EARTH-APPROACHING ASTEROIDS: POPULATIONS, ORIGIN, AND COMPOSITIONAL TYPES

E. M. SHOEMAKER and E. F. HELIN
Division of Geological and Planetary Sciences
Califormia Institute of Technology
Pasadena, Califormia $92 l 25$

Earth-approaching asteroids are small bodies of stellar appearance which pass close to the orbit of the Earth. Some of these asteroids are the easiest bodies to reach by spacecraft, beyond the Moon. Physical observations suggest they have a broad range of composition and that at least a few may be the most primitive solid bodies that are readily accessible for detailed study. Hence they are of special interest for exploration. At least two different kinds of bodies probably are represented among the Earth-approaching asteroids: (1) fragments of main belt asteroids, and (2) extinct comet nuclei. The number of Mars-crossing asteroids appears to be sufficient to sustain no more than 20^{α} of the Earth-crossing asteroid population in steady-state, and the ratio of the number of Earthcrossers to Amor asteroids ($1.02 \mathrm{AL}<\mathrm{q} \leq 1.30 \mathrm{AU}$) appears to be an order of magnitude higher than that expected, if all near-Earth objects were derived from Mars-crossers. Hence, although Amor asteroids are approximately in equilibrium with and may te derived mainly from shallower Mars-crossers, the Earth-crossing asteroids are inferred to be primarily of different origin. The supply of extinct short period comets seems to be adequate to sustain the population of Earth-crossers, but little is known about the ultimate state of degassed comet nuclei.

Precise physical observations have been made on somewhat more than a dozen near-Earth asteroids. Observed Amors occupy a broad region in the $U-B$ versus $B-V$ color donain, whereas the observed Earthcrossers have a more restricted range of color. The UBV fields of observed Amors and Earth-crossers exhibit moderate overlap. It is commonly believed that extinct cometary nuclei might resemble C-type asteroids, but no more than two C-type objects have been discovered so far, among the near-Earth objects. If Earth-crossers are dominantly of cometary origin, it appears likely that there are unusually strong observational selection effects which decrease the chances of finding C-type objects or that the expectations concerning the color and other properties of extinct comets are in error.

INTRODUCTION

The term Earth-approaching asteroid is used here to Jesignate small bodies of stellar appearance which are on orbits that allow them to pass rear 1 AU. A few of the known Earth-approaching asteroids are the easiest bodies to :each by spacecraft, beyond the Moon. Physical observations of these objects sugqest that they have a broad range of composition; some probably are the most primitive solid objects that are readily accessible for detailed study.

Besicies their intrinsic scientific interest, the Earth-approaching asteroids are especially attractive for exploration because of their very small size and because of

Estimates of the populations of given classes of asteroids can be obtained by the following method. The magnitude-frequericy distribution of each class of planet-crossi:g asteroids is assumed to be of the form,

$$
\begin{equation*}
N_{v}=k e^{b v} \tag{1}
\end{equation*}
$$

where N_{v} is the cumulative number of asteroids equal in absolute magnitude to v or brighter, v is the absolute visual magnitude, $v(1,0)$, and K and b are constants to be determined by observation. The magnitude-frequency distributions of bcth main belt asteroids and inactive comet nuclei follow this simple exponential law closely; the size-frequency distributions of large craters on the Moon, Mars, and Mercury indicate that planet-crossing asteroids must also have a magnitude distribution of this :orm. The coefficient in the expo"ent, D, is observed . be close to l for all classes of small bodies.

The constant K in Equation (1) is determined from the systematic surveys by means of the following equation.

$$
\begin{equation*}
K=\frac{P_{y}}{u^{\frac{1}{2}} \int_{v_{\min }}^{v_{\max }} b^{r}(v) r(v)!(v) e^{b v} d v} \tag{2}
\end{equation*}
$$

where P_{v} is the cumulative number of asteroids of a oiven orbital class observed in a rystemaicic survey, U is the square degrees of sky photographed, and $F(v)$ is a function reiated to the area searched in each orbit plane, for objects of a giver v, when one of the modes lies at opposition; $i(v)$ is a function related to the mean time spent in the search area by asteruids of a given v, assuming random distribution of the arguments of perihelion; and $l(v)$ is a function related to the mean relative size of the search area, for objects of a given v, with randonly distributed longitudes of the node. A model of the phucomet-ic phase function and information on the frequency distribu:iots of perihelion and aphelion for each class of objects are required to solve $F(v)$. Kncwledge of frequency distributions of the orbitai \in lements a, e, and i for each class of objects is required to solve the functions $T(v)$ and $I(v)$. The required empirical information is obtained from the sample of known objects in each ortital class.

