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SINClARY

A method is described from which the interaction of an elastic structure

with an infinite acoustic fluid can be determined. The displacements of the

structure and the pressure field of the immediate surrounding fluid are modeled

by finite elements, and the remaining pressure field of the infinite fluid

region is given by an analytical expression. This method yields a frequency

dependent boundary condition for the outer fluid boundary when applied to the

frequency response of an elastic beam in contact with an acoustic fluid. The

frequency response of the beam is determined using NASTRAN, and compares

favorably (1-2% error) to the exact solution which is also presented. The
effect of the fluid on the response of the structure at low and high frequencies

is due to added mass and damping characteristics, respectively.

I_DU_I_

The interaction ofanacoustic fluid with an elastic solid has received

considerable attention in the literature. Some areas of investigation in the

frequency domain include underwater vibrations, vibrations of liquids in elastic

containers, and the evaluation of the near and far pressure field of an

acoustical fluid surrounding a sinusoidally excited elastic structure. A finite

element modeling of the combined problem was formulated by Zienkiewicz and
Newton (ref. I). Their finite element modeling of the displacements of a

structure and the pressure field of a finite acoustical fluid leads to a

system of unsyr_netric linear equations to be solved.

Problems involving a finite domain can at least conceptually (and usually

practically) be modeled using finite elements (see ref. 2, for example), but

those problems involving an infinite fluid domain must necessarily be modeled

with only a finite portion of the fluid if the finite element method is to be

used. The appropriate boundary condition at the truncated fluid boundary is

often in doubt. Zienkiewicz and Newton (ref. i) suggest a system of dashpots

at this outer fluid boundary, but it will be shown that this is the proper

boundary condition only in the high frequency limit. This paper formulates the

the boundary condition that should be applied at this outer boundary, and shows

how this condition is incorporated into the finite element method. To this end,

the fluid is divided into a region immediately surrounding the structure (which
is to be modeled by finite elements) and an infinite region. Within the
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infinite region a series expansion is chosen for the pressure, the coefficients
of which are unknownsof the problem. Hunt et al (ref. 3) have a similar
model, except the pressure field in the infinite region is given by the sur-
face Helmholtz integral equation. In any case, the expression for the pressure
field in the infinite region identically satisfies the governing wave equation
and the proper boundary conditions at infinity.

A variational principle, presented specifically for a beamwith one face
in an acoustical fluid, suggests the proper coupling not only between the
structure and the fluid but also between the finite and infinite fluid regions.
If a coordinate surface is chosen as the outer fluid boundary, orthogonality
relationships of the series expansion may be used to satisfy continuity of the
pressure field at this boundary. This orthogonality allows the coefficients of
the series expansion to be eliminated as unknownsfrom the problem, and results
in an additional stiffness matrix for the nodal pressures on the outer boundary.
This matrix is full, symmetric, and frequency-dependent, and is implemented in
NASTRANbydirect matrix input.

This method is applied specifically to the frequency response of a simply
supported beamwith one face in contact with an infinite acoustical fluid (2-D
problem). The exact solution for the frequency response of the beamis
presented, and the finite element results comparefavorably with the exact
solution. It is also shownthat at low frequencies the effect of the fluid on
the structure is an addedmass, while at high frequencies it is a damping.
Moreover, the far field pressure in the infinite region can be determined from
the series expansion once the nodal pressures at the outer fluid boundary are
known.

While this method is applied for a 2-D frequency response, it can be
generalized to the response of a 3-D elastic structure in an infinite acoustic
fluid. The outer surface of the fluid must be a coordinate surface of a space
in which the wave equation is separable since the orthogonality of the series
expansion on this surface is used. Onceagain, the structure and the portion
of the fluid between the structure and this coordinate surface are modeledby
finite elements. Unfortunately, the additional stiffness matrix couples all
the pressure nodes at the outer boundary, and, in general, is frequency
dependent. If the frequency is specified, the additional stiffness matrix is
known, although in general it could increase the bandwidth of the problem. On
the other hand, for determining the submergednatural frequencies of structures
an iterative procedure is necessary since the natural frequency is unknown.

