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1. Modeling of Spacecraft C_arging

EldenC. Whipple,Jr.
Univetsityof CclJi|omio

I.a.J611a,C_.

1. Till.: CO'_CEPTOF _,IOI)ELI_,|;

Webster's New CollegiateDictionaryI has the followingdefinitionfor the word

"model," inthe sense it*which we willbe using it:"Model... a system of postu-

lates,data, and infereneespresentedas a mathematical descriptionof an entityor

a stateof affair's."The reason thatwe are interestedinmodeling isthatwe would

liketobe ab1_to predictan effect;namely, spacecraftcharging. A model may be

regarded as a mathematical representationof the llnkbetween cause and effect.

Ifwe can identifythecause, th@nthe model provides a method forcalculating

'+_qtis, pt,edicting)the effectsaboutwhich we are cot*cet'ned.

There are dlfferenLkindsof models, which carlbe convenientlyarranged into

three categories:it) statistieaImodels; (2) parametric models; and (3} physical

models. A statisLicalmodel isusuallythe firstkindof model thatisarrivedat in

desct-ibinga phenomenon. For example, ifitiscloudy,the probabilityof rainis

increased,because we know thatcloudsand raincorrelate. StatisHcalmodel_

u_ing correlationcan be usefulbecause theycat*provideclues as towhat isthe

cause for a phenomenon. But theycan alsobe misleadingbecause the correlation

may be between t_,oeffects,or, thecorrelationmay be coincidental.An example
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of a corr_latioM _el_ted to spacecraft charging is shown in FigUre,,;I and 2.

Spacecraft anomalies occur more frequently between 0000 and 0600 hoots in local

tl_e. Spacecraft charging events also showy the same pattern. These ligatures are

taken from paper's by Mci_h@rson0 Cauffman and Schober, 2 and from Reasoner

: et al. 3 The correlation between the two patterns provides evidence that the two

phenomena - spacecraft anomalies and apacecra_t charging - may be related.

The most useful kind of model is one that is based on understandin_ the physics

of the actual processes that are involved in the phenomenon. Frequently, the ,b.
___.

processes are complicated or are only imperfectly Understood. In such a case, a

_, parametric model may be use_l. Here, one or more physical parameters are

selected which characterize the physical processes, and an approximate model is

constructed based on these parameters. .An e_ample o_ such a model is shown in

:1:11, Figure 3 where the electron current to a sphere in a plasma has been calculated

with the assumption of a spherically symmetric Dcbye potential distribution. 4 The

: : current depends upon the Deby_ length parameter, as w_ll as upon the plasma den-

sity and temperature and the sphere radius. This calculation is not exact but it
[-

: gives the correct qualitative behavior and is much easier to calculate than the exact

,_ current.
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_, Figure 1. Local Time Dependence of Circuit Upset for Several DoD and Corn-
' merclal S_iteilttes
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Figure 3. Electron Current to a Sphere _ 6
with an ASsumed Debye Potential _o

Distribution. The parameter L is the ratio _ 5 . •of _ne Debye length to the sphere radius o
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2. ',IOBEI,I,_(;_P _I:ECII_,FI' I:11_tlII;IM,

There are fotircategories of models for spacecraft chal'ging, and McPherson 5

has identifiedthese four categories with four regions in the spacecraft-environ-

ment configuration, as shown illFigure 4. Region l is the undisturbed plasma far

away from th_ spacecraft. This region may be assumed to be free from fieldsdue

to sheath effects. It is the source region fo_"the plasma particles which make up

part of the spacecraft charging currents.

Region 2 is the plasma sheath region x_,herethere are quasistatlc electric

fields. These electric fieldsare caused by the local charge distributions {space

charge and surface charges) and in turn affect the trajectories of the charged

J
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FOUR REGIO,NS FOR MODELING
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Figure 4. 14egionsInvolvedinModeling SpacecraftCharging

particles going through this region. Hence, a self-consistent solution must be

obtained for the particle and field distributions.

Region 3 is the spaeecraYt surfzee which is characterized by different mate-

rials and hence different properties for absorbing, emitting, and conducting

charged particles. These properties may be very nonlinear. The spacecraJ_t suro

facewithitscharge and potentialdistributionsisa boundary for region2, and itis

alsoa partofthe spacecl-aftelectriccircuit.

