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WIND MODELS FOR FLIGHT SIMULATOR CERTIFICATION OF
LANDING AND APPROACH GUIDANCE AND
CONTROL SYSTEMS

Dwight R. Schaeffer

FOREWORD

This paper is taken from Department of Transportation
Report No. FAA-RD-74-206, December 1974, having the same
title, authored by Neal M. Barr, Dagfinn Gangsaas, and
Dwight R. Schaeffer. Substantiation of information pre-
sented is provided in this report.
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INTRODUCTION

This paper reports an investigation performed to pro-
vide the information for improved accuracy of low-altitude
wind and turbulence models to be used for the certification
by flight simulation of approach and landing guidance and
control systems.

Historically, the structural designers were first to
recognize the requirement for a mathematical model and
initially used only the discrete 1l-cosine gust for the design
limit case. As airplanes became lighter and more flexible,
fatigue life became more critical and the need for a more
accurate description became greater. This led to the appli-
cation of the statistical power spectra. Attempts to fit a
mathematical model to measured data began seriously in the
late 1950s and has progressed to the point of "‘which model
do I use?"

Automatic controls were used initially to provide modest
improvements of airplane stability and to provide guidance
during noncritical flight phases (altitude, attitude, and
heading hold). Automatic control authority tended to be low.
Hence, the interaction of the control system with wind and
turbulence was unimportant; It was not a concern for flight
safety,

For typical flight controls analysis, such as handling
qualities, ride qualities, and controllability, concern was
for a qualitative, rather than quantitative, answer; that is,
does a parameter variation (in the aircraft or control
system) improve or degrade the particular output? A forced
change i1n this philosophy occurred when the autoland systems
began to appear in the early 1960s. The dependence upon an
automatic landing system rather than the highly adaptive
pilot required analytic proof that the landing would be
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performed with adequate safety. The problem is now quanti-
tative rather than qualitative and a gross error in the
approach wind model could be very serious; parameters of the
wind model have effects comparable to parameters of the air-
craft and guidance system. Certification of autoland systems
IS dependent upon demonstration of very low orders or risk
of fatal accidents. Obtaining adequate statistical data to
validate remote probabilities of fatal accidents is
impractical without heavy reliance upon simulation.

The search for a low-altitude wind model, providing a
better representation of low-altitude wind phenomena than
provided by existing certification wind models, was princi-
pally concerned with the region from the surface to about
1000 feet. The model for this altitude region tends to be
the most general and complex due to the strong dependence of
wind characteristics upon altitude and surface terrain and
the orientation dependence of turbulence characteristics.
Additionally, the landing approach task is the most difficult
and critical task for which relatively small changes of wind
characteristics may result in large changes In maneuver
performance. The low airspeed during approach tends to couple
vertical motion with longitudinal wind components and longi-
tudinal motion with vertical wind components, increases the
nonlinearity of aircraft responses to winds, and Increases
the significance of the distribution of winds over the air-
craft. Hence, the aerodynamic model incorporating the effects
of winds tends also to be most general and complex.

The main objective of the investigation was to define a
model suitable for certification. A model for design must be
simplified to reduce the wind model parameters to enable
evaluation of a large number of aircraft and control system
design parameters.
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The studies were concerned with the "average' airport,
although 1t iIs recognized that the "‘average' airport may not
exist. It is both impractical and undesirable to represent
unique characteristics of any particular airport for the
certification of an aircraft that will land at many different
alrports. "‘Average' airport is used in regard to possible
unique operating procedures and terrain features and does not
imply waverage™ winds at the "‘average' airport.

Consideration is not for the wind alone, but for air-
craft responses In wind environments, so the Investigation
included the representation of aerodynamic forces due to
winds and a brief analysis of the effects of winds on air-
craft motion.

No original work on the description of low-altitude
winds iIs intended. The wind model s a combination of the
work of others. The structure of the model has been
parameterized to enable incorporation of new material and
updating of parts without discarding the entire model.

For virtually every aspect of low-altitude winds there
are conflicting descriptions. Some descriptions are based
on undocumented data collection, analysis techniques, and
test conditions. Some general considerations used for
selecting one among competition descriptions are:

e Weight of evidence

e Physical and intuitive reasonableness

e Substantiation

e Existing specifications, when the choice appears
arbitrary

e Compatibility with the description of other
parameters

e Validity of the assumptions
Avoidance of descriptions providing unreasonable
discontinuities

191



Analytic descriptions of wind phenomena are presented.
Where possible, a deterministic description is preferred in
the presumption that all physical processes have cause-and-
effect relationships. When relationships are too complex to
permit quantitative understanding or when deterministic
descriptions are impractical, probabilistic descriptions are
used, with the statistical parameters defined deterministically
as much as possible.

For those parameters defying analytic description,
probabilistic descriptions have been sought. Probabilistic
descriptions were first sought from the literature. For
those aspects not well defined by the literature, descriptions
have been sought by reducing and evaluating tower data.

A brief analysis of the effects of winds on aircraft
motion has been conducted to gain an appreciation of what
needs to be modeled. The axes transformations required
between wind and turbulence components in their inherent axis
system and iIn the airplane®s axis system are shown. Tech-
niques of providing a random process on computers for the
representation of turbulence are presented. A simulation
model 1s presented that combines all the foregoing components.
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NOMENCLATURE

Wing span

Specific heat at "constantpressure
Mean chord

Atmospheric boundary layer thickness
Exponential function

Coriolis parameter, T = 2w, sin )

Contribution of nonneutral atmospheric
stability to the mean wind

Fundamental longitudinal and transverse
correlation functions for i1sotropic
turbulence, respectively

Filters for producing u, v, and w
components of turbulence

Acceleration due to gravity

Contribution of atmospheric stability
to mean wind caused by variation of
shear stress

Heat flux, positive upward
Altitude
Reference altitude

Altitude above which turbulence is
i1sotropic

von Karman constant, K = 0.4

Longitudinal i1sotropic turbulence
integral scale
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Integral scales for horizontal and
vertical turbulence components

Longitudinal and transverse integral
scales for turbulence components
parallel and normal to the displacement
vector, respectively

Integral scales corresponding to the
longitudinal, transverse, and vertical
turbulence components, respectively

Monin-Obukov scaling length and Monin-
Obukov scaling length modified by ratio
of eddy conductivity to eddy viscosity

Distance from the wing-body aerodynamic
center to the tail aerodynamic center
along the x body axis, positive aft

Frequency response amplitude
Inertial body axis roll rate

Effective roll rate of the air mass due
to turbulence relative to the earth

Inertial body axis pitch rate
Dynamic pressure

Effective body axis pitch rate due to
turbulence with respect to the earth

Richardson“s number and that at 20-foot
altitude

Correlation for the 1 and j turbulence
components

Inertial body axis yaw rate
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Displacement vector
Yav rate relative to the air mass

Effective body axis yaw rate due to
turbulence relative to the earth

Effective yaw rate due to the wind and
mean wind relative to the earth

Laplace transform variable
Absolute temperature
Time

Inertial linear velocity along the
X body axis

Friction velocity (shear stress/density
density)l/z and that at the surface

Linear velocity with respect to the air
mass along the x body axis

Component of airspeed along the
X turbulence generation axis

Turbulence velocity parallel and normal
to the displacement vector

Linear turbulence velocity along the
X body axis and the x turbulence
generation axis relative to the earth
up at the tail

Linear velocity of the wind and mean
wind with respect to the earth along
the x body axis
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Mean wind speed and that at 20-foot
altitude

Total air speed

Inertial linear velocity along the
y body axis relative to the earth

Linear velocity with respect to the
air mass along the y body axis

Linear turbulence velocity along the
y body axis and the y turbulence
generation axis relative to the earth
at the center of gravity

Linear velocity of the wind and mean
wind along the y body axis relative to
the earth

Inertial linear velocity along the
z body axis

Linear velocity along the z body axis
relative to the air mass

Linear turbulence velocity along the
z body axis relative to the earth

Linear velocity of the wind and the
mean wind along the z body axis
relative to the earth