A VARIATIONALPRINCIPLE

It is convenient in applying the finite element method to have a varia-
tional principle on which the discretized finite element model can be based.
Suchprinciples involving the displacements of an elastic structure can be found
in references 4 and 5; similar principles for fluid mechanics problems are
presented by Olson in reference 6. Gladwell (refs. 7, 8, 9) presents varia-
tional theorems for the acoustic fluid for both pressure and displacement
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formul_tions. For the coupled structural-fluid problem, a suitable variational

formulation can be found by properly combining those for an elastic structure
and an acoustic fluid. Such a principle is a reliable basis and guide for

numerically solving a fluid-structure problem using finite elements. Moreover,

with the fluid divided into a finite region (modeled by finite elements) and an

infinite region (fluid described by an analytical expression), the variational

formulation will necessarily point to the proper coupling of each.

Finite Fluid Region

A simply supported beam is shown in figure 1 which has one side in contact

with a finite acoustic fluid and subjected to a sinusoidal load per unit length

of w(x)eiet. The deflection of the beam in the y-direction, u(x)e zet,
satisfies the differential equation

d4u
m_2u = - p(x,0)h + w(x) (I)

EI dx 4

where E is the modulus of elasticity of the beam, I is the moment of inertia,

m is the mass per unit of length of the beam, and h is the depth of the beam in

the z-direction. The pressure p(x,y)e i_t of the fluid region A satisfies the

wave equation

+ - = - -- (2)
_x2 _y c _t2 c2 p

where c is the speed of sound in the fluid. It is also assumed that

8__p_p= 0 on S (3)
an

where S, shown in figure i, is the boundary of A excluding the beam's surface.

On the surface of the beam, it is also necessary to enforce (see refs. i, 2)

the condition, which comes from conservation of momentum, that

ap= 5 _2
ay -o = p u on y = 0 (4)

where p is the density of the fluid.

It is possible to formulate a mixed variational principle that will incor-

porate both equations (i) and (2) and the appropriate boundary conditions for

each. Consider the functional F(u,p) given by
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dx-½m  In dx+I p( ,O hudx0 0

- f w(x)u_ +i--- [(_p_2 1
0 2_ 2 Af L\_x! + hdA - -f p2hdA2pc 2 A

(s)

The first two terms are the strain energy and kinetic energy of the beam,

respectively. The next two terms are minus the work done by the pressure and

forcing function on the beam, and the last two terms represent the kinetic and
potential energies of the fluid, respectively. The functional F is a function

of both the structural displacements u and the fluid pressure p. If independent

variations of F are taken with respect to u and p, it follows that

L

8F(u,p) = f [El d4u _2 ]
0 _- m u + ph - w(x) _u dx

+ + _-f21 6phdA+ El _-f 6u' 0A _x2 _y27 ocj
(6)

d3u 8u t

- EI _--_
0
+-_f_ _-P-_phds+ f [- 1 _P + u]_phdx_ _n 0 p_2 _y

If u and p are found such that

6F(u,p) = 0

with any, trial function u satisfying

u(O) = u(_) = o

(7)

(8)

then it can be seen from equation (6) that u and p necessarily satisfy

equations (i) and (2) and the boundary conditions given by equations (3) and
(4).

Coupling of the Infinite Fluid

If the region of the fluid is infinite, as shown in figure 2, the fluid is

subdivided: the finite element description of the pressure in the fluid is used

in a finite region A 1 surrounding the structure, and an analytical expression

(which identically satisfies the wave equation) is used in the remaining
infinite region A2. In order to properly couple the two solutions, the pressure

field must be continuous and consistent with the variational principJe. The

functional F(u,p) in equation (5) now contains two additional terms which are

the same as the last two terms but integrated over the remaining infinite

region. The analytical expression for p in this region satisfies the proper

boundary conditions at infinity (Somerfeld radiation condition). Variations of
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F taken'with respect to u and p in both regions give

