
THETRANSONICREYNOLDSNUMBERPROBLEM

J. Lloyd Jones

NASAAmesResearch Center

INTRODUCTION

The purpose of this paper is to establish the themefor this meeting and
to provide a base for departure in (a) the contemplation of the various needs
for experimental research investigations utilizing the National Transonic
Facility (NTF) and in (b) the consideration of the relative priorities that
should be given within and across subdisciplines for guidance in planning for
the most effective initial use of the facility. This purpose will be approach-
ed by reviewing someof the concerns that led to the advocacy for such a test
capability and by giving a brief review of the activities that led to the
current situation. There is nothing new in what is presented herein. Little,
if anything, new in the understanding of the scaling of aerodynamic data has
comeabout in the past eight years.
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FLOW MODELING SIMILARITY CRITERIA

It is fitting to begin with a brief review of Reynolds number and its

significance as a scaling parameter in transonic-flow simulations. Osborne

Reynolds initially noted the significance of the parameter pV_/p as a criteria

for determining whether the flow of water in pipes would be laminar or

"sinuous," that is, turbulent. He advanced the idea that the state of affairs

in fluid flow in geometrically similar systems depends only on this parameter,

but he did not comprehend its full significance. It remained for Lord Rayleigh

and others to establish Reynolds' number (oVa/p) as a basic dynamic characteris-

tic that qualifies the state of viscous fluid motion in the sense that two

steady flows are similar if the Reynolds numbers are the same; that is, that

the ratio of inertia forces to viscous forces is the same in both instances, as
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illustrated in figure i. Of course, similitude also requires that the ratio of
inertia forces to pressure forces be the samefor both flows, but this is auto-
matically satisfied in steady flows when the Reynolds numbers are the same.

Hence, the condition of dynamic similarity is completely satisfied by making

the Reynolds numbers equal at corresponding points in the flows.

Reynolds, of course, was working with the flow of water in pipes, or in-

compressible flows. At transonic speeds in air, for flow similarity, equal

Reynolds numbers is not enough. The elastic forces due to compressibility

also must be considered. To assure dynamic similarity for compressible fluids,

it is therefore necessary to maintain the same ratio of inertia forces to

elastic forces. The criteria for this requirement is to keep the Mach number

equal for both flows, as is indicated in figure 2. Hence, for transonic wind-

tunnel flows, one must assure the same Mach number and the same Reynolds number

to truly simulate the flight conditions.

REYNOLDS NUMBER SENSITIVE FLOW PHENOMENA

Reynolds number is a very important parameter in the modeling of flows

about flight vehicles because the viscous surface flow is extremely important

in determining the resultant forces and moments. Many Reynolds number sensi-

tive flow phenomena for various types of flight vehicles are listed in figure

3. Obviously, there is not time to discuss each of these phenomena, nor would

such a discussion at this time really contribute to the purpose of this work-

shop. Generalizations can be made, however, in the definition of Reynolds num-

ber sensitive flows to obtain a clear view of their importance. Reynolds num-

ber sensitive flow simulation problems are encountered when the geometric

scaling of viscous flow is important or when the coupling between the viscous

surface flow and the external flow field is strong. In the first instance, the

concern would be for the evaluation of skin friction or heat transfer. At

transonic speeds, heat transfer is not an important problem; thus, it may be

eliminated for the purpose of this discussion.

Skin friction, or friction drag, varies with Reynolds number. However, it

varies in a manner that is predictable, and extrapolation can be made with

reasonable confidence and precision if the flow is fully turbulent (or if the

relative areas of laminar or turbulent flows are well defined) and if no

appreciable areas of flow separation exist. The generally accepted practice in

model testing is to fix transition near the leading edge, where it would occur

in flight. This method is widely used, and drag results have been reasonably

reliable, but some difficulties have been encountered in obtaining correct

moment extrapolations because of the greater relative thickness of the turbu-

lent boundary layer at low Reynolds numbers and its interaction with local shocks.

This experience is illustrated in figure 4, where it may be seen that the

correct prediction of flight pitching moment would be unlikely from the wind-
tunnel results.

Viscous-inviscid flow coupling occurs when there are separated flows pre-

sent. Vortex flows are included in this category. Flow separations and the

attendant high drag and interference effects are very sensitive to Reynolds



numberand presently cannot be extrapolated with confidence. Flow separation
generally occurs when the kinetic energy in the boundary layer is diminished
by encountering adverse pressure gradients, such as in regions of expansion on
rearward sloping surfaces or through shock waves. Particular problems have
been encountered at transonic speeds where local imbeddedor recompression
shocks occur on the surface of the vehicle.