Surface roughness length
Angle of attack
Sideslip angle

Glide slope

Euler pitch angle
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Three-dimensional spectrum function for

the 1 and jJ turbulence components
Latitude

Turbulence wavelength along the x and
y axis

Position displacement vector and

magn 1tude

Standard deviation for parameter 1

Standard deviation of horizontal and
vertical turbulence

Standard deviations of the u, v, and
w components of turbulence

Covariance between the 1 and j
turbulence components

Time displacement

Shear stress and that measured at the
surface

Input and output power spectra

One-dimensional power spectrum for
parameter i

One-dimensional spectrum function for
the 1 and jJ turbulence components

Random noise power spectrum

Isotropic one-dimensional spectrum
functions for uy and u;

One-dimensional power spectra for
components of turbulence along the X,
y, and z axis
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2 .(29) One-dimensional cospectrum for
components of turbulence along the
X and zZ axis

d(h/e") Universal function of h/%' defining
nondimensional wind shear:
aV,
kh W _ )
4, R - o(h/e")
0
¢ Euler bank angle
wij(ﬂl,nz) Two-dimensional spectrum function for
the i and j turbulence components
) Euler heading angle
EW Heading to which the mean wind 1is
blowing
g, Spacial frequency vector and spacial

frequency magnitude

2, Component of spacial frequency along
the x axis
w Temporal frequency, rad/sec

Angular velocity of the earth

Note: Dotted terms refer to derivatives with respect to time.
Overbar Indicates an average. Other terms defined
where used.
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WIND MODELS FOR FLIGHT SIMULATOR CERTIFICATION OF
LANDING AND APPROACH GUIDANCE AND
CONTROL SYSTEMS

Wind phenomena are classed as being mean wind, turbu-
lence, and discrete gusts. Mean wind and turbulence are
statistical parameters that appear together with turbulence
being a random deviation of wind velocity about the mean.
Distinction between the mean wind, which eventually is
variable given enough time or space, is made on a frequency
basis using the Van der Hoven bimodal wind speed spectrum
(Fig. 1).

Discrete gusts are deterministic phenomena caused by
localized terrain or atmospheric inhomogeneities of which
there are an infinite number of possibilities. So long as
conditions of reasonably homogeneous terrain and atmospheric
features or restrictions on the proximity to inhomogeneities
are justified, consideration of discrete gusts is unnecessary.

Mean Wind e »- Turbulence
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FIGURE 7 — SCHEMATICSPECTRUM OF WIND SPEED NEAR THE GROUND
ESTIMATED FROM A STUDY OF VAN DER HOVEN (1957)
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MEAN WIND

Analytic Description

The mean wind is characterized by:

(0]
(0]

o

Zero vertical component

Zero wind speed at the surface

Invariant with altitude above the atmospheric
boundary layer

The mean wind model having the greatest acceptance,
both theoretically and empirically, is that developed from
dimensional analysis. The parameters involved are:

aV,

Eiﬁ = mean wind shear

v = shear stress

p = atmospheric density

CP = specific heat at constant pressure
h = altitude

g = gravitational acceleration

H = heat flux

T = absolute temperature

93T _

s = lapse rate

This 1nclusive list assumes:

o

Pressure gradients are invariant with altitude, at
least over a sufficiently constrained region.
Viscous forces dominate pressure and Coriolis forces.
The flow of air is fully rough so that molecular
viscosity iIs not a significant parameter.
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The parameters appear in the combinations

Uy =“v[% = friction velocity

wn 3V _ nondimensional shear

Uy R
(k=0.4 =von Karman's constant)
uiCppT

2 = em

Dimensional analysis then predicts

3V,
kh W _
where ¢(h/2) 1s some specific function.
It 1s additionally assumed that shear stress and
density are invariant with altitude for a sufficiently con-
strained altitude region. Then

U,
Vi = “EQ':;h GfL an
0
where
.. = the altitude at which the mean wind speed
0 formally goes to zero
u*o u.(h = 0)
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The scaling length, 2, is difficult to measure due to
the difficulty of measuring the heat flux, so an alternate

scaling length, &', is introduced:
u T BVW
*9 oh
' =

T
kG ['a'HJ“E:gI;]

This alternate scaling length is equal to the dimensional
analysis scaling length multiplied by the ratio of eddy
conductivity to eddy viscosity and is assumed to be a
constant, implying that there is a one-to-one relationship
of the wind and temperature shears independent of altitude.
The alternate scaling length can be related to a more
conventional and still more easily measured parameter
reflecting atmospheric stability, Richardson's number:

3T
& '§H+'Cg')
Ry = —5
o7,
oh
_8_(314._&) —
TR 1T 3V
h _ P kh Wi _
Pl =12 (u* ah)‘Ri“’(h”')
3R

Richardson's number is a nondimensional ratio between the
mechanical wind shear that tends to displace air and the
buoyancy force, which may damp or amplify this tendency.
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Richardson's number thus gives rise to the notion of atmos-
pheric stability, a dynamic concept:

R., h/8' > 0 » g—g{ > 28 ; stable (weak lapse or inversion)
i Cp
Ry, h/t' =0 » 35 = 7B = -0.00536°R/£t; neutral
P (adiabatic lapse)
Ri’ h/8' < 0 » ——% < ég ; unstable (strong lapse)

P

Given the nature of ¢(h/2'), the variation of Ri is known
with altitude and R, could be used in place of h/%'. How
ever, it is simpler to use h/2' as it varies linearly with
altitude. The greater ease involved in measuring R, provides
an indirect means of computing R.

Investigators have examined ¢(h/2') for different
regions of stability. For neutral stability ¢(h/2') = 1 and

7 u
oy _ *\
Sh = kh
Uy
T 0 h
WS 1“(25‘
or, after an axis system shift to provide \_Iw =0ath =0,
_ Wi h+zO
R e S
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For neutral stability, the shear is inversely proportional
to altitude and the mean wind is described by the logarithmic
profile. The term zg reflects surface roughness and S
larger for greater roughness. zg = 0.15 foot, as provided by
the British specification, and is representative for autoland
applications.

If the mean wind, VREF' is known at some altitude,
h the friction velocity, u*o’ may be found from the

REF’
equation for the mean wind profile:

kV

_ REF
U +z
0o ( REF T %0
n —ZO

For a given wind speed at hppp an increase in roughness
length, zO,is related to an increase in friction velocity,
which in turn provides an increase of the shear at every
altitude, a decrease in wind speed for h < h
increase in wind speed for h > hppp-

For near neutral stability, ¢(h/2') may be estimated
from the first two terms of a Taylor series expansion about
neutral stability:

REF and an

¢(h/8") l+a'h/2' ,h/8"' << 1

a constant

Thus,

—

_ u‘ko h+z,
_ 1 1

0

which is the log-linear mean wind profile. For stable
conditions (h/%' > 0), the effect of stability appears to

204



cause an increase in the mean wind speed and shear. Unstable
conditions appear to cause a decrease in the shear and mean
wind speed.

For the log-Ilinear profile, friction velocity can be
determined from the mean wind speed at a given altitude by

h+z
1n 0

20 ) batngg
Stable conditions result in a decrease and unstable con-
ditions result in an increase of friction velocity.

Combining the effects of stability on friction velocity
and the nondimensional wind shear gives

Vw _ VRer | 1+a'h/2'
h h h +z
REF 0 ! 1

Stable conditions cause the shear to be greater than for
neutral conditions above some altitude, but less than the
neutral stability shear below that altitude. The reverse is
true for unstable conditions.

For near neutral stability, the constant &' can be
determined by knowing Richardson's number at some altitude,

hREF :

h/&' =Ri¢(h/£') =Ri(l +a'h/2') ,h/8'<<1
R R

i
REF

/%' = - =
hppp(l-R; ) 7 h
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The general form of the mean wind profile may be
reformulated to represent the contribution of neutral con-
ditions plus the increment due to nonneutral conditions:

h+zo> }
+£f(h/2")
20

— Uy
V. _ 0
W = T {ln

where

h
£(h/8') = f 0—(—5%—'—1@
0

Different investigators have developed expressions for
the mean wind shear for various regions of stability.
unstable conditions:

For

op(h/2") = 1 , small negative R,
1-g'R, /2 1
1
6' = constant
3V,
"B"E'w . p4/3 , strong instability

A form that matches the logarithmic, log-linear, and
the above two expressions is the KEYPS equation:

1
¢(h/e') = R, < 0
-yt
A = 28' = 4a' = constant
This form has been adopted along with y' = 18, which implies

a" = 4.5, values in good agreement with measurements. The
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corresponding relationship between nondimensional altitude
and Richardson's number is

R,
h/s' = =
(1- 'Y'Ri) ‘

An explicit expression for the mean wind shear and, conse-
guently, the mean wind speed in terms of h/&' cannot be
found, but such a relationship can be determined numerically.

