesssary conditions for minimum time it is easy to see that the
optimal control is Bang-Bang except for posslble singular arcs. It can furthur
be shown that the singular control is identically zero.

-_ ,2 -!

I

ll,i 7.
Lllfi Ten

i-"l Ih@lT_n

Figure 5, Minimum Time Patch Control Strategy

The computed mlnlmum-tlme patching strategy Is indicated in Figure 5. For

Ii example, all points in state space that can be brought to the planned flight

path using a single left turn u-1 are characterized by the equation x2(O) = cos
xq(O)-I .

The minimum time required for the patch will be checked against the
scheduled hand-off times for the given RPV to determine if the computed patch
should be executed. Velocity patches to correct for ETA errors with due regard

to fuel constraints may be included by a simple extension of the above problem(for example, append to the minimum ti=e patch a velocity patch to minimize _TA
_ errors),

_ The operator does not observe the st&tes x directly, and will base his

_! control actions instead on the best estimates .of these states avallable to hlm,. based on all his observations. This disjoining of estimation and control Is
Justified by the "separation principle" (see reference 17).

_ 8. APPKND!I B: PATCH DKCI3IOll SiltllT._i

. 8.1 Introductionin this appendix we shall formulate and solve thc combined monitoring and

_ patching deoison problem encountered by the enroute operator in the RPV mission.
_. As stated in section 3, the information processor produces the current estimate

_i_ x" of the true statu_ x of al_. the RPVs at any time. It also produces the
variance of the error in that estimate, The information available for making
monitoring and patchlng decisions may be summarized in terms of the posterior

_i distribution conditioned on all observations based on past monitoring and
of x i

patching decisions and control. Under the usua_ assumptions, this posteriordistribution re, xl Is N(_I xii).

:\
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l
t Let x_ denote a threshold set associated with the i-th RPV, that is, xtex_ is a desirable condition. Let Hi denote the hypothesis that xi_ x_ and pt

be the probability that Hi is true. pt is eastl_ calculated using the available
information on the posterior distribution of x_:

pi : I - N(iI , Xli) dxi
=_nitoring the i-th RPV results in a tighter distribution for xi around its mean

xi because it reduces the uncertaintyXli associatedwith _i. Patching the i-th
RPV requires monitoring as well. The effects of patching are: first, to

• correct the error eI which mlght have 'wandered off' From zero due to
disturbances, by assuring that x i e x$; and second, to provide a tighter
distribution of x i around its mean _t .-

_ To Formulate and solve the combined monitoring and patching decision

problem, we shall assume that Ct is the cost if Hi is true. Recall that Hi has j
a (subjective) probability pioF being true. Just as Hl, pi, Ci were defined in
relation to the set x_, let hi, pl, _i be defined in relation to the set _, the
complement of x_. We shall use minimum expected cost EC(de) as the criterion
for selecting the best monitoring and patching decision de.

Lot dtj denote a decision to monitor RPV-i and patch RPV-J in the combined
monitoring knd patching decision problem. Since a patch can be done only on a
monitored RPV, there are only 2N+1 available decisions. They are:

(t) Do nothing decision do0, that is, monitor no RPV and patch no RPV.e

(li) N pure monltori_ (no patching) decisions djo, J=I,2,..,N.
;, (tit) _ patching (and monitoring) decisions djj, J=I,2,...,N.

Let PlJk denote the Probability that the hypothesis Hi is true when the
decision is-djk. Because the RPV subsystems are non-interactive, it Follows
that the probabilities associated with RPV-t when some other RPV is monitored
and/or patched is same as that associated with RPV-t when no RPV is monitored.
That is,

PiO0 = Pljk any J_i, 1=1,2,...,N; k=J or 0

Thus, there are only 3B distinct probabilities to be computed
! (i) H probabilities PIO0 associated with do-nothing decision do0

(11) N probabilities PttO associated with pure monitoring decision dto
(ttl)B probabilities Pitt associated with patching decision dtl

! Let (PP)t denote the probability that the patch decision dll "takes", that is,
i results in x t x_, and let TIj denote the cost oF implementing decision dtj.

The costs TtJ will be chosen to-be i_ncttons of mission time to reflect the
importance of ETA. As mission tJme gets closer to ETA For RPV-I, TIj wlll be
made larger and/or x_ will be shrunk to reflect "urgency".

e This could correspond to performing some other task such us communication.
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The combined monitoring and patching decision _-oblem is described in terms
of a decision-tree diagram in Figure 5. m The ac..ual cost of a particular

Figure 6. Decision Tree Diagram for Combined Honltortng and Patching

deolslon dspends on the path chosen to traverse the tree from level 1 to level
5. The exact path from level 1 to level 5 for the N-_PVs are determined both by
the decision maker (the human operator) and by Nature (the random elements in
the problem) . Since a decision has to be made at level 1 before Nature has

u For reasons similar to the one we stated for combining the monitorl.g and
patching decision problem, one might argue that the decision problem over the
rest of the mission duration must b• considered by the operator at any decision
1natant during the mission. Ne shall not do this because: first, the analysis
for this case Is no different from the one we pre3ent here - only the
expressions are messier; and second, the actual computations of the decisions
vould become infeasible .

': 659
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taken its course at the monitoring level 3 and at the patching level q , the
decision maker can only evaluate his 2N+1 alternative decisions in ten:._ of
their expected costs. This h_ can do as follows: The expected cost of the
do-nothing decision dO0 is

C(doo) (ct Pioo+  iO0)

Expected cost of pure monitoring decision djo is

EC(djo) = EC(doo)-(CjPjOO*_JPjO0)* CjPJJO*_JPJJO ) �TjO

Expected cost of a patching decision djj is,

gC(djo ) = EC(doo).(CjpJOO._JPJOO).(CjPjjj+_j_jjj_-(PP P Tjj)

The optimal decision dw is the one which results in maxtNum opportunity gain, "°
that is_ m

d| = arg min ( EC(do0, EC(dmo), EC(dkk) )

where

m : ars .axj ((cjpjo0+_J)J0O)-(cjPjjo+_j)jJo)-TjO )

k = are mxj ((Cj)JOO_j)JOO)+(CjPjjj ()PjPjjj_Cj-_j)-Tjj))

Consider a speolallzation of the above decision probie_ where the
probabilitiesPl.lkare assumed to be Independentof the decisions dlk (that Is,
PtJk : PI ) , t_e costs _t and Ttj are a)l zero, and the pa_oh success
probabilities (PP)t=I for each subsystem RPV. Then the optlmal decision is

d* = djj
where

J = are maxI (Pi Ci)

This is the result obtained by Carbonell(reference 12).
An implicit assumption made In the computation of expected cost in the

combined monitoring and _atchlng decision problem ts that the costs are constant
over the entire se_;s _T and x_. This assumption is easily droppe_ when
non-constant cost functions are desired, e.g.,

C(ei) = ei' M •i

In such a case, PIJMC@ In the above analysis will be replaced by an appropriate
Integral which would yield PljkCl as a function of x t and Xil and appears
amenable for computations.

m The notation arg.'min, implies de=do0 or dao or dkk dependinl on which or the
three values EC(dot!), EC(dmo), EC(dkk) Is the smallest. Here dmo is the best
monitortn! declsio_ and dkk is the best patching decision.

660
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We close this appendix, '4ith an example of a piecewise-constant cost

function that appears meaningful f_r the N-RPV system under study. Recall from
appendix A that the first two components of xi are:

+ x_ = ground speed error (along track)

x_ -- cross-track error

One choice for the piecewise-constant cost function is:

C(ei) --I if ',x I > x_T--250
--O if Ix_l_ 250
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