CONSEQUENCESOFLIMITATIONSIN SIMULATION

There are 8 number of exampleswhere problems that have been encountered
in flight test have been attributed to Reynolds numbereffects. Someof
these are listed in figure 5. Perhaps the most publicized is the experience
with the C-141 aircraft which is illustrated in figure 6. The interaction of
the relatively thicker turbulent boundary layer, resulting from the lower wind-
tunnel test Reynolds number, with the external inviscid and locally supersonic
flow-field results in the recompression shock being located relatively farther
forward on the wing. The corresponding wing pressure distributions are also
shown in the figure. The consequenceof the misprediction was additional cost
for the reanalysis of the structure and a 9-month delay in the initial opera-
tional availability of the aircraft.

Another example, illustrated in figure 7, is the underprediction by 0.02
of the drag rise Machnumber for the C-5A from wind-tunnel tests. If the true
value had been predicted, a thicker and thus lighter wing could have been used,
and the wing fatigue life problems encountered as a result of the reduction of
structural margins to keep the gross weight within bounds might have been
avoided. Replacementcosts of the C-5Awings have been estimated to be about
$900million.

A third example is the effect of Reynolds numberon engine afterbody drag,
as determined in an experimental program at the NASALewis Research Center and
illustrated in figure 8. There have been unresolved questions raised about the
proper accounting of tunnel-wall interference effects in these data because of
the large size of the model in the wind tunnel; however, it appears that the
extrapolation of the tunnel data in the absence of flight data could hardly be
expected to predict the flight values correctly.

AERODYNAMICFACILITY STATUS

It will be noted that the examples cited for the manifestation of Reynolds
number sensitive flow modeling problems have been mostly in the transonic-speed
regime. In subsonic wind tunnels, problems of flow separation are
encountered primarily at high-angle-of-attack attitudes with high-lift devices
deployed as required for landing or take-off. The establishment of the maximum
lift coefficient attainable is a task for the wind tunnel in the design process
for a new aircraft. For manyyears, it was generally accepted that a Reynolds
number of about 7x106was adequate for the prediction of CL,max. However, as
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high-lift systems have becomemore complex for swept-wing aircraft and leading-
edge devices have been employed, this test Reynolds number no longer provides
the confidence required for design purposes. The low local Reynolds numbersof
the flow about leading-edge devices and the problem of maintaining geometric
similarity for very thin model surfaces are thought to be responsible. This
country has, however, gone to the expedient of providing very large subsonic
tunnels capable of producing essentially "full-scale" test conditions for many
aircraft partly because of the concern about properly predicting high-lift
characteristics.

In the supersonic regime, the area of interest for aircraft is generally
very slender configurations at small angles of attack or sideslip. As a result,
there are no appreciable areas of separated flow, and extrapolation of small-
scale data can be done with someconfidence. An exception is for fighter air-
craft in combat maneuvering flight attitudes, but in this case, the attendant
drag in flight is so large that the speed quickly drops into the transonic
regime. All things being considered, relatively small scale supersonic wind
tunnels seemto be satisfactory for aircraft test purposes.

The major problems thus have been at transonic speeds, and it is here that
the inadequacy of wind-tunnel test capabilities have been most critical in
recent years. The complex, interacting flow fields in this speed regime are
illustrated by the schlieren photograph of transonic flow over a wing section
in figure 9. It is true that successful aircraft can and have been built to
operate at transonic speeds. However, someserious and costly problems have
been encountered, as illustrated herein. In the attempt to avoid such problems,
the aircraft designers have been rather conservative in their design approach.
Clearly, this has been the prudent approach, because the financial risk for a
performance deficiency or major problem is very large. As a result, potential
advances in performance and efficiency have not been realized. The limitations
of transonic aerodynamic test facilities also have been a handicap to research
personnel in identifying and establishing technology advances.