The lower limit of integration in Equation (2), $v_{\text {min }}$, is set by the single brightest object given b. Equation (1) and is found by iterative solution for K. The upper linit of integration, vmax, is controlled by the effective magnitude threshold of detecticn for fast-moving objects for a given telescope and photographic emulsion. As vmax is also dependent on the care with ..hich plates are searched for moving objects, it must be determined retrospectively from the objacts of highest magnitude discovered in a given survey. The values of k derived from Equation (2) are highiy dependent upon the independently estimated valacs of D ; the resulting values of N_{v} at $\mathrm{v}=18$, however, are relatively insensitive to plausible uncertainites in b.

Estimate, are given in Table ? for the populations of the different classes of planetcrossing asteroids to absolute visual magnitude 18 (eouivalent to about 0.7 to 1.5 km diameter). Errors listed in the table are \pm one standard deviation and are derived solely from the statistical uncertainties associated with the small number or discoveries. The next largest sources of formal error ife in the detemination of $v_{\text {max }}$ and in the estimation of b. All other formal errors are small by comparison.

Fig. 1. Surfaces of secular resonance in the asteroid belt (after Williams, 1969) and position of Mars-crossing asteroids discovered in the PCA survey.

A significant number of the Amors, perhaps even the majority (Wetherill, personal communication, 1978) may be of cometary origin. The most likely extinct comet among the known objects is Betulia, which has a maximum Q of 3.9 AU and a present orbital inclination of 52°. Its Jacobi constant with respect to Jupiter suggests it may be a cometary object (Kresak, 1977). It should be noted, however, that Betulia, at times, crosses not only the orbits of Mars and the Earth, but also the orbit of Venus. By close encounter with Mars, Earth, or Venus the Jacobi conetant with respect to Jupiter can change abruptly, and the orbit of Betulia can become less or more comet-like with time.

Earth-crossing asteroids, in contrast to the Amors, are clearly not in dynamical equilibrium with shallow Hars-crossers nor are they in direct equilibrium with the Amors. The typical lifetime of Eveth-crossers was reported as $0.5, ~ 10^{\circ} \mathrm{yr}$. by Wetherill and Williams (1968) and as $20.2 \times 10^{8} \mathrm{yr}$ by Wetherill (1976). If Earth-crossers were derived entirely from shallow Mars-crossers and were in equilibrium with fars-crossers, the" should be about $50-100$ times less numerous than Mars-crossers and abou* 10 times less numerous than Amors. The figures in Table 2 show that this is not the case. There are too many Earth-crossing asteroids.

The excess of Earth-crossing asteroids can be seen very simply in another way. If all Earth-crossers were in dynamical equilibrium with Amors, then, with decreasing q. there would be a relatively rapid, order of magnitude drop in the number of asteroids near the threshold of F. h-crossing. The reason for this is that the probatility of collision or ejection of an Amar from the solar system as a consequence of encounters with Mars is much smaller than the probability of collision or ejection of an Earthcrosser as a consequence of encounters with the Earth. This is so primarily because the Earth is an order of magnitude more massive, and, therefore, gravitationally an order of magnitude more active than Mars. Contrary to expectation, however, the number of Amors and Earth-crossing asteroids is nearly uniformly distributed as a function of q There is roughly an equal population of Amors, with q between 1.0 and 1.3 AU , and of Earthcrossers with q between 0.7 and 1.0 AU. Among the discovered objects there are 20 Anors with reasonably well defined orbits in the range $1.0 \mathrm{AU}, \mathrm{Q}, 1.3 \mathrm{AU}$ and there are 14 Earth-crossers with 0.7 AU • q : 1.0 AU .

The distribution of asteroids by q in the vicinity of 1 AU appears to be explicable only if the majority of Earth-crossers have been injected more or less directly into Earth-crossing orbits from some source other than Mars-crossers. Progressive evolution of typical Mars-crossers into Earth-crossers may account for, at most. 10-20: of the

Fig. 3. Frequency distribution of semimajor axes of Earth-crossing asteroids. Names of asteroids for which UBV observations have been made are shown with boxes.
the objects of small semimajor axis, where the S-type object Geographos and possible Stype 1976AA are, indeed, found. A larger fraction of Earth-crossers of large semimajor axis (right-hand side of Figure 3), on the other hand, probably are of cometary origin.