Region 4 isthe spacecraftequivaleatcirctlitdescribiagthe pathsfor currents

" and couplingfor elbctroma_etic fieldsbetween the spacecraftcomponents. One

ofthe ultimateobjectivesfor the overallmodeling istounderstandand pl.edictthe

response ofspacecraftcomponents tothe chargingphenomena.

Tht_firstsession ofthe conferencehas discussedregion I, th_geosynchronous
envii-onment. Later sessions willdiscussregitm_ 3 and 4; thatis,characterization

of spacecraft matei'ials and response to charging cvents. In the remaindei" of this

_ discilssion,,a review willbe made of some of theapproaches to modeling region2,

. the sheath about the spacecraR, and the related charge and potential distributions

on the spacecraR surfaces.

The objective of modeling the spacecraft sheath is to obtain accurate values

= for the various charging currents which traverse the sheatl_ and help to determine
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the apacect'aft sttrfae_ _ot_nttal and eharg_ di,_tribution._. In thL_ ca._e the cause

la the undi._turbcd onvirontnan[o the effOet la the surface potcntlal._ and charge:-;,

and the link l._ the charging current.% There are a number of different kind:_ of

charging currents, as shown la Fib, Ire 5. l_lectrons and lens from the plasma

travel to the spacecraft. Photoelectron,% secondary electrons, and reflected and

backscattered electrons can travel from the spacecraft to the plasma or to other

parts of the spacecraft surface. All of the particle trajectories which are external

to the spacecraft are both influenced by the sheath electric fields and contribut_ to

their configuration.

KINDS OF CHARGING cURRENT._

., (In rodah order Of iml)ortOnce)

(_) Eltcttt)ns fro_ Olos_o

:: (_ Phl_toelectronsfrolll spoCecl,ott (ldffoces

(_ IOns from plosmo

: (_) Se_coftdi=ryeleatrohS from sutfdce --- from eliH_lrOitimpOct
(_ Secont]oryelectrons f_om b,-,rfdct--- from iOh l(_pclct

"* TRANSFER OF CHARGE CAN OCCUR:

(_) From environmentto spacecrott

. - (_ FrOmSl_(lc_croftto tnvitonment

_, _ Betweehdlfllreht spOctcroft k,_rf_cek

(vie ,,t,t_ol ,roj,¢tori,s }via lnternol paths

Flgut'e 5. Different Charging Currents which Affect
Spacecraft Charging

:_ The condition for equilibrium - that is, a steady-state or quasl_tatic situation -
-', is that the net current density vanishes at every point on the surface of insulating

,, materials, or that the net current to every conducting element vanishes. In st)me

situations - _or example, when discharges occur - it is important to look at the

time-dependent behavior o1_the charging currents, L'Jt for the most part the time

#
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con._tant_ for charging are ao _hor[ that the gro_,_ f__at_t'e_of thO ,_heath may ha

eonnid_'od to he in quani,_tatic equilibrium.

Mathematically, th_ sheath problem may be dlaseribcd in terms of. (l) the

:-<- Poinson equation, which tel:s one how to find the potential distribution foe given

space charge densities and boundary condttions_ and (2) the Vlasov equation which

tells on_ how to find the Space charge.densities for a given potential distribution.

The solution of each _f these equations depends upon knowing the solution to the

other, so that a self-consistent procedure must be found for a solution. Usually,

the procedure involves an l,Rtal guess and then successive improvements by

iteration.

The various approaches that have been used in attempting to solve this prob-

lem have differed mainly in how the Vlasov equation has been solved. The Vlasov

equation essentially state_ that the velocity distribution ftmction (strictly speaking,

the phase space density) for a given kind of particle is constant along the particle's

trajectory. Consequently, a solution involves either a calculation (or approxima-

tion) of the particle trajectory, or else it must make use of some other physical

,,_ relationship that provides equivalent information.
__

i: In table 2 o1_Parker, 6 the various approaches to the Vlasov equation are

i! avrariged into thr_e categories. This classification is taken from a review by
Parker 6 of theoretical work done on satellite sheaths and wakes. The following

_ sutnmary of the various treatments is also largely taken from Parker's report.

