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ABSTRACT

The testing of Darrieus wind turbines has indicated that under certain

conditions, serious vibrations of the blades can occur, involving flatwise

bending, torsion, and chordwise bending. It is the purpose of this paper

to develop a theoretical method of predicting the aeroelastic stability of

the coupled bending and torsional motion of such blades with a view to

determining the cause of these vibrations and a means of suppressing them.

i. Introduction

The troposkien type of vertical-axis wind turbine, Reference i, embodies

flexible curved blades connected at each end to the top and bottom of a verti-

cal shaft which permits the blades to rotate about the vertical axis under the

action of the wind. The curve of each blade is ideally that of a troposkien;

i.e., the shape taken by a flexible cable of uniform density and cross section

whose ends are attached to two points on a vertical axis, when it is spun at

a constant angular velocity about the vertical axis. In this manner the bend-

ing stresses in the blades are eliminated.

The testing of such devices has indicated that under certain conditions,

serious vibrations of the blades can occur, involving flatwise bending, torsion,

and chordwise bending. It is the purpose of this report to develop a theoret-

ical method of predicting the aeroelastic stability of the coupled bending and

torsional motion of such blades with a view to determining the cause of these

vibrations and a means of suppressing them. The present analysis is an exten-

sion of that of Reference 2.

2o Flatwise Bending Vibration of the Ideal Troposkien

Consider the rotating troposkien-type rotor blade shown in Figure i.

The bending moment at x is given by

{Lyo+y%%;]_ 2 y(_)} m(_) (x-_) d_ - H[y(o) - y(x)]M_x)

where

= rotor rotation&l speed

m(_) = rotor blade mass at _ per unit of x-distance

H = blade tension force at mid-point between blade ends

Differentiating the bending moment equation twice with respect to x,

_2M(X)_x2 = [yo+Y(X)] _2m(x) - y(x) re(x) + H _2Y_x2
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From the theory of elasticity for the bending of slender beams,

M(x) = EI _2y

3x 2

Therefore

32M(x) 32 %--=-- [EI ]
3X 2 _x 2 _x

Then the blade bending equation of motion is

32 % 32Y-- [EI ] - H-- - _2m(x) (yo+y) + m(x)y = 0
3x 2 _x _x 2

(1)

Note that m(x) dx = m(s) ds, where s = arc length along the blade, and

m(s) = m, a constant. Then

ds _x 2 1/2re(x) = m _x = m [i + ( ) ]

Equation (i) is the equation of the vibrating blade: the steady-state

case is described and solved in Reference i. For present purposes, consider

the equation which results when it is assumed that y = y(@):

-- [EI -H- - _2m(8) [yo+y(8)] + m(8)y(8) = 0
Z@2 _@2 3x _x _@2 3x

(2)

00

Let y = n=_l yn(@) gn(t)

-H

Substituting into Equation (2), there results

2

32 _ 3 Yn (_@)2 ._)e 2
[EI n_ 1 -- _x gn ] (_x)_O2 302

_2yn 38 2

n=l 3@2 (_x) gn- _2m [Yo + nil Yn gn ] + m n[ 1 Yn g n = 0
(3)
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Assume free vibration of the blade in the nth flatwise mode in a vacuum:

i_ t

gn = gn e n

i_ t
2- n 2

gn = -_ngn e = -_ng n

Substituting into the nth term of Equation (3), i.e., the equation for

free vibrations in the nth mode,

_2 2 2
-- [EI _ Yn (_@)2 (_@)2 _ Yn (_@)2 2

_@2 _@---2- _x gn ] _x - H -- gn - _2m [Yo+Yn gn ] = m w Yn g_@2 _x n n

(4)

Then including all modes, substitute Equation (4) into Equation (3) to obtain

oo CO

m n_ 1 Yn gn + m n=_l 2 Yn gn = 0 (5)

This is the equation for flatwise free vibration in a vacuum of the rotating

ideal troposkien blade.

3. Flatwise Bending Vibration of the Approximate Troposkien

Reference 3 describes an approximation to the troposkien shape consisting

of _ev=_ght and circular-arc segments. In this instance, the origin of the axis

system shown in Figure 1 is located at the center of the circular-arc segment,

and the distance Yo of the origin to the axis of rotation is determined by the

geometry of the straight segments.