]6F(u,p)= S I j-ma2u+ph-w(x) _udx +I0 p_2 _n

_ _ 1 +'I

+EI _-_d2u_u' o-EI_-_ _u O+ _n

+ _L216phdAl + 1
pc / p_--2_ _nl _phds

+ ___o_6phdA 2+ i_i_ S _p _phds
_/pc p_2 s _n2

(9)

where s is the boundary between the finite and infinite fluid regions. With

the analytical function p identically satisfying the wave equation, the

coefficient of 6p in the next to last term is identically zero. Hence, _nly
the term

i_ i__( _P 8phds
pfl2 s _n s

(I0)

which is the loading of the infinite region on the finite must be included. In

the ifltegral I, p is given by an analytical expression which must match the
finite element nodal approximation on the fluid-fluid interface. Assume the

analytical expression for p is given by an expansion

N

p = Z An£n(X,y) (ii)
n=l

where the An's are undetermined coefficients and the functions fn(x,y)
identically satisfy the wave equation. Equation (ii), together with the finite

element description of the pressure at the interface and the continuity of the

pressure field, will permit the integral in equation (i0) to be evaluated. The

continuity of the pressure field can be easily obtained by choosing an outer

boundary on which the orthogonality of the functions fn(x,y) can be used. The

evaluation of equation (ii) will be carried out specifically for the frequency

response of a beam in an infinite fluid.

FINITE ELEMENT FORMULATION

by

Beam and Neighboring Fluid

The finite element method approximates the displacements u of the beam
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u z NS= u. (12)
i i 1

where u. is ai generalized nodal displacement, and _ is a shape function for

the displacements of the beam. Similarly, the pressure field in the fluid is

approximated by

p= zN F
• 1 Pi (13)
1

where Pi is a nodal pressure. Substituting these approximations into equation
(6) and interpreting equation (7) to mean that partial derivatives with respect

to nodal displacements and pressures should equal zero, the following set of

equations is determined:

[:;IIulI °IIul- = (14)
I__LT 1 Q P 0

1 H p _2 pc2_2

where

d2Ns
I ]dx

. = f EI dx2 dx2-Ki] 0
(15)

Mij = m f N.SN S.dx (16)
0 x ]

fi = f wCx)NS dx (17)
0

. = ffNSNj hdx (18)Li9 0

8y 8y hdA
(19)

= f NF NF hdA
Qij i j

_hltiplying the second set of equations by (pcfl)2 gives

(20)

(21)

This form is the same as that derived by Zienkiewicz and Newton (ref. I), but

equations (21) are based on a variational principle. The set of equations (Ii)
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can be generated by NASTRANas outlined in reference 2, although matrices L and
LT are inputted directly by DMIGcards.

For more complicated geometries and structures, the form of equation (21)
is unchanged. While the variational principle and the finite element formula-
tion were given specifically for the elastic beam-acoustic fluid problem, they
can be easily generalized to account for an elastic structure boundedby an
acoustic fluid.

Infinite Fluid Coupling Matrix

The loading of the infinite fluid on the finite portion is found by
computing the integral

I- 1
0_2!% _phds

(22)

over the outer fluid face (see eq. (i0)). This integral is to be discretized

and then added to the set of equations (14). At the fluid-fluid interfaGe the

pressure is given by
M

p = Z NiP i (23)
i=l

where Ni is the shape function for the pressure in the fluid evaluated at the

fluid-fluid interface, Pi is a nodal pressure on the face, and M is the number
of pressure nodes at the fluid-fluid interface. The 6p in equation (22) is

equal to the partial of p with respect to Pi (which is equal to Ni from equation
(23)). Then the term

1

oR2 ! _n-_2Ni hds
(24)

is added to the Pi equation of equations (14).

Consider the frequency response of a beam with one side i_nersed in an

infinite acoustic fluid, as shown in figure 3. Both the displacements of the

beam and the pressure field of the neighboring acoustic fluid are modeled by

finite elements. The pressure field in the fluid for y>b must be bounded and

satisfy

_x2 + =

with the boundary condition that

p = 0 at x = 0 and x = (26)

and the condition that only waves outgoing from the structure are allowed.
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Separation of variables leads to the following expression for p:

N

p = r An sin (n_X--)e-_nY
n=l

with

(27)

2 = (_)2 (cfl_)2 (28)an

The N arbitrary coefficients An are yet to be determined, and an may be either
real or imaginary depending on n and _.