For stable conditions, the log-linear relationship has
been found to hold for surprisingly large values of h/%';
for very stable conditions, knowledge is poor. The best
expression found for very stable conditions is

¢h/2") = (1 +a')

which once again results in a shear inversely proportional
to altitude. The corresponding mean wind profile is

_ u"fo h+zo '
VW=T In ZO +a l+1n(h/2,)‘ 2'>1

For h/2' >1, Richardson's number and nondimensional altitude
are related by

h/2" = (1 +oc‘)Ri

Combining the descriptions of ¢(h/2') adopted provides
the nondimensional shear as a function of h/%', as shown in
Figure 2. The corresponding function £(h/%') for the mean
wind equation is shown in Figure 3. The combined relation-
ships between h/&" and R; are shown in Figure 4.

The wind above the edge of the boundary layer
(geostrophic wind) is that which remains invariant with
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FIGIJRE 2.— SELECTED NONDIMENSIONAL SHEAR DESCRIPTION
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surface conditions and atmospheric stability in the boundary
layer. There are little data on geostrophic winds, and
relationships between winds near the surface and above the
boundary layer are poor. Rather than relating low-altitude
wind conditions to the geostrophic wind, the wind profile is
extrapolated from low-altitude winds. The American standard
for airport wind measurement is 20 feet. The extrapolation
of winds and shears based on wind speeds at 20 feet is per-
formed through the determination of friction velocity:

V20

- (Fig. 5)
In (%gﬁ%? | +EChgg /2")

Uy /k =
0

Figure 5 shows friction velocity to continually
decrease for increasing stability. The nondimensional shear,
Figure 2, is constant for h/%' > 1. Thus, the shear, given
by

u.; /k aXT
0 ) kh Vi)
= U, on
V20 *0 )

must decrease for h/%' > 1.

The scaling length, &', may be determined for
Richardson's number measured at another altitude different
from 20 feet, but since the choice appears arbitrary, 1/2'
is determined from Figure 4 for Richardson's number measured
at 20 feet. The description provided thus far still suffers
from a restriction: the dimensional analysis descriptions
are valid only over the altitude region for which shear
stress differs insignificantly from that at the surface.
Insignificant variations of the shear stress have been
variously estimated to occur up to 65 to 650 feet, signifi-
cantly less than the objective of 1000 feet. At progressively
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higher altitudes, a progressively greater overestimation of
the mean wind speed and shear occur; the description of the
mean wind never does provide a constant mean wind with
altitude above the boundary layer. A mechanism for adjusting
the description has been found through descriptions of shear
stress (friction velocity) variations throughout the boundary
layer.

By expanding shear stress with altitude about conditions
at the boundary layer (where shear stress is zero) using a
Taylor series, expressions for friction velocity variations
with altitude and for the boundary layer depth, d, are
developed:

Uy, = ug (L-h/d)
0
d =u, /5.35 f
0
where
f = Coriolis parameter
= ZwE sin X
wp = angular velocity of the earth
A = latitude

Most of the United States and a majority of the world
airport activity lies between 30" and 50" latitude, so a
fixed latitude, A = 40°, is adopted for determining the
boundary layer depth. Then,

d = 2000 u,
0

To incorporate the shear stress variation into the
mean wind description, the assumption that the shear is
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proportional to friction velocity at the surface is dropped,
and it is assumed that the shear is proportional to the local
level of friction velocity. Then,

W, u uy | 57
W _ *¢(h/£')= ; 0/153 W\
Th T KR Ty kh\u* ah}
0
- uy / ) -
Lo Y20 [ o) fkn Ve
d h 7 3\u~.< oh
i 20 |

The shear now smoothly decreases to zero at the edge of the

boundary layer with increasing altitude. Near the surface,

where h/d =z 0, the constant shear stress model is unaffected.
The corresponding expression for the mean wind speed is

: h +
— I i 1n ZO\ +fh/2')- % g(h/ﬁ,')}
| o | J

The function, g(h/4%'), (Fig. 6) is derived from
f(h/2'). 1t is always positive, is equal to one for neutral
stability, and increases with increasing stability.

Probabilistic Description

The additional parameters required to complete the
description of the mean wind speed and mean wind shear are
specifications for wind speed and Richardson's number at a
20-foot altitude.

Based on Weather Service reports at U.S. airports, a
description of airport wind speeds has been developed that
describes 10-minute averages measured each hour for 10 years.
The data were taken prior to establishing 20 feet as a
standard anemometer height, so anemometer heights varied
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widely from airport to airport. From data for 132 U.S. air-
ports, data were selected from 24 sites where anemometer
heights varied from 20 to 35 feet with an average height of
about 26 feet. The remaining sites have anemometers

located from above 35 to 120 feet above the ground and were
considered to be too high to represent wind speeds at 20
feet. In developing a composite description for all 24 air-
ports, the distributions from each site were weighted
equally. The resulting descriptions, Figure 7, provide for
8 knots exceeded 50%of the time and 22.7 knots exceeded 1%b
of the time. For 39 of the same 132 sites, data for the wind
speed distribution when visibility was less than 0.5 mile
(prepared by the Weather and Flight Service Station Branch of
the FAA) are presented. For low visibility, wind speeds are
much lower than for clear conditions; for low visibility,

4.5 knots is exceeded 50% of the time and 14 knots is
exceeded 1%2®f the time.

From the data for the 24 U.S. airports, distribution of
wind components along and across runways was developed,
assuming the runway is aligned to the prevailing wind.
Crosswinds from the left and right were found to be equally
likely. The distribution of crosswind magnitude, Figure 8,
provides for exceeding a 5-knot crosswind 50% of the time and
a 19-knot crosswind 1%@f the time. When the distribution of
crosswinds is plotted for both positive and negative cross-
winds, the distribution is closely Gaussian (standard
deviation equal to 6.5 knots), with deviations from a
Gaussian distribution occurring in the tails (1.65 standard
deviations from zero crosswind).
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FIGURE d -TOTAL CROSSWIND INFORMATION COMPILED FROM
24 US _AIRPORTS

The distribution of down runway components is also
closely Gaussian (Fig. 9) with a mean and standard deviation
of 1 and 7 knots, respectively. The probability of a wind
component iIn the direction of the prevailing wind is 5%%.

The distribution for the magnitude of the component of mean
wind aligned to the runway (Fig. 10) provides for 5 knots
exceeded 50% of the time and 19 knots exceeded 1% of the time.
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Distribution of mean wind shears was also investigated.
Distributions were much broader near the surface than at
higher altitudes, conforming to the analytic description.

The introduction of atmospheric stability into the mean wind
description in such a way that wind shears increase with
increasing stability (up to a point), as well as with wind
speed and the finding that atmospheric stability is inversely
related to wind speed, introduce confusion as to whether
maximum shears occur at high wind speeds where stability is
close to neutral or at low wind speeds where stability is
high. Data from the literature show the greatest shears
occur at the most stable lapse rates and at low wind speeds
(both average and maximum wing shears decrease monotonically
with increasing wind speeds at high wind speeds), conflicting
with commonly employed wind models that assume neutral
stability and increasing shears with wind speed, thus empha-
sizing the importance of atmospheric stability as a mean wind
parameter.

The literature was not productive for describing
distributions of atmospheric stability, so probability
distributions were generated by reducing data from towers
located at Cedar Hills, Texas, and Cape Kennedy, Florida.

The distributions for the two sites differed substantially
(Fig. 11), with the Cedar Hills data being more stable.
Evaluation of the climatology and wind characteristics of the
two sites led to the conclusion that the Cape Kennedy
stability data were more representative of average airport
conditions. Consequently, the Cape Kennedy data were
selected for use with the model. Although the Cape Kennedy
data reflected the lesser stability, over 70% of the cases at
the site were stable (versus 90% of the cases at Cedar Hills).