Reference 4 suggests the following approximate mode shapes for the fiatwise

vibration of non-rotating circular arcs of radius R with pinned ends:

(n_^
Yn = R sin _--}@ (6)

This expression was shown in Reference 2 to be an approximate solution to

the eigenvalue equation describing the vibration of rotating circular arcs, for

the case _ = _ and yo = 0.
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The vibration frequencies are given by the expression

2 2 _2= _ + K (7)
n n n

o

where _ and K must be determined experimentally, or numerically by finite-
n n

o 2
element analysis. For the special case of Reference 2, K = n - i.

n

Then Equations (5), (6), (7) describe approximately the flatwise free

bending vibration in a vacuum of the circular-arc segment of the rotating

approximate troposkien blade.

4. Torsion/Chordwise Bending Vibration of the A_proximate Tro_oskien

Reference 5 considers the torsion/chordwise bending vibration of non-rotating

circular arcs. The forces due to rotation are shown in Figure 2. Adding these

forces to the equations of Reference 5, in the nomenclature of the present analysis

the torsion/chordwise bending equations become, for the circular-arc segment of

the approximate troposkien blade,

,v mR 4

z - RS'' - k (z'' + RS'') EI 2 (z - z_ 2 2_ H z'')
.... --_ (8)

mR

Z'' - R8 + k(RS'' + z'') = 0 (9)

where 8(8) = blade torsional displacement

z(8) = blade chordwise bending displacement

R = radius of circular arc

k = GK/EI 2

GK = torsional stiffness of blade section

EI 2 = chordwise bending stiffness of blade section

m = rotor blade mass per unit length of blade

Note that flatwise and torsion/chordwise bending are coupled dynamically

only by the Coriolis forces 2_ym and 2_zm.
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Let z = n=_l Zn(e) f (t)n

= n_ 1 8n(@) fn(t)

Substituting into Equation (8), and neglecting the Coriolis coupling term

at present, there results

,vf "B' (n n' "B1 Zn - R _ f - k Z__ z f + R _ ' f )n n 1 n n 1 n n 1 n n

mR 4

EI 2 (n_l Zn fn _ _2 n_I_ Zn f H2 n_l= Z''n fn ) (i0)n mR

Assume free vibration of the blade in the nth torsion/chordwise bending mode in

a vacuum:

i_ t
f = f e n
n n

i_ t
n -2

n n n n n

Substituting into the nth term of Equation (i0), i.e., the equation for free

vibrations in the nth mode,

EI

mR 4' [zlVn fn - RB''n fn - k(Z''n fn + RB''n fn )] + _2m Zn fn + --z_RZ''n fn

9

=-m z _- f (ii)
n n n

Then including all modes, substitute Equation (ii) into Equation (!0) to obtain

m z + m _ z f = 0 (12)
n i n n nl n n n

This is _^_**=equation foz _ torsion/chordwise free vibration in a vacuum of the

rotating approximate troposkien blade, not including Coriolis coupling with

flatwise vibration of the blade.
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Reference 2 suggests the following approximate mode shapes for the

torsion/chordwise bending vibration of non-rotating circular arcs for the

case e = _ and Yo = 0:

z = R sin n8
n

8 n = sin n8

C.

These expressions were shown in Reference 2 to be approximate solutions to the

eigenvalue equation describing the vibration of rotating circular arcs. Note

that they satisfy only the pinned-end boundary condition, and are therefore

even more approximate for other end conditions, such as the elastic restraint

of the curved segment by the straight segments of the approximate troposkien

blade.

For the case _ _ 7, the following approximate mode shapes will be used,

as for the flatwise modes:

z n = R sin (_)@ (13)

= sin (n_)_@8n

C.

The vibration frequencies are given by the expression

(14)

_2 -2 _2= _ + _, (15)
n n n

o

where _ and K must be determined experimentally, or numerically by finite-
n n

o 2_1.element analysis. For the special case of Reference 2, K = n
n

Then Equations (12), (13), and (14) describe approximately the torsion/

chordwise bending free vibration in a vacuum of the circular-arc segment of the

rotating approximate troposkien blade.
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Note that Equation (9) expresses the structural coupling between torsion

and chordwise bending of the circular arc. Substitution of Equations (13) and

(14) into Equation (9) yields the nth mode structural coupling coefficient for

circular arcs having pinned ends,

R8 (n_) 2
Cn=--n_--

n

l+k

l+k (n_) 2

(16)

This approximate relation was investigated experimentalij in Reference 6 and

found to be valid for the troposkien blade with pinned ends for the case n = 2,

if an effective value _eff = 2.8 is used to account for the flexibility of the

straight segments of the blade.

