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1. INTRODUCTION

Environmental charging of geosynchronous épacecraft to potentials of
thousands of volts has been experimentally observed. Previous atternpts to model
spacecraft charging have employed téchniques which are limited to simplified
geometries and symmetry asSumptions. In this papér, wu describe a héw compu-~ :
tational rhodel which can simulate the charging of complex geometricdl objects in
three dimensions. We present two sample caleuldtions. In the first problem, the
capatitance to infinity of a complex object gimilar to a satellite with solar array
paddles is calculated. The secoud problém concerns the dynsmical charging of &
conducting cube partially covered with a thin dielectric film. In this calculétion,
the photoemission results in differential charging of the object.

2. THEORY

The tnteraction of a satellite ard the magnetosphére can be separated into two
parts. The first is the particle deposition, charge transport, and electrical
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propérties associated with charged particles impinging upon the satellite. The
gecond part is the self-consistent amblent and photoplasma interactions with the
electric field. The field must satisfy Boundary couaitions on the satellite consist-

— T

ent with the charge deposited on the satellite. To solve both parts of this problem .

completely and self-consistently for general, ambient plasémas is a formidable
task. Here, we shall be concérned otily with a liiaited (albeit very important)
range of plasma environmenis (a hot magnetosphere). As a result, certaifi appro-
ximations reduce the magnitude of the problem.

The timescales of phenomena which 8ccur oh a spacecraft in the magneto-
sphere range from nanoseconds to hours (Table 1). The lower end of this range
is asgociated with effects such as the discharging of électrical circuit elemerts
and electromagnétic wave phenomena. At the upper end of the range, slow vari-
ations in the magnetosphiéric enviroument are important. In this paper, we shall
be concerned with the intermediate timegcale range, from milliseconds to seconds.
This range is determined by the charging time of the surface of a spacécraft by
magnetospheric electron currents.

Table 1. Charactéristic Times for Charged Sp4cecraft in the Magnetosphere

Phienomenon Time
Breakdown in circuit elements TR~ 1079 - 1078 sec
Charging of bare conducting surface L 103 gec
Differgntial charging of thin dielectric T~ 1sec
overlying conductor
Charge rédistributioft in a dielectric TrRp< 100 sec
Change in environmental conditions TE 21t ~103 sec

Before éntering upon the analysis of these phehomeéna, it is useful to set the
gcale of the various processes itivolved. These are listed in Table 2, and, ir each
cage, tHe treatments which must be applied to describe the relevant field and
particle pienoména are indicated. In the thagnétospliere, the plasma sheath sur-
rounding a spacecraft réquires a particle description. This {s necessary on
accouiit of thie very long mean free paths and long Debye lengths A which occur
in thése hot, diftuse plasmas. Electromaghetic treatments are rieeded only for
describing effects such as transient surface current phehoinéna résulting from
arcing excitatioris. Particle dynainics musat be followed if sheath plasmad
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Table 2. Collisionless Satellite-Plasma Sheath Models, L is the Spacecraft
Size, up 18 the-Plasmu Frequency and A s the Debye Length

ES

& Particle
Model Flelds Treatment Tiniegcale
. 1. Electromagnetic Maxwell's equations Dynamic L/c
. ~10"9 gec
: 2. Quasistatic Poisgon's equations Dynamic w1
- (L << c,.,p'l) ~ 1079 gec
é 3. Equilibrium {a) Poisson Static T <t<rT
53 (b) Laplace >10 © sec
(A >> L)
3 1,2

=y oscillatory behavior is important. On a longer timescale, the plasma is
characterized by an equilibrium-particle distribution. 3:4 This is the range which
i8 considered here. Finally, at the longest timeseale, the behavior i8 determinéd
by changes in the environmént or redistribution of charges within dielectrics.