The integral in equation (22) can now be evaluated. From equation (27),

02[ N
_n2 3Y y=b n=l

mrx -anb
An sin (_)ane (29)

Substituting equation (29) into the expression (24), the following matrix
expression is added to the left-hand side of equations (14):

1

[G]{A} (30)

where {A} is a vector of the N coefficients A. and [G] is an MxN matrix given
by 3

Gi3"= 0f_ Ni sin(_)a'e-ajbdxj (31)

The number of unknowns in equation (14) has been increased by N, the number

of A_ coefficients. An additional set of equations to make the set complete is
foun_ by requiring the pressure to be continuous; that is, equation (23) must

match equation (27) evaluated at the interface y=b:

M N n___) -anbr NiP i = r A sin( e (32)
i=l n=l n

Multiplying both sides by

sin(_)

and integrating from 0 to z with the orthogonality condition that

0 nCk

f_ sin(_) sin(_) dx=

0 _- n=k

(33)

gives
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{A} = [R]{p} (34)

where JR] is an NxM matrix and is given by

_ 2e_ib f_N sin(_)dx
Rij _ 0 J

(35)

The additional N equations from equation (34) form a complete set with equations

(14) and (30). Alternatively, equation (34) can be used to eliminate the

series coefficients A_ from the expression (30) in favor of the nodal pressures
of the fluid-fluid inlerface. Thus,

1 [G]{A} = 1
°a2 _ [G][R]{p}

Define

[H'] = [GI[R] (36)

with matrices [6] and [R] given by equations (31) and (35). The effect of the
infinite fluid on the finite is to add to the fluid stiffness matrix [HI of

equations (14) the matrix [H']. [H'] is an MxM symmetric matrix which may be

complex. It is full, frequency-dependent and couples just the nodes at the

outer fluid boundary.

If a + 0 or equivalently c ÷ _, the effect of the infinite fluid on the

finite fluid is one of stiffness. From equation (28),

_j +'t_- as a+O (37)

and

G.. +a.e -_jb F.. (38)
xj j 1j

where

= # Ni sin( )ax (39)
Fij 0

The matrix [F] does not depend on the frequency a. Similarly,

_i b
2e

Rij÷ _ Fij as a÷O (40)

Then matrix [H'] = [G][R] is given by

N

H!. = r. Gik Rkj
iJ k=l

(41)

9qQ



Substituting equations (37), (38), and (40) into equation (41) gives

, 2_ N
- x k (42)

Hij _2 k= 1 Fik Fjk

where [H'] is a constant matrix (independent of frequency) and is added
directly to the stiffness matrix [HI of the fluid. If the outer finite element

botmdary is chosen to be the surface of the beam, then the matrices [H] and [Q]

of equation (14) are zero. Then the second set of equations (14) can be
written, with the matrix H' now included, as

This gives

[H'] {p} + [LT]{u} = 0
on 2

{p} = _p_2 [H,]-I [LT]{u}

Substitution of this equation into the first set of equations (14) gives the
following added mass matrix:

[M'] : p[L][H']-I[L T] (43)

Matrix [M'] is symnetric and full and shows that the effect of the fluid on the
structure is added mass.

When _ ÷ _ or c ÷ 0, the effect of the infinite fluid on the finite is a

pure damping. For, from equation (28),

°

(_. +--l

j c

where i is /-2i-. Then

N
22.

H' - I r (44)
rs Z c k=l Frk Fsk

[H'] is a pure imaginary matrix, linear in _, which is to be added to the

stiffness matrix [H] in equation (14). Then rewriting equation (14) in the
form of equation (21) gives

L 0 oji l=i:l(45)

where [B] is an MxM damping matrix and an element of matrix [B] is given by

2 N
=- x F (46)

Brs g k=l Frk rs
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The coefficient F.-, defined in equation (39), is equal to (4/2) times the jth

Fourier sine coefficient of the shape function Ni. Hence the sum of terms on

the right-hand side of equation (46) is the dot product of the Fourier

coefficients of the function Nr with Ns . It can be shown that this dot product

is equal to (2/£) times the inner product of the shape function Nr with Ns over

the length of the beam. Thus,

N

_ 2 = f_ NrN sdx (47)
Brs _ kZ=l Frk Fsk 0

This term is identical to the one suggested by Zienkiewicz and Newton (ref. i),

which is a boundary condition derived by assuming that the pressure in the
fluid takes the form of a plane wave. The boundary condition is to be applied

at a boundary which has been placed "far enough" from the structure and is the

proper boundary condition only in the high frequency limit.