The insid,z-out method follows particle trajectories backwards in time from a

,_ point in the sheath at which the density is desired to the point of origin of the
particles. At the origin of the trajectory the distribution function may be evaluated

since the origin is either in the undisturbed plastna or at the spacecraft surface,
y,

y_ where the distribution ftmctions may be assumed to be known. The inside-out

method is flexiblesincethe pointsatwhich thedensityisto be evaluatedmay be.

='_ chosen arbitrarily.Also, the method appliesequallywell toionsor electrons.

The disadvantageof thismethod isthatthe informationobtainedabout a trajectory

_';: is lost when one moves to the next point for obtaining density, and hence the cora-l

i putation can be time-consuming.

_!. The inside-out method was developed by Parker, 7 and has been Used by
_,_ Fournler8 to calculatethewak_ ofa moving cylillder,and by Parker6 forcalcula-

tingthe steady-state plasma flow about an arbitrarily thick disk. TI'" method was

_ used by Grabowski and in conjuncttoh with the assumption of quastneutrai-Fischer 9

try, so that their treatment Was not getleral. It was also used by Taylor 10 for the

°_ wake of an infinitely long cylinder of rectangular cross-section, but the calculation

was not carried beyond the first iteration, and is therefore not self-consistent.

_ Parker and Whipple 11' 12 used the method for two-electrode probes on a satellite

but did.not Self-consistently solve for the sheath potential distribution. Liu and
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llung 13 u,_ed thin method for the far-wake zone of a nntellite to predtc! wave-like

behavior. Park0rl4, 15 ilaa al,_o uned the, method for two-elect.rode roekt,t*bt:Jrne

and laboratory probe systems, and for the problem _f a ._mnll probe in the ._h_nth

of a large electrode.

The outside-in m_thod follows particle trajectories in the same direction a._

the actual particle motion. The main di_adwmtage of this method is that it i,s

difficult to choose the tra.iectorles in such a way that an accurate density can be

obtained.at an arbRrary point. In the special case where trajectories do not

cross or reverse direction, the Flux tube method of choosing trajectories may be ="'

used. This tecllnique was used by Davis and Ilarrts 16 for a wake Calculation

assuming cold ions, by Call 17 for the cold-ion wakes of both cylinders and spheres,

by Martin 18 for the cold-ion wakes of a strip and disk, and by McDonald and

Smetana 19 for the wake of an infinitely long cylinder in a drifting monoenergetic

plasma. Another approach using the outside-in method is to divide the space into

cells and to evaluate the density in each cell according to th_ time that the particle

spends in it. This method is closely related to "particle-pushing" or simulation

calculations, and can be readily adapted to time-dependent problems..Again,

accurate calculations can be time-cottsuming since many trajectories are required

to obtain good statistics within cells. This method was studied by Parker 7 for

mono-energefic-ioh distribution with drift, and was used by Maslennikov and- .......

Sigov 20 fbr the cold-ion wake o1_a sphere.

"Other" methods are d_fined as treatment which avoid explicit trajectory cal-

culations and make use of other physical relationships. For example, configura-

tions With inherent symmetry such as spheres or cylinders in an isotropic plasma

may be treated by working with constants of the motion (that is, energy, angular

momentum, etc.) which characterize the particle trajectories. These simple con-

figurations al-e useful because solutions can serve as benchmarks for the numeri-

cal methods developed for more realistic problems. Also, they serve to illustrate

the basic physical processes that may be involved in the charging phenomenon.

Bernstein and Rabinowitz 21 used this approach to treat the problem of a sphere in

a plasma containing mono-energetic ions, Laframboise 22 treated exactly the

problems of both spheres and cylinders in Maxwellian plasmas. Chang and

Blenkowski 23 used this approach to treat the problem of a thin sh0_ath when there

is emission of eieetroils at the surface of a spherical probe in a plasma.

Schroder 24 and Whipple 25 extended this to treat the case of a thick sheath.

Parker 26 has formulated a computer program which treats arbitrary sheath thick-

nesses for electron emitting spherical probes in an isotropic IAasma With arbitrary

velocity distributions.