We shall now describe thé considerations underlying our analysis of the inter-
mediate timegcale phénomena. Let us consider a spacecraft with a spherical
conducting surfdce. With a radius R (em) und a charging cutrent density

j (A/cm?), the time taken to charge the spatecraft.to.a potential V is
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i\ where Ca° is the capacitance of the spacecraft with respect to infinity, and is
§ . given by
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} l With the following values j
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e R = 100 cm
v =108y '
2 § = 0.5%10"9 A/cm?
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the charging time (s

-12
~ 10 7%y
‘rc— 4n

~2X 1079 sec

However, on most spacecraft, large areas are fiot bare conductors, but are
coveréd by thin, insulating dielectrics overlying conducting substrates. In these
cases, the capacitance of the dielectric, Cp, is important, rather than the capaci-
tance with respect to infinity. The dielectric capacitince is

CD ~ 4—1lrd esu/cm2
-12
~ 10 2
173 F/cm

With a thickness of 40 mil {d ~0. 1 cm), the charging time Tp i8 new

. L0y 107
D . . =]
and j 1.2 X0.5 X 10
~ 1.8 setc

The voltage buildup between a conductor and a dielectric ifisulator thus occurs
very much more slowly than thé buildup on a bare conductor. As a result, differ-
ential charging of a spacecraft takes place on a timescale longer than charging.
Later, we shill describe the development 6f such a plienomenon over the time-
scale range T < t< 7.

Under the conditions found {n magneétosphéric substorms, essential simplifica-
tions can bé mide in the rmodéling of the ck »gihg, In particular, we démonstrate
below for hot, low density plasinas where

AD >> L,
Ay is the Debye length atid L a characteristic object dimrension, that 1f surface
potentidls on the gdtellite aré of the ofdér of the plasma temperature, one miakes
only a very small error by neglecting the ambient space charge derisity i
Poisson's eguation. This approxiniation, wheti justified, gréatly reduces the
amourit of computation riécessary to determine satellite potentials.
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I.et us exarnine th» effect of a large ambient charge dénsity fluctuation in a
6 = 10 keV, ny @ 10 em*3 magnetospherie plasma. The Debye length of such a
plasmd is given by

Y ~ T -ﬁ ~ 4
p = M:!‘/ne ~2X10" cm

=200 m,

It has been sl:mwri5 that in equilibrium plasmas, maximum charge variations are
of order of the ambient charge density. It follows then that the magnitude of a
potential associsted with a sphericéal charge density fluctuation of 1 m in radius
i8 4t most

b~ % =%nr2 he¢ esu
- %f'm“ X 10 X 4.8 X 10~ 10
~ 3 % 160~ statvolts

~6 X 10'2 volts

which is several ordeérs of magnitude less than thé satellite surfacé potentials.

Another useful quantity to examine 1§ thé relative amount of charge on a
sphere of a meter radius charged up to the ambient temperature to the amournt
of space charge such a volume would contain. The surface charge on a sphere of
radiug r is

. 18
Agurface " T4 = &

The space charge in such a plasma is

24,3
%Ylasma yrrong

The ratio of these two charges is

P 2 2 \2
‘_‘glasma . %” 2 n % ‘é‘({'ﬁ)

Uurface
<107 .
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Thus, we have strong reasons to belicve that the gross patential features
aurroundini ah object whosc dimensions arc much smaller than a Debye length
nnd whose surface potentials are comparablé to the plasma température can bé
~aleulated ighoring ambient (as distinct from phiotosheath) space charge cifects.

3o MOMERICAL TECHUNPUES

The dynamical model consists of twe parts, namely; (1) the calculation of
surface charge densities and net charging currents, given a potential distribution,
and (2) the calculation of the poteutial subject to free space and appropriate satel-
lite boundary conditions. Brief descriptions of the techniques used are given
below. Further details will be presented at a later date.

21 Surfuce Charging Caleulation

We roqulre the incident and outgoing currents ]m. Jou
face points Ter o The net charging current is then

{» respectively at sur-

Jnet o Jin(.) JOut(ro’
where

. @) = fdav v.f. &, TF)

Jin'To 0 o0 'in Vo' Fo

The distribution fout is assumed known at the surface t = ;o and fin is known at
positions far away from thé spacecraft. Since wé are looking for equilibrium
solutions of Vlasov's equation, the distribution functions satisfy

df .
a-f--O

along particle trajectories. The object thén is to calculate the trajéctoriés of a
selection of particles. Siuce we know the distribution function f far from the
satellite; automatically we know the distribution, since f is constant alohg a
given tirajectory.