If the outer fluid boundary is reduced to that of the beam, then both

matrices [HI and [Q] in equation (45) are zero. Solving the second set of

equations (45) for {p} in terms of {u} gives

{p} : pc(_i) [B]-I[LT] {u} (48)

Substituting this equation into the first set gives

[K]{u} + (Ri)pcL[B]-I[LT]{u} _2[M]{u} = {f} (49)

Then the matrix

pc[L][B]-I[L T]

is a damping matrix, which means that the effect of the fluid on the structure
at high frequencies (or small c) is damping.

EXACT SOLUTION - FREQUENCY RESPONSE OF BEAM

The differential equation of motion for the elastic beam shown in figure 3

subjected to a uniform load varying sinusoidally in time is

_4u
+ _2u + p(x,0,t)h = w0eiat (50)mv

where p(x,y,t) is the acoustical pressure which must satisfy the wave equation

?

_y2 c

(51)
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A solution for u of the form

CO

. .n_x. i_t
u(x,t) = z An sznkT)e (52)

n=l

is chosen, where the An'S are undetermined coefficients of sin_ , which are
the out-of-fluid eigenvectors for the simply supported beam. Equation (51) is
solved using separation of variables. The pressure field is bounded and the

boundary condition at x=0 and x=z is that p=0. Allowing only outgoing waves
from the beam leads to the following equation for p:

CO

p = r. C sin(_)e -_ny ei_t (53)
n=l n

where

Ctn = (

The Cn's are undetermined coefficients to be found by properly coupling the

fluid and the structure. At the fluid-structure interface, one requires (see,
for example, ref. 2)

_P=_n - °_n at y = 0 (54)

Since the fluid and structural modes are uncoupled for this problem, equation
(54) yields

C - pfl2
A (55)n _ n

n

Substituting equation (55) into equation (53), and the expressions for u and p
into equation (50), gives

CO

n=iZ {-(m+ ph'_nj_2+ Ei(_)4}Ansin(_)ei_t = w0ei_t (56)

with

2 _)2 a2

When both sides are multiplied by sin (_) and integrated from 0 to _ to take

advantage of orthogonality relationships, the solution is

n_x iat
u(x,t) = _ An sin T e (57)

n=l,3,...
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p(x,y,t) =
0fl2 n_x -anY iflt

- _A sin-_--e e

n=l,3,.._n n
(58)

with

and

A

n

4w0

n_{-a2(m+_) + EI(_) 4
n

n

(59)

(60)

In general an may be real or imaginary depending on the driving frequency ft.

_ <ITC
-

If

then for all n, an is real. In this case the pressure and displacement are real

and in phase and no radiation occurs. If fl> (_c/t), then for some n, _n becomes
imaginary. In this case, both u and pare complex and out of phase and-_ence

radiation may occur.

Peaks in the frequency response will occur at the in-fluid natural

frequencies of the beam. Although the in-fluid and in-air mode shape of the

beam are unchanged in this particular problem, the natural frequency of the beam

does change. The in-fluid natural frequencies are found by setting the term in

brackets in equation (56) equal to zero and solving for ft. The solution always

gives _< (n_c/t), which means that the in-fluid modal shapes of the beam do not
radiate.

RESULTS

Computations were carried out by NASTRAN using the finite element-

analytical method previously described. A typical grid is that shown in

figure 3, where CBAR elements were used to model the beam and 2-D isoparametric

elements (with quadratic approximation for the pressure) were chosen to model

the fluid. The usual double numbering of grid points at the fluid-structure

interface is necessary with this formulation (this procedure is outlined in

ref. 2), and the nodal pressures and displacements of the interface are coupled

through matrix [L] of equation (14). This matrix is entered into NASTRAN by

DMIG cards. The frequency dependent matrix [H'] defined in equation (36), which

models the effect of the infinite fluid on the finite, is also inputted into

NASTRAN by DMIG cards. The results shown in figures 4 through 8 are for the

following values: h = 2.54 cm (i inch), t = 50.8 cm (20 in.), c = 1.460 km/sec
(5.748 x104 in/sec), E = 206.8 GPa (_xl07 psi), I = 3.468 cm4 (.08333 in4),

m = 7.827 g/cm 3 (7.324xi0-4 ib-sec2/in4), 0 = 1.029 g/cm 3 (9.633xi0-5 Ib-sec2/

in4), w 0 = 1.751 N/cm (I ib/in). The solid line in each of these figures is
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the exact solution given by equations (57) through (60). The finite element

solution is shown at specific plotted points.