For the case of clamped ends, the approximate nth mode structural coupl_ng

coefficient for circular arcs with clamped ends is shown in Reference 6 to be

2

Cn = [ 0.75 (n_) l+k

sin2(nn)__ @ 2.25] _-- l+k(_)2

where the effective value _eff = 2.8 again applies.

Equation (16) is believed to be a reasonable approximation for the structural

coupling coefficient of practical blade configurations in the absence of a more

precise determination by finite element analysis of the blade.

5. Blade Flutter Equations

Adding the Corio!is forces due to blade bending, and the blade aerodynamic

lift force, as shown in Figures 2 and 3, Equations (5) and (12) become

2 _ = _ ___ m v 5 + _ m _ v Q + Z. 2r_-_ z f 1 dL sin6 (17)
n=l "n _n n_l n -n -n n=l n n _ u0

_ _2
+ _i m Zn _ + _ m z f = 0 (18)-n_ 1 2m_ Yn gn n n n=l n n n
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where chordwise aerodynamic forces are neglected.

Using Equations (6) and (13), multiplying Equations (17) and (18) by

n_

R sin(_--)8, and integrating from 0 to _, the coupled equations of motion in

the nth mode are obtained:

In gn + I 2n n gn + 2In_ _n = o sin6 sin(_)8 dL_de

f -2
-2ln_ + I + I _ fgn n n n n n

= 0

= R2where I _ m sin2( )@ d@
n o

(n_ sin(_)8 dOand noting that °_ sin _--)@ = 0.

Following Reference 7 and Figure 3, the aerodynamic lift for the wind

turbine rotating in still air at constant rotational speed _ is

1 dL = _ 1 pac 2 _ 1
R d8 8 _Yl - _ pac_YlC(k) [9 sin6 + _yl 8 + (0.5c - XA)_]

where p = air density

a = blade section lift curve slope

c = blade chord

8 = blade twist angle (postive nose down) (see Fig. 2)

Yl = outer blade undisturbed shape = Yo + R sin_

C(k) = Theodorsen's lift deficiency function

x A = distance from section aerodynamic center to blade elastic

axis, positive when A.C. is forward.

Neglecting the _ terms since c << R, multiplying by R sin(n_)8 and dividing

I _2, there results
n
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__ d"1 I W sin_ sin )8 _ d8

I _2 o
n

where C
n

RB
n

= -- as before.
z
n

= - m_g n - m_Cnf n

Then

m_ = _ C (k)

+ (n_)
o_(Yo/R sin_) sin2_ sin2 _ - @ d8

2(_)@ d@

ms : _ C-7_

o_(Yo/R + sin6) 2 sin6 sin2(_)@ d8

o_Sin 2 n_(_-)8 de

pacR
where 7 =

m

C(k---_= typical value of C(k) evaluated at Yl = Yo + R sine (see Appendix),

and the contributions of modes other than the nth are neglected.

Dividing Equations (23) and (24) by I _2 and including the aerodynamic
n

terms,

g__n gn 2

_2.+ m_ _-- + V n gn + 2 _ + msCnf n = 0

(21)

gn fn _2 =
- 2 _-- + f_-_ + n fn 0

(22)

where

2 1/2
n

V ___nnn _ = [( ) + K ]n

Gn 2 1/2

_n=._ -= [( ) +_ In

These are the flutter equations for the wind turbine rotating in still air.
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5, Calculation of Flutter Boundaries

Assume the following solutions to Equations (21) and (22):

gn = gn ev_t

V_t
f =_ e
n n

where v = _ + i _. Assume at present that C(k) = i.

Substitution of Equations (23) and (24) in Equations (21) and (22)

results in two coupled homogeneous algebraic equations. For a solution to

exist, the determinant of coefficients must vanish; i.e.,

(23)

(24)

( 2 + m.V + v 2) (2V + msC n)g n

- 2_ [2 + 521
n

= 0

Expanding the determinant yields the characteristic equation of the system:

AV 4 + BV 3 + CV 2 + DV + E = 0

where the coefficients are combinations of the system parameters. Then by

Routh's criteria for system stability

A, B, C, D, E > 0 (25)

and BCD - AD 2 - B2E > 0 (26)