The Pm‘ker-Whipple6 inside-out scheime makes use of this fact. Trajectories
are initiated at the spacecraft surface and are trdced backwards through the
potential field to distant points where the distribution, f(\?) is known. One advantage
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of this scheme is that orbits which do not have an endpoint on the spacecraft sur-
face are avolded. The néglect of such orbits is strictly valid only {f the volume
spacecharge has no {nfluence on the particle trajectories.

It should be emphasized that the machinery {s contained in our numerical
technique for calculating ambient charge densities by ¢onstructing distribution

functions, f, in euch spatial zone and taking its zeroth moment (as opposed to j§,
whic¢h is a first moment)

p =ffd-\7

However, presently, we do not calculate this term, based upon the arguments
presented in Section 2.

3.2 Potential Calculation

In calculating the potential in three dimensions around an arbitrary object,

a gridded method must be employed since the specification of the surface is far
too general for analyticil or multipole techniques. Since satellites are the order
of meters in length, we need at least 10 cm resolution 45 an uppér bound in the
vicinity of the spacecraft. However, for determining particle orbits, the fields
hundreds of meters away must also be known. In ordeér to keep &torage down to

a réasonable lével, some type of variable gridding must be employed. This
precludes the use of any straightforward Fourier transform techniqué. One
technique for achiéving high resolution in the region around the object and &till
being able to handle vast quarntities of space i§ through lecal mesh refinemerit.
Finite difference approaches, however, have difficulty in mesh transition regions,
especially when grid lines are terminated, and geneérally lose an order of accuracy
in such regions.

A8 a result of this, we decided upon a finite element approach using right
parallelepiped elements and blended linear univariate edge interpolants. This
permits the same degree of accuraty over the entire mesh, even though the mesh
elements differ in size. It results in the sténdard trilinear interpolation scheme
for each element.

The fundamental approach is.to solve Poisson's equation
2 .
V ¢ = .41rp (1)
by solvirig the assoctated varidiional principle
0 T ’fdv [(78)° + 4mp0 ) + de ¢ (dn + Q) é (2)
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The first-terin in the integrand corresponds to the Laplacian operator. The
second term 18 the volume spacecharge contribution. The remaining termBs are
surface contributions, referring to the surface charge and electric field, res=
pectively.

In the variational caleulation, we use locally defined basis sets, that is,
trilinéar interpolants within each cube-like element. Since the finite element
équations are derived from Eq. (2), different mesh volumés automatically receive
the correct variational weight. This ensures the maintenance of accuracy through
mesh transition regloris. The problem of local mesh reéfinement is approached by
having grids within grids, that is, a chinese doll-like hierarchy of grids shown
gchematically in Figure 1. The theory of this technique is discussed in Birkhoff
et-al, 7 and Cavenrdish. 8 Inorder to have high computation speed, the litiear
equations resulting from the variational principle (Eq. (2)) in the interfice region
were coded up explicitly in a series of thirteen gsubroutines. Thesé same routines
are used for interfacing any pair of the meshes.

Figure 1. Crosg-Section of Grid, Showing First Four Embedded Meshes

4. SAMPLE CALCULATIONS

To demonstrate the capabilities 6f our 3D mbdel, we have performed two
sample calculations. First, we calculited the capacitarce, surface charge
distribution énd electric flelds arbund a geometrically coniplex, conducting satél-
liteltke object. The object {8 shown in Figure 2, and the probleni wad griddéd as
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Figure 2. 3-D Model Spacecraft for Capacitance Calrulation. .

shown in Figure 1. While it is electrically simple, being an equipotential surface,
it has sufficient geometrical complexity to demonstrate some of the features of

our TRILIN model. The overall length of the object ig 6 m, with 20 ¢m resolution
on the surface. The outermost grid is 51 m long, and there are about 30, 000
variables in the problem. The outérmost mesh had monopole (¢ = %) boundary
conditions imposed. Usirig an SOR routine, this problem took less than4 mints
solve 6n the CDC 7600 at Kirtland Air Force Base.