Figure 4 is a plot of the magnitude of the pressure at the center of the

beam versus the driving frequency _. The pressure peaks at approximately

1062 rad/sec and 11350 rad/sec, which are the in-fluid natural frequencies of

the beam for modes n = 1 and n = 3 (these values can be determined by solving

equation (56) for _ with wQ --0) There is a discontinuity in the slope of the
curve for _ _ 9029 radians/sec, which is the frequency at which radiation

occurs (_ = _c/_ = 9029 rad/sec). For frequencies greater than _c/_, energy is

being carried away by the outgoing pressure waves and the beam is said to

radiate. In this case net work is done by the forcing function.

Figures 5 and 6 are plots of the magnitude of the beam's displacement at

its center as a function of the driving frequency _. In figure 6 the displace-

ment shows the discontinuity in slope that the pressure exhibits when the beam

begins to radiate. As _ goes through _c/_, the displacement of the beam

increases corresponding to the reduction in pressure.

The variations of the phase angles of the pressure and displacement with

frequency are shown in figures 7 and 8, respectively. For _ _<_c/_ (9029

rad/sec), the displacement is in phase (or 180 ° out of phase) with the driving

force and no work is done. For _ > _c/z, the displacement is out of phase with

the driving frequency and radiation occurs. The only exception to this

condition occurs when _ approaches a natural frequency. The mode shape for that

frequency dominates, and, since the in-fluid mode shapes of the beam do not

radiate, the phase angle of the displacement is in phase (or 180 ° out of phase)

with the driving force.

Figures 4-8 show that the finite element solution obtained through NASTRAN

was reliable in modeling the elastic beam in the infinite acoustical fluid.

The errors of the results shown were 1-2% for the grid shown in figure 3. The

same accuracy was also obtained at a few frequencies in which the outer fluid

boundary was chosen to be that of the beam (that is, b=0). In these cases,

matrix [H'] (defined in eq. (36)) corresponds to the nodal pressures at the
fluid- structure interface.

For the limiting case of _ ÷ 0, the effect of the fluid on the structure is

an added mass; this effect is approximated within the finite element method by

modeling the structure with NASTRAN and adding to the mass matrix generated by

NASTRAN the additional mass matrix [M'] given by equation (43). The natural

frequencies and mode shapes of this computation agreed favorably (less than 1%
error) with those from the exact solution. The exact solution is determined

from equation (56) by solving for _ with w0 = 0 and c÷_.

CONCLUSIONS

The boundary condition at the truncated fluid boundary of an infinite

acoustical fluid is, in general, frequency dependent. For a finite element
formulation this condition leads to a stiffness matrix [H'] which is added to
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the stiffness matrix of the fluid. [H'] is a full, symmetric, complex,
frequency dependent matrix which couples the infinite region to the finite
region and involves only the outer boundary nodes. If the driving frequency is
specified (in the case of frequency response), the coupling matrix [H'] can be
inputted into NASTRANby DMIGcards. The computation of eigenvalues and eigen-
vectors, on the other hand, would necessarily involve an iteration schemesince
the frequency of the modeshape is not known.

Although only the portion of the fluid inmediately surrounding the
structure is modeled by finite elements, the infinite fluid region is
effectively modeled through the coupling matrix [H']. Moreover, the far field
pressure can be determined once the outer boundary pressures are computed.
This pressure is given by equation (27) with the series coefficients {A}
determined from equation (34). If a finite portion of the fluid is modeled
without including the boundary condition matrix [H'], then the fluid region is
actually a finite domain. Not only is it impossible to determine the far field
pressure but also someof the eigenvalues and eigenvectors found can be shown
to be associated with the finite problem. These additional modal values do not
appear if [H'] is included.

This type of finite element-analytical solution, presented here for a
two-dimensional problem, can be readily generalized to a three-dimensional
problem of modeling an elastic structure in an infinite acoustic medium. In
this case the outer fluid boundary would be a sphere, and the pressure field
would be given by an expansion of spherical harmonics. The frequency dependent
matrix could be generated in NASTRANby program modifications and would be
accessed through DMAPalters. Unfortunately, because of the full coupling of
all the outer boundary nodes, the increase in the bandwidth for a three-
dimensional problem might make the computer cost prohibitive.
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