IDENTIFICATIONOFDEFICIENCYIN TRANSONICTESTCAPABILITY

The limitations in the existing transonic wind-tunnel facilities and the
importance of those limitations have been recognized for sometime. There has
been general agreement in Industry and in Governmentsince about 1967 that
existing tunnels are inadequate for research and for the confident development
of current and future aircraft, and that an urgent need exists to provide an
improved transonic test capability. It has been recognized that a conventional
continuous-flow tunnel with high Reynolds number capability would require an
impractical amount of drive power. There has been general agreement that
energy storage systems should be considered to reduce the power requirements.
It generally has been agreed that anything less than "full scale" represented a
compromise in the simulation. Until recently there has been no agreement on
what compromisewas acceptable. Figure i0 shows the maximumchord Reynolds
number achievable in existing U. S. transonic wind tunnels and the flight
Reynolds numbers for future aircraft as projected in 1969. (Here, the wing
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meangeometric chord c is used as the characteristic length "_".) In 1969,
consideration was being given to superjumbo transport aircraft, very large
cargo aircraft, large supersonic transports in acceleration and subsonic cruise,
and low-altitude penetration for fighters and bombers.

OPTIONSFORRESOLVINGDEFICIENCY

If one acknowledges a need for higher Reynolds number test capability, the
first question is how can it best be achieved? There are several options, as
indicated in figure ii. The problem, of course, in modeling aircraft in flight
with ground-test facilities arises because of the attempt, for reasons of cost
(facility construction, operation and models) and workability, to use small-
scale models. The scale, or "E" in the simulation therefore tends to be of the
order of i0 percent of the actual vehicle dimension. The first option, increas-
ing the characteristic length "_", simply meansgiving up trying to use small
models and accepting the high cost of full-scale ground test facilities. The
primary costs for continuous wind tunnels lie in the rotating machinery of the
drive system and in the tunnel shell. Drive-power requirements as a function
of test-section size are shownin figure 12. Even for the modest size facil-
ities shownon the chart and using increased pressure to achieve a Reynolds
number of i00 x 106, the required drive horsepower is unrealistically large.
Facility cost trends are shownin figure 13, and it maybe seen that the cost
to achieve a test Reynolds numbercapability of i00 x 106 in continuous, or
even blowdown tunnels, is also extremely high.

The option generally employed in the past has been to increase the stag-
nation pressure in the facility, and thereby compensatefor the small "_" by
an increase in the fluid density p. Indeed, this is done to some degree in a

number of the existing facilities shown in figure 13. Because of high model

stresses and the limitations on workability, a practical limit of about 500 to

i000 kN/m 2 (approx. 5 to I0 atmospheres) has resulted for aerodynamic facil-

ities; except for high supersonic facilities where the interest generally has

been in bluff shapes. To illustrate this point, figure 14 shows the dynamic

pressures of the test-section flow as a function of test-section size for
several test Reynolds numbers from 5 x 106 to i00 x 106. The limit from the

consideration of model strength is shown to be 215 kN/m2 (4500 psf). This limit

was established in studies conducted by NATO countries and is consistent with

the consensus of views expressed in this country. For a Reynolds number of

i00 x 106 in an ambient temperature tunnel, a very large tunnel would be re-

quired to stay within this limit.

Another problem introduced by high test dynamic pressures is that of model

distortion. As illustrated in figure 15, there is considerable wing distor-

tion. Clearly, any differences in wing geometry under load between model and

aircraft must be reconciled. As a swept wing bends under load, the local angle

of attack is reduced. The reduction is greatest near the wing tip. Tests have

shown that this wing distortion effect can result in movement of the recom-

pression shock in a direction counter to the anticipated aerodynamic effect of

increased test Reynolds number. Excessive dynamic pressures can make this

distortion effect very large, and the inaccuracies in the corrections may



therefore significantly affect the validity of the projected aircraft charac-
teristics. Other important consequencesof high test dynamic pressures are the
large geometric distortions of the model aft-end region required to accommodate
the large support sting, and the attendant increased sting interference effects
on the flow over the model.

The third option (fig. ii) for increasing test Reynolds numbercapability
in a ground facility is to reduce the temperature of the test gas. The result-

ant changes in gas properties for a given Mach number and stagnation pressure

are illustrated in figure 16. As the gas temperature is decreased, the result-

ing increase in density and reduction in viscosity are much stronger effects on

Reynolds number than the reduction in velocity through the decrease in the

speed of sound; therefore, there is a net increase in Reynolds number.

The dynamic pressure, however, remains unchanged with a change in tempera-

ture. Since dynamic pressure is proportional to the square of the velocity

(V~/T) and directly to the density (p~i/T), this Reynolds number increase is

achieved with no increase in dynamic pressure. Furthermore, since drive power

is proportional to the product of dynamic pressure and velocity, the power

required to operate a continuous-flow facility actually decreases with de-

creasing temperature of the test gas (power ~ _/T ).