The capacitance caléulated for this object is 83 pF. The surface area of the
object is almost four times as great as that of a sphere of équivalent capacitarice
(r =75 em). If placed in an environment with a ¢harging current of 109 A/em?2,
this satellite-like ubject would tharge to 10 keV in about 3 msec. The charge
distribution is nonuniform, as expected, with most of the charge on the pénels
which have only 58 percent of the surface area. With the satellite charged to
10 kV, the total charge on the surface is approximately 2500 esu (~0. 9 uC). The
average normal electric fields on each panel in such a problem is ~37.5 V/em
while, on the body, it ranges from 20 V/em to ~40 V/cm.

The second sample calculation ig of a simpler geometry, but has considerable
physical complexity. The object consists of a conduéting cube, 60 cm on an edge,
partially covered with a 1 mm {nsulation skir of dielectric constant unity.

Figure 3 shows & picture of the object. The object is placed {n & 10 keV,

hy = 10 cm =3 electron plasma with an assumed neéutralizing background. By the
batkwdrd trajectory technique described above, inéident electron currents on the
object dre determinéed. Charge impinging upon the dielectric skin is assumed to
stick while charge landing on the exposed conductirg surfaces is allowed to
distribute itself in order to maintain the conductos as an équipotential surface.
The potential on dielectric surfaces is related to thit ori the conductor by the iine
integral of the electric field thirough the surface. To add adymimetry and cause
differentiél charging, we assurie a light source at some large distance along the
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positive x-axis. This light gives rise to a ve

photdcurreént of 4 nA/ ¢m? which-acts to dis= /
charge that surface.

Initially the potential on the surface of
the satellite rises very quiekly, This cor- . B o
responds to surface charging on a timescale 77 /
determined by the net capacitance to infinity. Z /;
However, after about 50 msec, the differen-
tial charging of thz ¢onductor and the front
ahd back dielectri~ surfaces dominate the
calculation. The poténtial at three loca-
tion& as a functioh of time is plotted in g;ﬁ:fafibns'p?(\:if; z:lf:si;tl)gdl)ayrx;:mi;cal_
Figure 4. Wé notice how the surface bare metal, th. est of the object is ]
dielectric continues to charge, albeit at cover ed with a dielectri¢ film

o e o i

X

— — — — ——— —— — — ———— ——

e = Non-illumiriated dielectric
Conductor !
——+—— Illumiinated dielectric

Potential (kilovolts)

ST g.10 L 0,30 5.35 i

Time (deé) !
Figure 4. Compirison of Charge Buildup at Three Different Sections of ‘:
Nluminated Spacecraft
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a very slow rate, while the front surface dielectric dischai'ges substantially.

The conduétor also discharged, but more slowly than the illuminated dielectric,
Figure 5 shows a potential contour map through the x,y plane. We can see that
the conductor is more than otie thousand volts negative with respect to the front
surface dielectri¢, while it is only a few hundred volts positive with réspect to
the rear surface dark dieléctric. This implies that the conductors surface charge
under the illuminated dielectric is of negative sign while underneath the rear
dielectric the conductor's surface charge ig of positive gign. The potential dif-
ference between front and rear dielectrics is almost two kilovolis. Fields in the
front dieledétric are greater than 10t volts/cm.

L

2.2 ¥y
NN
L)

Figure 5. Potential Contour Plot Nedr the Space-
craft after 0.27 sec. Sunlight is incident from
the right (x-direction)

5. CONCLUSIONS
Thé prediction of surface potentials ori complex satellites is a formidable

task. Material properties, geométricdl éffécts, ambient plasma, and pliotoshieath
space chargé all play rolés in determining surface potential distributions.
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However, for the range of plasma parameters frequently found in magnetospheris
substorms, it.i8 justifiable to neglect the self-consistent ambient plasnia space
charge. This agsumption permits the calculation of potentials in asymmetric
thres-dimensional geometries. The resultant caleulations demonstrate such
effects as net object charging with respect to infinity, differential charging, and
These first calculations presented here
terial properties, ion currents,
nal spacecraft charg-

charge redistribution on conductors.
employ large gimplifications with respéct to ma
etc. However, they show that the concept of three-diménsio

ing calculations is8 a practical one.
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