The strong interdependence between the distribution of
atmospheric stability and near-surface wind speed can be seen
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in Figure 12. Although the atmospheric stability distri-
bution narrows substantially about neutral conditions at
increasing wind speeds, the distribution remains signifi-
cantly broad at high wind speeds. The data in Figure 12
were faired and extrapolated to account for the relatively
small data sample (one site for three years with near-calm
wind speed conditions excluded) and have been cross plotted
at constant 20-foot-altitude wind speeds in Figures 13, 14,
and 15.

The mean wind speed and atmospheric stability distri-
bution curves may be used by (1) defining wind speed/
stability regions and assigning average values of wind speed
and Richardson's number to each region; (2) by simulating
the aircraft for each wind speed/Richardson's number combi-
nation; and (3) by combining the results of the simulation
according to the joint; probabilities of each region.
Alternately, the simulation may be used to define random
combinations of mean wind speed and Richardson's number.

A random number generator, providing a uniform distribution
between zero and one, is used to determine two random
numbers. A mean wind speed at an exceedance probability
equal to one of the random number generators is found. The
Richardson's number associated with the exceedance proba-
bility for the mean wind speed determined equal to the second
random number is found. The Richardson's number and mean
wind speed then determine the mean wind speed and shear
profiles. When this process is repeated, the joint distri-
bution of wind speed and Richardson's number is reproduced.

Application to Aerodynamics

In order to determine the aerodynamic forces and
moments, the mean wind must be resolved into body axis com-
ponents, an axis system attached to the airplane. The
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transformation required is presented in Figure 16 and depends
on the orientation of the airplane's body axis with respect
to the wind, defined by the Euler yaw, pitch, and roll

angles and the direction to which the wind is blowing
(negative of conventional wind heading). The introduction of
wind heading presents an additional mean wind parameter that
must be known at each altitude. A variation of wind heading
with altitude (heading shear) has an effect on the shear that
the airplane sees that is added to the mean wind speed shear
effect.

Analytic descriptions for the variation of wind heading
with altitude have been investigated, but these descriptions
lack empirical support. A small amount of heading shear
probability distribution data was found in the literature.
The data indicate a majority of heading shears are within
+3°/100 feet and a greater tendency to rotate counter-
clockwise while approaching the surface. The tower data
used to determine the atmospheric stability distribution
were also evaluated for heading shear information. Distri-
butions tended to be larger near the surface but constant
above about 150 feet. No consistent trend of the profile
shapes could be found. Heading shear was found to be
uncorrelated with both wind speed and atmospheric stability.
In order for the heading shear to be significant, the wind
speed must also be large (body axis shear components involve
the combination Vw dyy/dh only). The probability of having
a large heading shear and wind speed shear is sufficiently
remote and the information for specifying the variation of
wind heading with altitude is sufficiently poor so that a
representation of wind heading dependence upon altitude is
not attempted; the wind heading is assumed to remain constant
and equal to that at the surface. The distribution of wind
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heading at the surface was developed from wind roses for the
same 24 sites used to determine the wind speed distribution
and is presented in Figure 17.

A major factor to which longitudinal touchdown
dispersions are attributed is the longitudinal wind shear
component. Considerable literature has been written on the
subject, but conflicting conclusions are provided. Some
predict a headwind shear will cause an overshoot, while
others predict an undershoot. Some of the differences of
opinion can be attributed to different trim and operation
procedures. However, it is concluded that one of two air-
planes can overshoot while the other undershoots due to a
wind shear, even if both are operated in the same manner.

The effect of a steady wind is to alter the pitch
attitude (0) at which to trim to hold a given glideslope (y):

-~
i

V., cos (¥ - ¥;,)
ezl:l+ W wa+oc
Va

where Ew = 0 is a tailwind. For a headwind and a negative
glideslope, the pitch attitude must be increased by

(VW/VA)Y from that for still air and the thrust increased by
A(thrust) = WA6, or the airplane will touch down short.

If the airplane is trimmed for a headwind at a high
altitude and the headwind decreases with altitude, the pitch
attitude must be decreased throughout the approach and thrust
correspondingly decreased, or else the airplane will touch
down long due to the attitude effect.

There is also a second effect of a wind shear. If the
approach is to be performed at constant airspeed, changes In
the wind speed must be matched with changes in the inertial
speed. To provide inertial acceleration, thrust must be
changed by
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W(VA + Vw) dVW

A(thrust) = 2 ar Y

For a headwind that diminishes during an approach

Y > O
and thrust must be increased or the touchdown will be short.

The combination of the attitude and acceleration
effects is

AV T OH+T) 4T
AT Vw - (V) TV a7
WOEY A g dh

So long as the magnitude of the wind increases with altitude
and the airplane is trimmed for the high attitude wind, the
two terms have opposite signs. For airplanes with low air-
speeds, the attitude effect tends to dominate. For a given
airplane, the acceleration effect will be stronger at lower
altitudes where the shear is relatively strong compared to
the total change of wind speed. This evaluation presumes
the airplane is controlled in an open-loop manner. The
ability to attain closed-loop control, either by the pilot
or the autoland system, depends in part upon the open-loop
stability of the aircraft-autoland system.

Airplane stability is affected by the wind shear:
aerodynamic forces and moments are dependent on the
components of wind speed, motion is dependent on aerodynamic
forces and moments, and the components of wind speed are
dependent on airplane motion. |If the aerodynamic charac-
teristics can be considered to be concentrated at the center
of gravity, only longitudinal stability, principally phugoid
or long period stability, is affected by wind shears.
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A headwind shear can either stabilize or destabilize the
phugoid, depending on the characteristics of the airplane’s
stability derivatives. |If a headwind shear has stabilizing
effects, a tailwind has destabilizing effects, and vice
versa.

The effects of a wind shear may not be adequately
represented by considering the aerodynamic characteristics
to be concentrated at the center of gravity. pDue to the
change of wind speed with altitude, there is a distribution
of wind speed over the vertical tail that introduces a
rolling moment. When the airplane is disturbed from zero
pitch attitude and wings level, the different parts of the
airplane in the plane of the wings will be at different
altitudes and there will be a distribution of wind speed
about the airplane and a corresponding change in the distri-
bution of lift.

The distribution of wind about the airplane may well
be represented as being linear in three dimensions. Then the
components of wind at some point (x,y,z) are represented by

‘ ou 0T u,

- _ = W Yy

WS, TR T ey Yt e ®
5% v 5%

- _z W W W

W Vi, Toex X oy Yoy =
ow. ow, alw

== W W w

YT Mg, T ek X ey Yog Z

The derivative of body axis wind components are
expressible in terms of the mean wind shear and can be
interpreted as effective angular components of wind. For
example, the distribution of the lateral component of wind
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about the vertical dimensions of the fin appears as a roll
rate, which generates a rolling moment proportional to the
fin's contribution to the roll rate derivative of rolling
moment .

Linear analysis predicts that the distributed lift
effects of the mean wind shear appear primarily for lateral-
directional motion. These effects are due to the headwind-
tailwind component of the shear. The wind shear alters all
of the lateral-directional stability characteristics, but
the sensitivity of the characteristic roots to wind shear
are configuration dependent.

Representation of the distributed lift effects is the
only reason for computing the mean wind shear at each
altitude. If the distributed lift effects can be shown to
be insignificant, the computation of the shear can be left
out of the simulation.

TURBULENCE

Analytic Description

For unstable atmospheric conditions, amplified dis-
placement of air particles from their initial positions due
to buoyancy forces cannot increase without bound. Turbulence
Is the mechanism.by which the effects of instability are
constrained through the mixing of hot .and cold air particles,
which produces equilibrium locally. The appearance and
disappearance of turbulence with changing atmospheric
stability involves a hysteresis effect, but it is predicted
to occur at the critical Richardson's number, related to the
log-linear mean: wind profile constant:

=+ _-0.222 for a' = 4.5
RicriT @
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The equations of motion for turbulence have been
developed from the Navier-Stokes equations, but the severe
nonlinearity of these equations has prevented their solution.
Even if they could be solved, i1t iIs questionable as to
whether they could be practically applied. From obser-
vations relating to these equations, some characteristics
have been determined:

o Turbulence transports energy from large eddies,
where i1t iIs generated mechanically and thermally to
smaller eddies until it is finally dissipated
viscously.

o Turbulence can only occur nonlinearly iIn three
dimensions.

o Turbulence is diffusive and far more efficient for
the transport of mass, momentum, and heat
properties than molecular motion.

o Turbulence is a continuum having a smallest
dynamically significant scale much larger than
molecular or intermolecular dimensions.

o Turbulence is approximately an equilibrium
phenomenon for homogeneous terrain having very low
rates of change of kinetic energy.

o The diffusive, continuous, and equilibrium charac-
teristics tend to produce homogeneity for turbulence
in a horizontal plane,

Using these properties of turbulence, a statistical
description of turbulence is developed. The basic statisti-

cal function iIs the average product of two turbulence
components measured at two points of time and space, the

correlation function:

> = - >
Rij (tl’tZ’rl’rZ) = ui.(tl’rl)uj (tz,rz)
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When f} = f; (measured at the same point in space) and

t; = t, (measured at the same time), the correlation function
becomes the covariance. When, in addition, 1 = j, the
correlation function is the variance.

