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SUMMARY 

A review is given of seven research projects which are aimed at improving 
the generality, accuracy, and computational efficiency of steady and unsteady 
aerodynamic theory for use in aeroelastic analysis and design. These projects 
indicate three major thrusts of current research efforts: (1) more realistic 
representation of steady and unsteady subsonic and supersonic loads on air- 
craft configurations of general shape with emphasis on structural-design 
applications, (2) unsteady aerodynamics for application in active-controls 
analyses, and (3) unsteady aerodynamics for the frequently critical transonic 
speed range. The review of each project includes theoretical background, 
description of capabilities, results of application, current status, and plans 
for further development and use. 

INTRODUCTION 

Aeroelastic problems that are encountered in the analysis and design of 
high-performance aircraft such as supersonic cruise aircraft require consider- 
ation of structures and dynamics, as well as aerodynamics of lifting surfaces, 
control surfaces, and complete aircraft at subsonic, transonic, and supersonic 
speeds and for steady, oscillatory, and general unsteady motion. Among the 
technical disciplines involved (i.e., structures, dynamics, and aerodynamics), 
aerodynamics has always been in the least satisfactory state and has received 
the greatest emphasis in aeroelastic research and study. Moreover, the 
development of computer-aided design technology in recent years has imposed 
even more stringent requirements for comprehensive, accurate, and efficient 
aerodynamic tools inasmuch as many aerodynamic and aeroelastic analyses must 
be performed in the repetitive process of designing a minimum-mass aircraft 
structure that will satisfy a variety of design requirements such as strength, 
buckling, minimum gage, and aeroelastic requirements such as prescribed 
minimum flutter speed. (See, e.g., refs. 1 to 3.) In addition to flutter, 
other static and dynamic aeroelastic characteristics must be assessed. The 
former include load distribution and associated structural deformation, 
control effectiveness and reversal, and divergence, whereas the latter include 
response to gusts, turbulence, control transients, engine failure,. and active 
control systems for the suppression of one or more of these responses. 
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High-performance, low-load-factor airplanes, such as supersonic cruise 
aircraft, are usually stiffness-critical to a significant degree. Since mass 
added to provide required stiffness can be a sizable fraction of payload 
(refs. 4 to 9), it is essential that it be accurately predictable during the 
design process. The aeroelastic calculations required for this purpose will, 
of course, be no more accurate than the aerodynamics used in them. 

Requirements for the formulation and use of aerodynamics in aeroelastic 
analysis and design are in several respects more complicated and more severe 
than for the more conventional steady-state aerodynamics. For example: (1) The 
aeroelastician deals with flexible structures so that even in steady-state con- 
ditions, the aerodynamic load is a function of structural deformation, and vice 
versa. (2) The unsteady aerodynamic formulations required in dynamic aero- 
elasticity involve complex quantities (e.g., velocities, aerodynamic influence 
functions, and pressure) that manifest time- or frequency-dependent attenuations 
and phase shifts relative to steady state. (3) In dynamic aeroelasticity - 
flutter, for example - the aeroelastician must evaluate pressure distributions 
for vibration mode shapes that are much more wiggly than a typical steady-state 
mean-camber surface. The corresponding pressure distributions will also be 
more wiggly than those for steady state so that computational convergence 
requirements are usually more severe than for steady state. (4) Flutter analy- 
ses, as well as iterative structural resizing, require evaluation of pressure 
distributions for a multiplicity of mode shapes, frequencies, aircraft loading 
conditions, etc. Consequently, computational efficiency is vital, and it is 
essential to minimize the amount of recomputation required when mode shapes 
and/or frequencies are changed. 

This paper reviews seven research projects, sponsored by the Langley 
Research Center, which should help to provide the capabilities in steady 
and unsteady aerodynamics needed for the aeroelastic analysis and design 
of high-performance aircraft such as supersonic cruise aircraft. These 
projects fall into three general categories which indicate the major thrusts 
of current research efforts: (1) more realistic representation of steady 
and unsteady subsonic and supersonic loads on aircraft configurations of 
general shape with emphasis on structural-design applications, (2) unsteady 
aerodynamics for application in active-controls analyses, and (3) unsteady 
aerodynamics for the frequently critical transonic speed range. The present 
review includes theoretical background, description of capabilities, results 
of application, current status, and plans for further development and use. 