An additional and highly important benefit in test capability also results

from this approach, as illustrated in figure 17. The ability to vary both

temperature and pressure opens up a tes_ envelope never before available in

large transonic test facilities. This feature makes possible pure Reynolds

number studies at a constant dynamic pressure (thus eliminating the undesirable

variables of model distortion) as well as pure aeroelastic studies at a con-

stant Reynolds number.

EVOLUTION OF NATIONAL TRANSONIC FACILITY

This third option, achieved through the use of cryogenic nitrogen, is the

concept employed in the National Transonic Facility. This facility will pro-

vide the United States with a long-needed and significant advance in transonic

aerodynamic test capability. It has come about as the result of a number of

studies, proposals, and deliberations. A brief summary of the highlights in

this process is shown on figure 18. The Ludwieg tube concept for a transonic

aerodynamic test facility was favored early because it was the least costly

approach to attain very high test Reynolds numbers. It is essentially an

energy storage concept and thereby does not require the high power drive sys-

tem needed for a large continuous facility at high pressure. Studies of

hydraulic drive and injector drive facilities were made in the 1969 to 1974

time period as alternative concepts using energy storage and avoiding very

large and costly electrical drive systems. The Ludwieg tube concept "HIRT"

(High Reynolds Number Tunnel) was in fact approved by DOD and NASA in 1971 to

be proposed as a National Facility. The short run time and the very high dy-

namic pressures characteristic of the facility, however, limited its test

flexibility and prompted continued consideration of alternatives. The



cryogenic-facility concept emergedin 1971 with small, low-speed pilot tunnel
experiments conducted over the following year to verify its potential. In 1973
the Langley pilot cryogenic tunnel becameoperational and validated the cryo-
genic concept at transonic Machnumbers and higher Reynolds numbers.

In 1973, it was determined in a special study effort that two separate
facilities, a Ludwieg tube and a cryogenic fan-driven facility, represented the
least costly way to achieve the very high Reynolds numbers sought by the Air
Force for development and evaluation, and the longer run times at more moderate
Reynolds numbers (= 80 x 106) with much lower dynamic pressures sought by NASA
for research. NASAand the DODagreed to propose this dual facility concept and
the Congress authorized HIRT in 1974. A reassessment of costs, which reflected
the large increase in construction costs in 1974, resulted in a more than two-
fold increase in the estimated cost for HIRT, and the Air Force decided not to
proceed. A joint DOD/NASAreview team then made somedifficult compromises
and, as a result, recommendeda single cryogenic fan-driven facility having an
intermediate Reynolds number capability between the Air Force and NASAstated
needs. This facility was approved by DODand NASAin 1975 and proposed to the
Congress as an alternative approach, and Congress authorized its construction
by NASAin 1976. This new facility, known as the National Transonic Facility,
is to be located at the Langley Research Center and jointly operated by NASA
and D0Dfor both research and development testing, as indicated in figure 19.
The subjects listed under Research and Technology are, of course, the subjects
to be addressed at this workshop. The first topic encompassesboth fluid
mechanics and applied theoretical aerodynamics.

UTILIZATIONOFNTF

In addition to utilizing this new facility in an efficient and expedi-
tious way to increase our understanding of the physical phenomenain the dis-
ciplinary areas shown, it is equally important to establish at an early time,
through the capabilities of the NTF, the limits of capabilities of existing
transonic facilities. In other words, it is important to determine where these
facilities can and cannot be used with confidence. This knowledge will permit
more effective and efficient use of the Nation's total test capabilities.
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MANEUVER

VEHICLE TYPE

SUBSONIC
TRANSPORT

AND CRUISE

SUPERSONIC
CRUISE

HYPERSONIC
LAUNCH

VEHICLES

BOUNDARY-LAYER GROWTH X X X X X
AND SEPARATION

BOUNDARY-LAYER TRANSITION X X X

TURBULENT BOUNDARY LAYERS X X X X X

BOUNDARY LAYER/SHOCK X X X X X
INTERACTIONS

SEPARATED FLOWS X X X

VISCOUS CROSS FLOW X X X X X

VISCOUS CORNER FLOW X

VISCOUS MIXING EFFECTS X X X X X

BASE FLOW AND WAKE X X X X X
DYNAMICS

BASE RECIRCULATION X X

BASE DRAG X X

SKIN FRICTION X X X

ROUGHNESS, PROTUBERANCE X X X X X
DRAG

PRESSURE FLUCTUATION X X

VORTEX FLOWS X X X X X

INTERFERENCE FLOW FIELDS X X X X X

JET PLUME INTERFERENCE X X X X X

BLUFF BODY AERODYNAMICS X X

HEAT TRANSFER X X

Figure 3.- Reynolds number sensitive phenomena for various types

of flight vehicles.
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Figure 4.- Transition fixing in wind tunnels.