By 1nvoking homogeneity (turbulence properties
independent of absolute position iIn space) and stationarity
(turbulence properties independent of absolute time), the
parameters reduce to just the displacements in position and
time between the measured components:

->
Rij (tl,tZ:rl:rz) = R—(T E)

T=t2 t

1

- -

e

By additionally applying Taylor®s hypothesis (frozen
Tield concept), which assumes airplanes fly at speeds large
compared to turbulent velocities axd their rates of change,
the time displacement can be related to a component of the
position displacement, leaving statistical turbulence
properties defined only in terms of space.

The correlation function can be transformed into the
three-dimensional spectrum function by applying the Fourier
integral:

o > >
> 1 > _]’_Qg ->
B..(Q) = R. . e d
L@ a—)—gf L ® :

The parameter ¢ is the spacial frequency vector having
units of rad/ft and i1s related to distance as temporal
frequency in rad/sec is to time. The transformation can be
reversed by the inversion formula:
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bt > >
r2 > iQEg ;2
Rij(E) feij (Ve de

2

When £ = 0, the correlation function becomes the
covariance and the spectrum function can be seen to be the
distribution of the covariance with spacial frequency:

©

2 _ > >

—Co

Simulation of turbulence can be performed only by a
temporal process, but only one component of spacial
frequency (that in the direction of flight) can be related
to time or temporal frequency through Taylor's hypothesis,

w = QV,. To obtain a spectrum function in terms of the
component associated with the coordinate in the direction of
flight (®(2)) integration of the spectrum function over the
other two Components is performed. Then

2 _
055" = f@(szl)dszl

-0

Important characteristics of the one-dimensional
spectrum function, ‘Dij (29), have been derived by Batchelor
for the special case of isotropic turbulence, for which the
statistical properties of turbulence are invariant with
coordinate system rotation or translation. Batch'elor showed
that there were but two one-dimensional spectrum functions:
one for two parallel longitudinal turbulence components
(components aligned to the vector separating them), ¢,5(2;),
and one for parallel transverse components (components
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normal to the vector separating them), on® P - All spectra
for orthogonal components are zero. The variances for all
components are equal. The two spectra are related by

do. (D)
1 PPM'1L
() = 7'[®PP(91) -8 “TKQT‘"}

Determination of one of the isotropic spectrum functions
provides the other.

Corresponding to the two spectrum functions are two
nondimensional (divided by variance) scalar correlation
functions: one, £(¢), for two parallel longitudinal
components, and the other, g(t), for two parallel transverse
components, which are also interrelated:

—7
upt(®
£ - I
&) = i
& 5,
g(e) = £(6) + 5 4L

The fundamental correlation functions are analogous to serial
correlation functions.

A measure of the average eddy size, the integral scale
may be determined from the fundamental correlation functions:

Lp = J £(D)d

m

Ly = { g(0)de
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For a separation distance, ¢, equal to the integral
scale, the area under the corresponding correlation function
is divided iInto equal parts. Through the relationship
between the fundamental correlation functions, It can be
shown

L, =2L

P N

The integral scales provide means for normalizing
distance. It is then postulated that f£(¢/Ly) and g(g/L
are universal functions. The one-dimensional spectrum
functions must correspondingly have the form

N’

- -2
9;,(2) = ol G(L;,L; 97) .

That 1s, spacial frequency appears only in combination with
the integral scales.

Theory and empirical investigation have led to
additional requirements for the isotropic one-dimensional
spectra:

¢ The high frequency asymptotes (excluding viscous

dissipation) of the spectra are of the form

.5 (R9) | 2=>/3  This leads  a ratio of the
transverse-to-longitudinal spectrum equal to 4/3 at
high frequencies.

o+ The low-frequency asymptotes are frequency invariant.

This leads to a ratio of the transverse-to-
longitudinal spectrum equal to 1/2,
e Isotropic spectra must be symmetric about o, = 0.

A number of isotropic spectra forms have been- proposed.
The best-known forms for aeronautical applications are the

Dryden and von Karman forms, presented with related functions
in Figure 18,
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Van Karman Dryden

Long|tud|nia/I:;:orrelatlolr};unctlon
= ¢ « o -E/L
U U K 72T aL) Kira (j[) ) =e

Transverse correlation functions:

- 3205 (8) Lo (B dusan (8] o -4 1]

Longitudinalonedimensional power spectrum:

2 1 2
-0 L -0 L 1 )
(bPP 3 E' +(3Lal)2] 5/6 ¢PP L [1 +‘LQ|)2]
Transverse onedimensional owers ectrum: P ;
2"' [1 +(al.ﬂ1)2]”,’5
Energy spectrum:
2L Q 4
2, (aL? £ -8 (22
550 L e Nl 3
E) - [+ wLsu?] 1776 [+ wad)
Definitions :
as= 1339

Q- lm-la,,uaz. + k|
‘bpp.nd d’NN Such ‘ha‘o - f ¢PPd ﬂ‘ = I ‘bNN dn

L=f t(E)a e-zfo“gtzbde

[~)

K‘/3(a%.) and K2/3(a§‘)are modified Bessel functions of the second kind.

FIGURE 18 — VON KARMAN AND DRYDEN CORRELATION AND SPECTRA FUNCTIONS
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The Dryden form is simpler and i1s based on an expo-
nential shape of the fundamental correlation functions. The
Dryden function fails to meet the high-frequency requirement.

The von Karman forms result from a curve fitting
expression for the energy spectrum and satisfy all i1sotropic
requirements. In numerous investigations the von Karman
forms have been shown to be superior to the Dryden forms.
The von Karman one-dimensional spectra are those accepted for
the model.

Although high-altitude turbulence is well represented
by isotropy, low-altitude turbulence is clearly nonisotropic.
Specifically:

o The statistical functions describing the field of
turbulence are not invariant with coordinate
rotation; variances of turbulence components are not
equal and the longitudinal and transverse integral
scales vary with coordinate rotations.

o Low-altitude turbulence exhibits a lack of homo-
geneity with altitude; the variances and integral
scales of turbulence vary with altitude.

o A non-zero correlation between turbulence in the
direction of the mean wind and vertical turbulence
has been found. Isotropic turbulence requires zero
correlation between orthogonal components.

There are, however, limited conditions of isotropy found

to hold for low-altitude turbulence:

o At sufficiently high spacial frequencies (short
separation distances), low-altitude turbullence is
i1sotropic. This is referred to as ""local i1sotropy"
and requires the high-frequency spectrum asymptotes
to be Invariant with coordinate rotations.
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e The existence of a single non-zero correlation
function between the downwind and vertical compo-
nents of turbulence is compatible with horizontal
iIsotropy (invariance of the horizontal statistical
functions with rotations of the axis system in the
horizontal plane). Horizontal isotropy must be
viewed as an approximate characteristic for low-
altitude turbulence, for the variance of horizontal
turbulence perpendicular to the mean wind is
frequently reported as being somewhat greater than
the variance of the component in the direction of
the mean wind.

The spectra that have been developed specifically for
low altitude tend to be for small regions of altitude near
the surface and do not tend to full isotropy at higher alti-
tudes. A frequently employed technique that is employed in
this report is to adopt isotropic spectra for low altitude
by permitting the variances and integral scales to be
different for each component. The von Karman spectra are
used. These low-altitude forms become:

2

o L
u u 1
2, (%) = N 5 1576
{1 (1.339 L_2)) ]
2 2
s,°L, 1+8/3(1.339 L ;)
6. (Q,) = v
[1 (1.339 L _0,) ] .
2 2
o (o) o, L, 1+8/3(1.339 L.0)
w ¥l = o + 27 11/16
[ 1+(1.339 L _9;) ]
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These spectra were originally written in terms of the longi-
tudinal integral scale, which is twice the transverse
integral scale for isotropy, so L, and L, must be redefined
as twice the area under the corresponding correlation
functions,

Although a cross spectrum, ¢, has been found to exist,
it has been concluded that the cross spectrum has a signifi-

cant magnitude only at frequencies too low to be important.