It should be borne in mind that comet nuclei may have much greater spectrophotometric diversity than is commonly supposed. One particular mechanism by which diversity might arise is suggested by the orbital characteristics of Icarus and 1976UA, two objects which have nearly the same UBV color and which have extreme U-B values. At perihelion, Icarus approaches within 0.18 AU of the surface of the Sun. At this distance the peak temperature of a blackbody of low thermal inertia and an albedo of the order of 0.2 or less be about $600^{\circ} \mathrm{C}$. Gibson (1976) has shown tiat about 50% of the carbon is lost from the carbonaceous meteorite Murchison by heating $0600^{\circ} \mathrm{C}$ for three days. At $900^{\circ} \mathrm{C}$ (corresponding to a periholion distance of about C.I AU) 95% of the carbon is driven off. Thus, the albedo and color of Icarus may have been altered significantly by repeated close approach to the Sun, especially if its perihelion distance were once somewhat less than it is at present. It is conceivable that Icarus was once a C-type object. 1976UA presently grazes the orbit of Mercury at perihelion ($q=0.464$). At this distance, maximum temperatures are of the order of $270^{\circ} \mathrm{C}$, which probably are too low to expel much carbon from the surface. It is entirely possible, however, that the perinelion distance of 1976UA was also at one time much smaller.

ACKNOWLEDGMENTS

We are indebted to Jaines R. Arfiuld and George W. Wetherill for critical review of this paper. Both Wetherill and James G. Williams have very graciously shared with us the results of unpublished calculations concerning the effects of the secular resonances. We also wish to thank Donald E. Brownlee for stimulating discussion and helpful suggestions concerning the effects of insolation on carbonaceous objects.

REFERENCES

Brownlee, D. E., Tomandl, D. A., Blanchard, M. B., Ferry, G. V., and Kyte, G. (1976). An atlas of extraterrestrial particles collected with NASA U-2 aircraft, 1974-1976. NASA TMX-73152, 48 pp.
Brownlee, D. E., Tomandl, D. A., and Olszewski, E. (1977). Interplanetary dust; A new source of extraterrestrial material for laboratory stidies. Proc. 8th Lunar Sci. Conf., 149-160.
Chapman, C. R., Morrison, D., and Zellner, B. (1975). Surface properties of astercids: A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus 25, 104-130.
Degewij, J. (1977). 1977VA. IAU Circ. No. 3143.
Degewij, J. (1978). Comet Arend-Rigaux: Not dead yet. Sky and Telescope 55, 14.
Degewij, J., Gradie, J. C., and Zellner, B. (1977). UBV photometry of distant asteroids and faint satellites (abstract). Bull. Amer. Astron. Soc. 9, 503.
Degewij, J., Gradie, J. C., and Zellner, B. (1978). Minor planets and related objects. XXV. Additional UBV photometry of faint asteroids. Submitted to Astron. . ${ }^{\prime}$.

Dohnanyi, J. S. (1971). Fragmentation and distribution of asteroids. In Physical Studies of Hinor Planets (T. Gehrels, ed.), pp. 263-295. NASA SP-267.
Gibson, E. K., Jr. (1976). Volatilization studies on the Murchison carbonaceous chondrite (abstract). Meteoritics 11, 286-287.
Gradie, J. C. (1976). Physical observations of object 1976AA (abstract). Bull. Amer. Astron. Soc. 8, 458
Kresak, L. (1977). Asteroid versus comet discrimination from orbital Jata. In Comets, Asteroids, Meteorites (A. H. Delsemme, ed.), pp. 313-321. University of Toledo.
Lebofsky, L. A., Veeder, G. I., Lebotsky, M. J., and Matson, D. L. (1978). Visual and radiometric photometry of 1580 Betulia. Icarus. In press.
Marsden, B. G. (1971). Evolution of comets into asteroids? In Physical Studies of Minor Planets (T. Gehrels, ed.), pp. 413-421. NASA SP-267.
Morrison, D. (1977). Asteroid sizes and albedos. Icarus 31, 185-220.
Opik, E. J. (1963). Survival of comet nuclei and the asteroids. Adv. Astron. Astrophys. 2, 219-262.
Rajan, R. S., Brownlee, D. E., Tomandl, D. A., Hodge, P. W., Farrar. H., IV., and Britten, R. A. (1977). Detection of 4 He in stratospheric particles gives evidence of extraterrestrial origin. Nature 267, 133-134.
Scholl, H., and Froeschle, C. (1977). The Kirkwood gaps as an asteroidal source of meteorites. In Comets, Asteroids, Meteorites (A. H. Delsemme, ed.), pp. 293-295. University of Toledo.
Sekanina, Z. (1971). A core-mantle model for cometary nuclei and asteroids of possible cometary origin. In Physical Studies of Minor Planets (T. Gehrels, ed.), pp. 423-428. NASA SP-267.
Sekanina, 2. (1972). A model for the nucleus of Encke's comet. In The Motion, Evolution of Orbits, and Origin of Comets (G. A. Chebotarev and I. Kazimirchak-Polonskaya, eds.), pp. 301-307. International Astron. Inion Symposium No. 45. D. Reidel, Dordrecht, Holland.
Shoemaker, E. M. (1977). Astronomically observable crater-foming projectiles. In Impact and Explosion Cratering, Planetary and Terrtstrial Implications (D. J. Roddy, R. 0. Pepin, and R. B. Merrill, eds.), pp. 617-o28. Pergamon Press, New York.
Tedesco, E. F., Drummond, J. D., III., Candy, B., Birch, P., Nikoloff, I., and Zeliner, B. (1978). The Amor asteroia Betulia: An unusual asteroid with an extraordinary lightcurve. Icarus. In press.
Wetherill, G. W. (1976). Where do the meteorites come from? A reevaluation of the Earthcrossing Apollo objects as sources of chondritic meteorites. Geochim. Cosmochim. Acta 40, 1297-1317.
Wetherill, G. W. (1977). Fragmentation of asteroids and delivery of fragments to Earth. In Cometr, Asteroids, Meteorites (A. H. Delsemme, ed.), pp. 283-291. University of Toledo.
Wetherill, G. W., and Williams, J. G. (1968). Evaluation of Apollo asternio's as sources of stune meteorites. J. Geophys. Res. 73, 635-648.