SYMBOLS 

acn free-stream speed of sound 

cL lift coefficient 

'rn pitching-moment coefficient 
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'N * normal-force coefficient 
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cp 

section normal-force coefficient 

pressure coefficient 

lifting-pressure coefficient 

reduced frequency 

leading edge, trailing edge 

free-stream Mach number 

local Mach number 

Laplace-transform variable, i.e., motion exponential (real part 
defines motion envelope; imaginary part is reduced frequency) 

thickness ratio 

time 

free-stream speed 

streamwise, spanwise, and vertical Cartesian coordinates, 
respectively 

angle of attack 

time rate of change of angle of attack 

initial angle of attack 

ratio of specific heats 

control-surface deflection angle 

Kronecker delta 

dummy variables for x and y, respectively 

perturbation velocity potential 

steady-state part of perturbation velocity potential 

unsteady part of perturbation velocity potential 

w frequency 
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ANALYSIS METHODS 

The analysis methods being developed in connection with the seven 
research projects mentioned previously are listed in table 1, along with an 
indication of the relevance of each to the three general categories of current 
research interest, i.e., loads for use in structural design, aerodynamics 
for active:controls analyses, and aerodynamics for the transonic speed range. 
With the exception of "transonic aerodynamics for oscillating wings with 
thickness," all the methods are applicable to the steady-state lim it 
condition. In table 1, the word "Present" indicates applicability of the 
method in its current state of development; whereas "Future" indicates 
capability that is still under development. 

General Unsteady Compressible Potential Aerodynamics 

Objective.- The primary objective of this development (refs. 10 to 19) . is an accurate, general, unified method for calculating steady and unsteady 
loads on complete aircraft with arbitrary shape and motion in subsonic and 
supersonic flow. Emphasis is on efficient application in aeroelastic analyses 
(including active-controls analyses) and in computer-aided structural design. 

Approach.- Green's theorem has been used to formulate the exact integral 
equation for the perturbation velocity potential Q  at an arbitrary point 
(x, y, z) in the fluid at time t in terms of the potential and its 
derivatives on the fluid boundary (ref. 10). 

Q’(x,Y,z,t) = JljJ GF dV1 dtl + Ill[V,S l (GV1@ - @VIG) 

dS dtl 
(1) 

where 

G is Green's function (subsonic or supersonic source potential) 

F  represents nonlinear terms (products of derivatives of potential) 

s(xl’Yl,zl’tl) = 0 defines the body surface, and 

JnsJ =JSfl+s;l+S: 
1 1 

S 
x1' sYl’ szl) and St are derivatives of S with respect to the subscript 

variable. The quadruplelintegral extends over the entire fluid volume; .whereas 
the triple integral.extends,over the surface bounding the fluid, i.e., the body' 
surface, since disturbances must vanish at infinity. To find the potential 
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and hence the pressure at a point (x,y,z) on the body surface, equation (1) 
is used in conjunction with the exact boundary conditions and the Bernoulli 
equation. Note that no small-perturbation assumption has been made. The 
present computer program SOUSSA (Steady; O-scillatory, and Unsteady +bsonic 
and gupersonic Aerodynamics), however, does not include the nonlinear terms 
represented by the quadruple integral in equation (1). 

Solution of equation (1) is by spatial discretization with arbitrary 
nonplanar quadrilateral surface panels and time solution by Laplace transform 
(ref. 16). The resulting set of simultaneous equations for the potential at 
a finite number of points on the body surface in terms of the normalwash at 
the surface can be expressed as 

where 

@h is Laplace transform of perturbation velocity potential 

a is Laplace transform of normalwash at body surface 

Y =6 jh jh '- (cjh jh -S'jh +sD )e 

-C(F. + sGjn) Snh e 
-S (Ojn+nn) 

n Jn 

i jh = B jh e 
-S@jh 

(2) 

I (3) 

0 
jh 

and IT are lag functions, S n nh is 21 depending on which side of 

the wake the point is on, 

and 

B 
jh 

= 2 & N LdCB 
B hR % 

= & //I N a (+ dCB B haN R 

D 
jh 

= $ II, N LaR dCB Fjh = & II, B hRaN W 
Lh & (+) dCW 

Gjh = 2 /l, L LaR dCW w hR8N 1 
(4) 
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where 

cB and C W indicate integration over body and wake surfaces, 
respectively, 

N&%Y,=') and L (x,y,z) are shape functions, h 

R is elliptic (Moo<l) or hyperbolic (Moo>l) distance between influenced 
and influencing points, and 

N is direction normal to body or wake surface. 