Simulator Representation of Turbulence Spectra

The spectra in terms of temporal frequency are obtained
by substituting 0, = w/V, (Taylor's hypothesis) and by
requiring the variance to be the same in either domain:

2 00 6]

07 =/ 0;(v)dw =_°°f 0, (9)dR;

Then

<I>.(w)=—]:d>.($2 :w)
i i 1
Va Va

When a random variable is modified by a transfer function,
the output spectrum is given by

B (@) = M (u) oy (w)
where:

2q(w) = output spectrum

M(w) = amplitude frequency response of the transfer
function
@N(w) = power spectrum of the random function or noise
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Turbulence is represented by finding a transfer function such
that

®~ (w)
M(w) =\/%m

where the output frequency response is equal to that desired.
When white noise is used, oy = 1 by definition. Then to
match a desired power spectrum, it is only necessary to find -
a transfer function with a frequency response equal to the
square root of the spectrum.

It is not possible to exactly reproduce the von Karman
spectra with linear transfer functions (filters) due to
exponents of frequency that are noneven integers, so an
approximation is sought.

The significant criteria for evaluating an approxi-
mation to a power spectra is to require the contribution of
each incremental frequency range to the variance to be
correct for the frequency range in which the airplane’s
response is important. Directly plotting ¢(w) versus w
lacks resolution over the entire frequency range. Plots of
wd®(w) versus log (w) provide the necessary resolution and the
area under such a curve is also equal to the contribution to
the variance:

, Wo Log wo
po? = j o (w)dw = f 0o (w)d(log ®)
wy Log wy

The validity of transfer functions representing spectra may

be assessed by comparing plots of this type for the transfer
function frequency response squared and the power spectrum.
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Filters exactly duplicating the Dryden spectra are
often assumed to match the von Karman spectra well for rigid
airplane responses even though 1t 1s conceded the Dryden
spectra are not substantiated by theory and empirical
evidence. This Is seen not to be true iIn Figure 19, for the
Dryden spectra provide greater contributions to the variance
than the von Karman spectra by as much as 23% at frequencies
where contributions to the variance are greatest. Approxi-
mate filters that do a much better job of matching the
von Karman spectra are presented in Figure 20 (where the
corresponding mechanization is also showm). Comparisons of
the filters i1n Figure 20 with the von Karman spectra are
shown In Figures 21 and 22.

The white noise may be generated by either hardware or
software (digitally), There are several methods available,
each with different shortcomings.

When the noise iIs generated digitally, 1t is only
approximately random and the noise spectrum is only approxi-
mately flat and equal to one. The digital generation of
white noise consists of three main steps:

1) Random numbers having a uniform distribution between
O and 1 are generated.

2) From the uniform distribution, the distribution
assumed to hold for turbulence iIs generated.

3) The noise thus far produced will have a unit vari-
ance and a spectrum amplitude of aAt/2n (At = frame
time or sampling interval) no matter what distri-
bution i1s used In 2). To provide white noise for
which the spectrum amplitude is one, the output
from 2) is multiplied by vZw7At.

Turbulence velocities within a single patch of turbu-
lence are assumed to form a Gaussian distribution. Although

245



ALISNIQ FONVIHVA NYWHVX NOA ONV NIGAYA ‘NOSIHVYdWO0I — 61 JHNIIS

pes YA/

£+ Tw
1

T

endads jeutpniibuon

NS
N\ -
eN29ds assaAsURL |

§0°

Si

LXE0 L R TE-T. 7, Vg S —
00008 USWIIE) UOA

oz

0

0

0

246



v v v
<A : A eya. <A
ts Ry 416800+ 111 .3 £29°0 + §) ..3

SYILTI4 JONITNGYNL Y04 DILVYWIHIS — 0T FHN9IH

WOzl . s

TR
0. " £690°0 1.
vi v. A o v, T
{9 ¥ §. mo— . "
R,196210 + L >._2...~.: -

-W +
v N g 'ou
Lop twewmemd _AMZA Ap g9y’ L 1llcvu|..l S1z4 5100
Aq -\, Y i Aym
—
totvo [—4—1 ,cmv.oﬁl%'
(> - *
v v v, v,
md 116000+ 11032 €200+ 1) 8552 cg0ze 1) B S ,
1 H H
() (> ﬂl - *
.-q.._...z_do INs ﬂn.mﬁ 1)
v _ 2 ou
1 —ALiAn, ||®O|. goret fo—@—oi " asou
LIS - 7% o g awum
— A
. H
191v'0 S %L
A .
v v
wbovoenegle v
1 hl AR, . 5% »1800
YA H4 R .
bt AR
3
v )
AXd N —_ i ‘ou
in e V0 98160 . asou
+ o faum

247



AIVHNIOV HI L4 FIONITINGHNL TVYNIANLIONOT FLVIWNIXOHddY — T2 JHN9I4

0z

ol 8

pes ‘Y A/
4

l

80 90

0

20

X\

I

pae

|

| |

1

|

€00

$0°0

800

010

52910+ 1) (s6L°L + 1) VAR

$6z0+1 1|

auzo.|\

Wn0ads uewed UOA

Zio

#1°0

248

-y



AIVYNIOY Y3L17/4 FJONITINGYNL FSYIASNVYL JLVINIXOYIY — TT JENold

L YA /oq
oy oz 0L 8 9 v z L 80 90 #0 zo 10
T T I T 1 T T M
\No.o
v v v
(s ..,.\.,8804 ) ?I.\_,nwm.o,, 1) .mI»nmo.T 0 YauzA
—u<> - v 0 = *mvw 80
< 8621 0+ 1) WJD 819Z+ 1) -
90°0
~80'0
01’0
wnnsads uewse) ;o>ﬁl\ 1210
< pL°0

910

248 a



the distribution of turbulence velocities for the sum of all

turbulence patches have been shown to be non-Gaussian, this
IS not iInconsistent with a Gaussian distribution for a single

patch of turbulence.

Turbulence Scale and Magnitude

The simulator model for turbulence in Figure 20 lacks
definition of the variances and integral scales. The
measurements and theory for these statistical parameters of
turbulence are measured In an axis system aligned to the
mean wind.

Dimensional analysis leads to a description of the
vertical turbulence standard deviation for unstable
conditions

Uy u, oh [

- . 1/3
%V-C[EEBWV_(D)3h}

D and ¢ are constants

For neutral conditions where the nondimensional shear
at the surface (kh/u*)/avw/sh), is 1,

g

w
H=13=¢
Uy

iIs well accepted. For extremely unstable conditions, the
nondimensional shear is negligible and the equation reduces
to
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The constant, D, is well represented by 1.7, hence

- 1/3
kh 3
eﬂ—-l-?’U_ oV. ) - 2.236 {%)}

U
Uy * on

The nondimensional shear has been described as a
function of h/%' only, so o _/u, is also completely described
by h/&2'. For near neutral conditions and slightly stable
conditions, the shape of o /u, versus h/&' has been made to
match that of measured data. The standard deviation of
vertical turbulence is reduced abruptly beginning at
h/%' = 1, above which the nondimensional shear is constant,
to o /uy, =0 at h/8' = 1.22, which corresponds to the
critical Richardson's number (RiCRIT = 0.222). The combined
description for 0./ U is presented in Figure 23. The pro-
cedure for computing the ms level of turbulence vertical to
the earth is:

1]
[en)
0~
<
N
[aw]
b ey
[
<y o
N
S |7
w
/_‘“\
£l e
*
) b
\—.—-—/
e a
* lit
==
| SR |

where:
u, /k
__O determined for the mean wind model
V20
Yy _a._h . .
= = 1 3" as determined from the mean wind model
*
d = 2000 u, ,as determined for the mean wind model
0
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Nondimensional altitude, h/2*

FIGURE 23 -o,/u, VARIATIONWITH STABILITY

The standard deviation for vertical turbulence is
described as being proportional to the mean wind speed at
20 feet, as decreasing and finally disappearing with
increasing atmospheric stability, and as tending toward zero
as altitude approaches the boundary layer. The variation of
o, with altitude for different surface wind and atmospheric
stability conditions is shown in Figure 24.