Williams, J. G. (1969). Secular perturbations in the solar system. Ph.D. dissertation, University of California at Los Angeles. 270 pp.
Williams, J. G. (197l). Proper elements, families, and belt boundaries. In Physical Studies of Minor Planets (T. Gehrels, ed.), pp. 177-1'1. NASA SP-267.
Williams, J. G. (1973a). Meteorites from the asteroids belt? (abstract). EOS 54, 233. Williams, J. G. (1973b). Secular resonances (abstract). Bull. Amer. Astron. Soc. 5, 363. Zellner, B. (1978). Geography of the asteroid belt. In this volume.
Zellner, B., and Bowell, E. (1977). Asteroid compositional types and their distributions. In Comets, Asteroichs, Meteorites (A. H. Delsemme, ed), pp. 185-197. University of Toledo.
Zimmernan, P. D., and Wetherill, G. W. (1973). Astersidal source of meteorites. Science 182, 51-53.

DISCUSSION

ANDERS: Is it fair to compare the numbers of Apollos and Amors? Shouldn't one instead compare masses of the two populations, because fragmentation goes on all the time? The number doesn't stay constant during the time the Mars-crosser supposedly evolved to an Apollo. More likely one Mars-crosser gives several Apollos just by fragmentation.
SHOEMAKER: The numbers are all given to the same magnitude (and hence size) limit, and the magnitude-frequency distribution observed for main belt asteroids was used in calculating the number of $V(1,0 j=18$. it appears that this magnitude-frequency distribution is approximately an equilibrium fragmentation distribution. Hence the effect of fragmentation of Mars-crossers is taken into account.
ANDERS: Then you are integrating to a larger size limit for the Mars-crossers than for the Apollos.
WETHERTLL: It is not necessary to consider fragmentation, as the v_{6} resonance has the effect of rapidly equilibrating the Apollo and Amor populations. They should have nearly the same steady-state size distributions, except for objects like 1036 which is in an unusually stable orbit for an Amor. In addition to considering the Amor/ Apollo ratio, it is also possible to calculate the rate at which Apollos and Amors are produced from the large main belt asteroids. I think you could make 10% of them without too much trouble. But to make more than half seems very difficult.
ANDERS: The paradox is not as great as it was ten yeirs ago. You should try to apply a correction for fragmentation and see how much of a discrepancy remains. I think your factor of ten will be reduced by fragmentation.
WETHERILL: I think the difference between ten years ago and now is that we have identified new mechanisms to transport objects from the main belt to Earth-approaching orbits. This decreases the discrepancy to somethiny like a factor of ten rather than a factor of 100 . On the other hand, I think the factor of ten is much better established; it's a much more sophisticated number.
ANDERS: Part of the problem is that, at the moment, the statistics on Mars-crossers rest on four objects.
SHOEMAKER: There are two estimates in Table 2. One is based upon the four discovered objects, the other on a larger set of arguments. I think the estimates are reasonably congruent, and neither is likely to be off by more than a factor of ten. If Apollos were really derived by a process which generally involves an evolution of Marscrossers into Amors, although not in every case, then you would e..pect to see a much la;ger number of Amors in proportion to the Apollos.
NIEHCLF: There could be another explanation for the discrepancy, and that is when an object vecomes an Apollo, its lifetime goes up for some yet unexplained reason.
ANDERS: If the dynamicists are correct, and I think they are, there is no gimmick except a very odd resonance occasionally.
WETHERILL: Apollos are not in that kind of resonance.
SHOEMAKER: You might invoke some resonances like that found for 1685 Toro, which would slightiy extend the lifetimes.