-2
It is now possible to determine the values of V

n
required to satisfy conditions

(25) and (26) for a given blade configuration. Since

2
n

2 (__)= + K
Vn n
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and

2
n

,_2 = (._._) +n n

the values of rotational speed at which flutter or divergence will occur (_F)

are then specified for given non-rotating flatwise and torsional frequencies

and
n n
o o

In the present case, the characteristic equation is

4 V 2 (m_5_ V 2 5 2V + m.V 3 + (4 + + _2)V2 + + 2m 6 Cn)V + = 0
g n n n n

Then conditions (25) and (26) determine the rotational speed at flutter, _F"

Applying condition (25), flutter occurs when

-2 m6
V = - 2 -- C (27)
n m. n

g

Applying condition (26), flutter occurs when

2 C 2 4m 8 m. C - m S m. C U 2
52 = 2m8 n - 9 n

n n (28)

n 2m 2 - m 8 m. Cg g n

6. Application to an Existing Blade

The theory developed above is now applied to the preliminary prediction

of the flutter of the blades of the Sandia seventeen-meter wind turbine. For

this turbine the parameters for the geometry of the circular arc portion of the

blade are

Yo = 9, !0 ft.

R = 18.33 ft.

= 2 rad.

For this case _t can. be shown that m E = 1.575 m.g

Equation (16) for n = 2, k = .0512, _eff = 2.8 (Ref. 6):

C =-4.2
n

Also from
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Applying Equation (27), flutter occurs when

-2
V = 13.2
n

From Reference (8), for the seventeen-meter blade,

-2 (324)2

_2 = _ + 7.70

-2

Equating and solving the two expressions for v2'

= 138 rpm

Applying Equation (28) flutter occurs when

-2 2

_2 = 13.2 + 0.768 _2

From Reference (8), for the seventeen-meter blade,

2 215 2

_)2 = (_--) + 6.76

Then = (215)2
-2 18.4 + 0.768V2

-2

Equating and solving the two expressions for 92'

= 80.4 rpm

Here Equation (28) is evidently the critical case.

Final prediction of the flutter speed requires accurate determination of

the structural coupling coefficient C by finite element analysis.
n

7. Conclusions

(i) Coriolis forces provide the dominant coupling between flatwise bending

and torsion/chordwise bending of the blade. (Also see Reference 2).

(2) Blade flatwise bending velocity and blade torsional displacement

contribute the dominant aerodynamic forces acting on the blade.
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(3)

(4)

Accurate determination of the structural coupling between blade

torsion and blade chordwise bending is essential to blade flutter

prediction.

The following parameters determine the rotational speed at flutter

for troposkien-type blades:

(a) blade geometry Yo" R, _ (see Figure i).

(b) blade torsion/chordwise bending structural coupling coefficient

C 2 for the second mode.

(c) blade rotating and non-rotating flatwise bending frequencies

_2 and _2 for the second mode.
o

(d) blade rotating and non-rotating torsion/chordwise bending

frequencies _2 and _2 for the second mode.
O
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DISCUSSION

Comment: I would like to reemphasize the significance of Professor Ham's

conclusions that a) quarter-chord mass balancing of the turbine blades

is unimportant with regard to flutter speed location, and b) increasing

torsional stiffness is an effective method of increasing flutter speed.

The impact of the first conclusion on design and fabrication of low cost

blades is very favorable, and knowledge of the second conclusion is

valuable to the designer. At the same time, I would like to de-emphasize

the threat of encountering flutter in any particular blade design. Based

on Professor Ham's analysis, blade property evaluation, field experience,

and consultation with fabricators, it is relatively easy to design a

blade that will not flutter.

Q: Do you agree with R. Reuter that it is relatively easy to design

Darrieus blades which do not flutter in their operating regime?

A: Yes.
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Q: AmI correct in presuming that the forced response to periodic stalling

should also be independent of the chordwise c.g. of the blade sections,

and also of the chordwise shear center?

A: Yes.

Q: What were your assumptions relative to the aerodynamics; was the

free stream velocity zero? If not what of the resultant periodic

coefficient?

A: In the analysis the free stream velocity was assumedto be zero. If

this were not so, harmonic airloads would be generated and would

cause a forced blade response at various integral multiples of rotor

speed. However, in a linear analysis, this forced response is uncoupled

with any self-excited motion such as flutter. Experimentally, model

blade flutter occurred at the samerotor rotational speed whether or

not there was an incident wind.
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Figure I. - Blade geometry.
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Figure 2. - Blade dynamics.

92



Rm

I
T

Figure 3. - Blade aerodynamics.
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