Dimensional analysis relationships for the variances
of horizontal components of turbulence have not had good
empirical support. At the surface, the magnitudes of the
horizontal components are significantly greater than magni-
tude of the vertical component with the component in the
direction of the mean wind frequently reported as greater
than the horizontal component normal to the mean wind. The
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data do not indicate any clear relationship between the
variances for the horizontal turbulence components but do
show them to be approximately equal, so horizontal isotropy
(ou =0y Ly = LV) is assumed. This enables describing
turbulence characteristics according to whether turbulence
components are vertical or horizontal. A corresponding
change of nomenclature is adopted: oy replaces T

Ly replaces L., oy replaces 9, and Ty and Ly replaces

L, and L, (subscripts H and V refer to horizontal and
vertical components).

The change in nomenclature aids in differentiating
between turbulence components aligned to the mean wind and
turbulence components aligned to other axis systems.

It is assumed that the horizontal components of turbu-
lence have variances €hat change identically with stability.
Qualitatively, this is not correct, but any other quanti-
tative descriptions based on the information in hand would
be just as arbitrary but more complex. As a result, the
standard deviation for horizontal turbulence may be described
by

<

0=0H0
H |oy

At the surface UH/UV = 2 is a good compromise of the
data. Above a sufficiently high altitude where complete
isotropy begins, hi, oy/oy = 1. There is little information
to describe the variation of oy/oy with altitude, so an
interpolation equation,

o
_H_ L ’h<hI (Fig. 25,
v [0.177+0.823 h ]0'4
. . H;
1 yh>hy
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FIGURE 25 — SELECTED DESCRIPTION FOR VARIANCES OF
HORIZONTAL TURBULENCE COMPONENTS
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was developed that is qualitatively similar to other vari-
ations proposed.

Implied estimates for the altitude above which isotropy
exists (hI) range from 300 to 2500 feet. The latter number
is an extreme. A value of hy = 1000 feet is chosen, is
adequately supportable, and provides integral scales
comparable with other models.

The integral scale for vertical turbulence is predicted
by dimensional analysis to have the form

Ly = [B(Ri)]h

That is, the vertical turbulence integral scale is linearly
related to altitude with the proportionality constant
dependent upon stability.

The atmospheric stability dependence of the propor-
tionality constant is apparently weak, at least for a wide
range of stability conditions, and is assumed to be constant.
Estimates for B range from 0.125 to greater than 4, with
most estimates centered about 0.5 and 1. Unit proportion-
ality is assumed. The estimates about 0.5 may be for the
literal definition of integral scale equal to the integral
of the correlation function rather than the redefinition of
twice that area. Hence, the estimates of 0.5 may be con-
sistent with the unit proportionality assumed for the
redefinition. In keeping with isotropy about 1000 feet,

L, = 1000 feet for h > 1000 feet.

The integral scale for horizontal turbulence is the
parameter for which knowledge is poorest. It may be derived
from the condition of local isotropy at low altitudes, which
can be shown to require:

(Fig. 26)
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FIGURE 26 — SELECTED INTEGRAL SCALE DESCRIPTION
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This description provides a horizontal turbulence integral
scale greater or equal to that vertical turbulence. At the
surface, L; = 8 Ly. Above 1000 feet, where isotropy is
assumed to exist, the integral scales are equal. These
characteristics are in agreement with observations.

Turbulence Axis Systems

There Is an inconsistency in the turbulence model
developed: the power spectra are for turbulence components
aligned to the airplane®s velocity with respect to the air
mass and the standard deviations and integral scales are for
turbulence components aligned with respect to the plane of
the earth and the mean wind heading. Both sets of components
can, in general, coincide only for an observer whose position
with respect to the earth i1s fixed.

One exact approach for resolving the differences in
axis systems consists of transforming the variances and
integral scales from the mean wind axis system to the axis
system attached to the relative wind where the spectra shapes
are known. Turbulence components would then be generated iIn
the relative wind axis and transformed to the body axis.
Transformations for the integral scales and variances have
been developed, but are quite complex. Complete tensor
transformations have been developed and reveal that when the
airplane”s relative velocity is not aligned to the mean wind
and when wings are nonlevel, nonnegligible cospectra exist
in the body axis (components of body axis turbulence are
correlated). Since the power spectra shapes are in general
not known in the mean wind axis system and the cospectra
forms are not known for a body axis system, the exact method
cannot be performed.

Errors from approximate methods were examined. It was
revealed that for low-altitude turbulence, it Is much more
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important to have the correct alignment for the variances
and integral scales than for the spectra shapes. The
greatest error in the spectra magnitude at any frequency for
turbulence normal to the airplane that can occur due to
misalignment of the spectra shape is a factor of 2, while
the greatest error possible due to misalignment of the
statistical parameters is a factor of 64. The best compro-
mise found was to generate turbulence in an axis system
that is in the plane of the earth but aligned to the heading
of the airplane's relative velocity vector with the filters
in Figure 20 and the specified rms levels and integral
scales. The components of turbulence are then transformed
to the body axis system. The transformation required is
presented in Figure 16.

Application to Aerodynamics

When the aircraft can be adequately represented as
though the aerodynamic forces and moments were concentrated
at the center of gravity, turbulence affects forces and
moments through the computation of body axis velocities
relative to the air mass:

. B A a
Va = V—VW,VW=VW+VT
Wa =W —WW,WW =Ww+WT
2 2 2
VA = uy +vA +WA
u,v,w = inertial velocity components along the
X, Yy, and z body axis coordinates
Up Vp Wy = components of airplane velocity relative

to the air mass
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U vy Wy = components of wind relative to the earth

Uy Vi Wy = components of mean wind relative to the
earth

Up Vi Wqo = components of turbulence velocities relative
relative to the earth

The relative velocity components are used to determine
the parameters, which in turn determine the aerodynamics
forces and moments:

~ tan-l VA _
a =tan = = = angle of attack
A
ei-l VA _ _
g = sin - — - sideslip angle
Va
- 1 2_ dynamic pressure
4 =7 eV,
I_UA‘I‘;"'WAu
N
u, +WA
(uy2 W, 2V - v, (Gpu +w,w)
g = A A AVEAY TVA]
2 2 2
VA u, +WA

Note that for the point representation, uy = vy =w,=0.

The attenuation of the high-frequency response of
forces and moments due to the fact that lift cannot respond
instantaneously to changes iIn angle of attack (unsteady
aerodynamics) can be handled approximately through use of
the Kussner and Wagner lift growth functions,

In general, i1t Is not adequate to assume the aero-
dynamics may be represented by a point for the purpose of

259



simulating the effects of turbulence; there is a distribution
of turbulence about the airplane that causes a change in the
distribution of lift. The point representation has been
estimated to be accurate only up to:

Al s 1208,

W < 60c for tailless aircraft or for the wing only
or

< 0.1 VA/SLT

i
< 0.05 & for tailless aircraft or for the wing

C
only

)\2 > 7b
where :

AsAg = wavelengths in the longitudinal and lateral
directions, respectively

g = tail length
b = wing span
c = mean chord

Only one method of representing all the distributed
lift effects suitable for simulation has been found. This
method represents the distribution of turbulence linearly,
just as was done for the distributed lift effects of the
mean wind. The derivatives of turbulence with respect to
the coordinates are related to effective angular components
of turbulence:
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Effective Turbulence Angular Velocities

Wing Tail
T3y Pr= oz
ir = x dr = 5%

3 -
YT.. = }1T T - _ 8V':['
T oy T X
Prodp,Tp = effective body axis roll,

pitch, and yaw rates due to
turbulence with respect to
the earth

The effective angular velocities are generated through
matching the spectra for the turbulence derivatives and
their cospectra with the linear velocities of turbulence in
a manner similar to that used for generating linear
components of turbulence.