Other approaches which avoid trajectory calculations have used various

assumptions or approximations such as expressing the ion or electron density in
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i_ terms o_ the local potential by means of the Boltzmatm factor, neglecting ion

_ thermal velocities, assuming quastneUtraltty, etc. LlU_7 and Jew 28 assumed that
"i the ion axial component of velocity i_ constant. They then deternlined limiting

_ trajectorles for the densRy integral by further approximations, namely, an addl-
od tiortal assumed approximate constant of the motion, evaluated using the local field

_I in the vicinity of the point in questiov. Kiel, Gey, and Gusta_son 29 treated the
-_1 wake of a sphere, assuming straight-line paths _or the ion trajectories, and also

assuming approximate formulas for theelectrondensitieS. GUrevich et a130

assumed quasineutrality,using the Boltzmanrtfact_r forboth ion_and electrons,

and assumed inadditionthatthe ion axialcomponent ofVelocitywas constantarid

thatthe ion thermal velocitywas small.

3. MODELVERIFIC_,TION

A model cannotbe considered tobe reliableuntilithas been verified.Veri....

ficationmeans comparing the predictionof themodel with experimentalresults

and findingagreement. As can be seen from the number of.theoreticaltreatments

of theSpacecraftsheathproblem, models are falrlyeasy to generate. Itismuch

mo_e difficult,in general,to perform the kindof experiment which willprovide

datafor verificationor nonverlficationof the model. This seems tobe especially

true inspace physics, where thereis such a longprocess involvedinperforming

experiments on spacecraft. The process beginswith a proposal,and thencon-

o._ tinuesthroughthe experiment designand construction,a great dealof testing,

i!'_ finallya launchwhich may or may notbe completely successhil,and thendata_rt ,

_ acquisition,transmission throughtelemetry linksand ground stationsback tothe

!_; experimenter, and finallyreductionand analysisof thedata by the experimenter.
--_ This cyclefrom the conCeptiOnof theexperiment untilitsanalysistypically

;li involvesseveralyears, and itisno wonder thatinspace physics the connection

between a theoretlcalmodel and its_xperimentalverificationisfrequentlysome=

what remote.

_, An example of how models Can be rendered academic by theacqusltionof data

isprovided by work thathas been done on thepl_otoelectronsheathabout a space-

craft. A number ofworkers, beginningwith SingerantlWalker 31 in 1962 have

_i discussedthe effectof photoelectronson the plasma sheathsurroundinga space-
_°_ craft. Various velocity distribution functions for the photoelectrons were treated

-_i: in varloUsgeometries, but almost allof thetreatmbnts Were for a conductingbody.

=_'_ GUei'nsey and FU32 and FU33 showed that if the photoelectrons don_inatc the space

_._ chai'ge near the satellite surface, it would be possible for a potential minimum to

_',:: develop in the sheath so that the potendai distribution would be nonmonotonic.

!!
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(3ee Whipple 25 for h review of these treatments. ) SUch a pOteflt[al minimum was

l_omu:!by analysis o1_the electron data obtained from the uCSD partt_le dotectors

on the ATS-6 satellite. 34 tlowever0 it wa_ shown that none of the models could

adequately explain the data. 25 The potential minimum which was inferred trom

the d/ata Was much too large to be explaitaed in terms of the ordinary space charge

limited effect. It is probable that the minimum must be explained in tea,ms of

differential charging of the spacecraft surfaces. Electrons are emitted from tllese

differentially charged portions of the spacecraft surface providing the required

negative space charge for the formation of the potential minimum. Itowever0 a

quantitative model for this phenomenon has not yet been formulated. *"

Artother way of verifying sheath models that has not been adequately exploited

is through laboratory experiments. Although it is not possible to completely

simulate the geosynchronotls environment in a laboratory, it should be possible to

study many of the individual processes. It is certainly possible to generate flti_tes

of particles in the appropriate energy ranges in the laboratory0 and there should

be no problem in simulating solar photoemission. It should be possible to ]earn a

great deal about the charging process and especially about the interaction betv, een

various spacecraft elements by using realistic models of a spacecraft in such a

laboratory environment.
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