I0



Aircraft

C-141

F-111

B-58 1
B-70
YF-12

F-102

CIVIL

Problems

-Wing flow incorrectly predicted, Stability, structural loads, and performance
affected. Structural reevaluation testing and modifications cost 1 year and
millions of dollars.

-Transonic-flow interference effects incorrectly predicted. Airframe drag
underestimated. Redesign and modifications costly.

Improper aerodynamic optimizations at transonic speeds. Low transonic
-acceleration margin resulted in range and maneuverability limitations

reducing aircraft effectiveness.

-Transonic drag rise improperly predicted caused major reconfiguration
followed by replacement by F-106. Transonic base drag problems plagued
both aircraft.

-Two jet transport aircraft required some redesign because of flow interactions
between engines and wings. Uncertainties in prediction of pitching moments,
drag, and maximum lift a concern in most cases.

Figure 5.- Problems discovered in flight test attributed

to Reynolds number effects.
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Figure 6.- Shock-induced flow separation.
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oWeight reduction program resulted in reduced structural margins and caused fatigue life

problem for wing

oProblem might have been avoided if drag-rise Mach number had been predicted accurately

in wind tunnel and choice of thicker wing was permitted earlier in development cycle

Figure 7.- C-5A wing fatigue life problem.
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Figure  9.- Complex t r anson ic  flows vary  wi th  Reynolds number. 
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Figure 10.- 1969 p ro jec t ed  f l i g h t  Reynolds number. 
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• INCREASE SIZE (INCREASE _)

• INCREASE PRESSURE (INCREASE p)

• REDUCE TEMPERATURE (CHANGE p, V, AND p)

Figure ii.- Ways of increasing Reynolds number in a given gas.
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Figure 13.- Wlnd-tunnel cost trends.
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Figure 14.- Dynamic pressure at various test Reynolds numbers.
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• WING AND BALANCE STRESS • STING INTERFERENCE

• WING DISTORTION • FUSELAGE DISTORTION

,.c.'=As,.°".,
INCREASING

,,q,,

Figure 15.- Some dynamic pressure problems.

M=o= 1.0; Constant Pt and size

4 -

3-

Values

relative 2-
to

322K

1

Gas properties

P

a

I I I
100 200 300

I
400

8 -

6-

2-

0

Test conditions and drive power

R

Power
I [ I

100 200 300

1

400

Stagnation temperature, K

Figure 16.- Effect of temperature reduction.
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Moo = 1.0, 2.5 m × 2.5 m (8.2 ft × 8.2 ft) test section
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Figure 17.- Test envelope for a cryogenic wind tunnel.
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Figure 18.-

1966-1975 -Air force design development of Ludweig tube facility (HIRT)

1969-1970 -NASA study of hydraulic drive conventional tunnel

1969-1972 -NASA design studies of injector driven tunnels

1971 -NASA/DOD (AACB) approves HIRT to propose as a national facility

1972-1973 -NASA experiments with cryogenic low-speed pilot tunnel

-AACB study recommends HIRT (development) plus cryogenic TRT (research)

-Congress authorizes Air Force to build HIRT

-Construction cost escalations result in Air Force decision not to go forward
with HIRT and AACB to make a reevaluation of transonic facilities

-AACB approves cryogenic NTF as single facility to be jointly operated by
NASA and DOD for research and development testing

-Congress authorizes construction of NTF by NASA Appropriates funds.

National high Reynolds number wind tunnel planning.
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RESEARCH & TECHNOLOGY

A. THEORY DERIVATION/CONFIRMATION

B. CONFIGURATION AERODYNAMICS

C. PROPULSION AERODYNAMICS

D. DYNAMICS & AEROELASTICITY

SYSTEMS DEVELOPMENT & EVALUATION

A. COMPONENT STUDIES

B. PRELIMINARY DESIGN ASSESSMENT

C. CONFIGURATION DEVELOPMENT

D. FINAL AERODYNAMIC DESIGN EVALUATION

Figure 19.- National transonic facility utilization.
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