The effective angular velocities affect body axis
forces and moments in the same way as did the linear com-
ponents of turbulence. For example, the yaw rates of the
airplane with respect to the air mass are computed by

r, =t - Ty rw:;W-'_rT

Separate yaw rates for wing and tail are computed as
the effective yaw rates of the wind are different. A total
force or moment due to yaw rate is the sum of the contri-
bution of the wing force or moment derivative with respect
to yaw rate times the wing yaw rate with respect to the air
mass and the contribution of the tail to the force or moment
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derivative with respect to yaw rate times the tail yaw rate
with respect to the alr mass.

At lower and lower turbulence frequencies, the linear
representation of the distribution becomes exact. The
linear distribution becomes poor at high frequencies;
relating effective angular velocities to turbulence
derivatives produces infinite variances of angular velocities
due to the error of the representation at high frequencies.
The spectra for the angular velocities must be attenuated
at high freguencies or truncated.

A comparison of representing the distribution of
turbulence iIn this manner with the point representation has
been made and 1t is concluded that a factor of 10 improve-
ment 1n the maximum frequency to which the representation is
valid occurs for representing the longitudinal distributions.
This does not mean that the lateral and vertical distri-
butions of turbulence are insignificant, just that they
cannot be accurately modeled. However, from a simpler
analysis, 1t is concluded that the rolling moment due to
turbulence roll rate will generally be i1nsignificant compared
to the roll rate caused by the lateral component of turbulence.

The power spectra and cross spectra for turbulence
pitch and yaw rates that provide longitudinal distributions
of turbulence are represented by simply filtering the
vertical and lateral components of turbulence by
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9 - VA T
1 +4£T—s
'nVA
1 S
rT 5 vr
A 49,
1+ ""T-s
'ITVA

The terms 1/V, s wp and 1/V, s v, represent the derivatives
of turbulence with respect to the longitudinal coordinate:

5 dt _ 1

5 _
E'ﬁ&i_vAs

s = Laplace transform operator
The additional filter
1

1 +i$:£—s
attenuates the effective angular velocity at the maximum
frequency to which the representation is valid assuming
eight straight line segments are the minimum number that can
adequately represent a sine wave. That is, the effective
angular velocities are attenuated at a frequency corre-
sponding to a wavelength that is eight times the distance
over which the distribution of turbulence is provided. The
power spectra that result are shown in Figure 27. There are
also body axis accelerations due to distributed lift:
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Ju [ 1
° — T dx _ S
uT - X EE - 42/ uT
T
1+ —s
L. T\'VA
oV i 7]
g = —L dx _ s v
T ox dt T
42,,1,
1+ —s
L vaA .
W = Wy ax _ S
T 9% dit ) W
T
1+ —=
L™ T v,

To accommodate the linear accelerations due to turbu-
lence, the equations for ¢ and § are revised to

Uy - wydy

o =
2 2
uA +WA

2 . L] L ]
(uA +VA2)VA - VA(uAuA+wAWA)

™e
Il

2. [ 2, 2
VA "\/uA +Vy
where :
u, =u- (uW+uT)
Vp = V= (v tveg)

Wy =W - (WW+WT)

For the representation of the longitudinal distri-
bution of turbulence only (gust penetration), there is an
alternate technique based on the frozen field hypothesis.
The turbulence velocities may be considered to be frozen



with respect to the air mass as rates of change of turbu-
lence velocities are small compared to the speed and
dimensions of an aircraft. The turbulence velocities that
strike the airplane at its center of gravity will occur at
the tail a time At = JLT/VA later. The turbulence at the
tail may be represented on a digital simulator by storing
turbulence velocities occurring at the cg for the
appropriate time lag, then using them for turbulence
velocities at the tail. |If digital noise generation is used,
two identical random number sequences displaced in time by
At = ILT/VA may be used. Alternately, linear filter repre-
sentations for a transport lag may be used. Separate
buildups of angle of attack, sideslip angle, and dynamic
pressure are provided for the tail, and the forces and
moments due to the tail are built up separately from those
due to the wing-body.
The highest frequency to which gust penetration is
accurate using the transport lag method is
w < 0.1 V__A
C
which may not be as good as the restriction for the linear
distribution method of
w < 0.5 ZA
T
The two methods may be combined by separate wing and tail
representations using the transport lag plus a linear
distribution representation for the wing. The maximum
frequency then increases to

S
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The need to provide more and more accurate repre-
sentations, or rather the sufficiency of any approximation,
depends on whether the variance of airplane motion
parameters are significantly altered. Approximations that
can be shown to be conservative may be acceptable for
certification but provide economic penalties due to over-
design. Care must be taken to demonstrate the suitability
of assumptions. As the airplane descends, the frequency at
which the greatest turbulent energy occurs changes by a
factor of 50, drastically altering the response of the air-
plane. Generally, the lower the speed of an airplane, the
more accurate the representation required and the greater
the coupling between forces and moments along one coordinate
with wind and turbulence components along another coordinate.

WIND MODEL FOR AUTOMATIC LANDING
SYSTEM CERTIFICATION

The applicant should account for the aerodynamics of
the airplane being evaluated including aeroelasticity, plus
the distributed lift effects of steady winds and the longi-
tudinal distribution of lift due to turbulence, unless it
can be shown that these effects are insignificant.

The surface mean wind is defined as that at 20 feet
above the ground. The automatic landing system need not be
certified for surface wind speeds exceeding 25 knots nor for
tailwind components exceeding 10 knots. The probability
distribution of surface wind speeds (\720) IS presented in
Figure 7. The probability distribution for the direction to
which the wind is blowing, (Tp’w), IS presented in Figure 17
and is uncorrelated with the surface wind speed. The
probability distribution of atmospheric stability as defined
in terms of Richardson's number, (Rizo), is correlated with
wind speed and is presented in Figures 13 and 14. The
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stochastic combinations of surface wind speed and heading
and atmospheric stability may be generated by the model in

Figure 28.
Wind
hoading
probability
Ii -V
0 1
Random
number
generator,
uniform Wind speed
distribution probability
1
) ' i - v2(]
00 0 1
B e . R :
P, 1 2(
samples

Richardson's
number
probability

FIGURE 28 — PROBABILITY MODEL SCHEMATIC

The mean wind at any altitude is computed from the

equation:

u, /k
Ty (h) =Ty ( 0 Hm {0—%3-)+f(h/z' -Bgm/an

[N
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where

u, /k
— is given on Figure 1-7 as a function of R,
\Y 20
20
Uy /k
d = 800 =2 7,
\
20

h < d no matter what the actual altitude

1/%' is given in Figure 29 as a function of R,
20
f(h/2'), g(h/e') are described in Figures 3 and 8,
respectively.

The mean wind shear at any altitude, needed only to

define the distributed lift effects of the mean wind, is
given by

7 7 [ U /k-
oo - 2|20 18] 0[5 )
V20 g

where ¢(h/2"') i1s described in Figure 2 and where, once again,
h < d no matter what the actual altitude.

The power spectra for uncorrelated components of
turbulence in an axis system parallel to the earth but

aligned to the direction of the airplane's airspeed vector
are given by
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oy LH 1 (ft/sec)?2

@u(w) = TV 2 5/6  rad/sec
{1+ (1.339 Lch/VA) }
UHZLH 1+ 8/3(¢(1.330 w/V )2 (ft/sec)
) 27V LHZ A " “rad/sec
A {:1+(1.339 Lyw/Vy) }
2 2
o 1+8/3(1.339 L,w/V,) 2
_%v Iy VA . (ft/sec)
@W(w) N 2V, 57 L1/t rad/sec
{13(1.339 va/VA) }

where the spectra are defined such that

o0 ©o

2

Gﬂ = £ & (A = [ & (w)dt
= variance of a horizontal component of turbulence
0.2 = 1 o (u)dw
w s u
= variance of the vertical component of turbulence
and where
u, /k
= 0.4V i o) [V
v 20\ 7% d u*‘)

o defined on Figure 23 is a function of h/%'

*
o]
H
Oy =| =— |0
H Oy \
°H
o given as function of altitude on Figure 25.
Vv
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b , h < 1000 ft
bv = ¢ 1000 ft , h > 1000 ft

Ly = Lyog/op?

The spectra are well represented by generating
turbulence components equal to passing uncorrelated
Gaussian white noise through the filters in Figure 20.

Body axis components of mean wind, mean wind shear,
and turbulence are found by means of the transformations iIn
Figure 16.

The interrelationships between the components of the
wind model and the other elements of the simulation are
described i1n Figure 30.
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