Note that the integrals in equations (4) are independent of deformation 
or mode shape and are also independent of the transform variable s (and 
hence frequency in the oscillatory case). Consequently, these integrals need 
to be evaluated only once for a given Mach number unless the paneling arrange- 
ment is changed. Moreover, ?!. 2 are also independent of deflection 
shape and contain only simple JP aFd jh unc ions of the transform variable. Hence, 
equation (2) can be solved efficiently for a variety of deflection shapes and 
frequencies. For example, adding modes in a flutter analysis or changing 
modes in structural design requires alteration only of the normalwash matrix 

does not require reevaluation of the coefficient matrices 

A further advantage of this method results from use of arbitrary non- 
planar quadrilateral surface panels. If desired, the aerodynamic paneling 
can exactly fit a structural finite-element paneling arrangement so that 
interpolations between structural model and aerodynamic model can be minimized 
or avoided. 

This formulation provides a unified surface-panel method for arbitrary 
motion of complete aircraft in subsonic and supersonic flow in which bodies, 
stores, lifting surfaces, and control surfaces are all paneled alike, i.e., 
with source panels having strength proportional to normalwash (usually speci- 
fied) and doublet panels having strength proportional to @ obtained by 
solution of equation (2). 

Status.- The final version of the proof-of-concept computer program has 
been completed and is being documented as an interim SOUSSA code. Its capa- 
bilities are indicated in figure 1. An intermediate form of SOUSSA is also 
being used in FCAP (Flight Controls Analysis Program) (refs. 20 and 21) 
which is being developed primarily for analysis and synthesis of active control 
systems. 

The interim SOUSSA program, in effect; solves the linearized velocity- 
potential equation with exact boundary conditions. The current development 
effort is directed primarily toward adaptation of SOUSSA for application in 
the transonic range. Several approaches are being pursued to incorporate the 
dominant effects of the nonlinear character of transonic flow without requiring 
brute-force numerical evaluation of the volume integral in equation (1). 
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Inclusion of the nonlinear influence of wake deformation in subsonic flow has 
also been demonstrated (ref. 17). 

The interim SOUSSA program uses constant-potential (zeroth-order) surface 
elements which were adequate for demonstration of capability. However, a 
dominant objective throughout this work has been to use elements sophisti- 
cated enough to converge solutions for complicated shapes and motions with a 
number of elements small enough for the solution to be computationally 
tractable and economical. Consequently, higher order elements are being 
developed, along with special elements that have potential distributions 
which are appropriate for paneling adjacent to normalwash discontinuities 
such as at control-surface hinge lines and edges. 

Reference 22 presents a finite-element approach to the analysis of 
rotational flow. The method is still under development. In combination. 
with SOUSSA, it may offer a means for representing viscous-flow influence. 

Applications.- Figure 2 (reproduced from ref. 18) shows the magnitude 
and phase angle of supersonic lift coefficient for an oscillating rectangular 
wing. Results are shown for converging, diverging, and harmonic oscillation. 
The latter are in good agreement with results from the acceleration-potential 
lifting-surface method of Laschka (ref. 23). 

Figure 3 (also from ref. 18) shows chordwise pressure distribution on 
the wing of a wing-body-tail configuration in a diverging oscillation in 
incompressible flow. For simplicity in this demonstration calculation, both 
wing and tail have been taken to be rectangular with aspect ratio 6 and 
thickness ratio 0.09. No comparable calculations are available for comparison. 

Plans*.- The additional capabilities that are under current development 
(fig. 1) will be incorporated into SOUSSA as they become available. Several 
approximations that were employed for computational expediency in the 
development program will be eliminated or revised in order to improve the 
accuracy, efficiency, and generality of the method. These broadened capa- 
bilities and improvements will also be incorporated into a modular "production" 
program SOUSSA that will be structured for efficient application to large- 
order flutter analysis and design problems. 

SOUSSA aerodynamics will be combined with the SPAR finite-element 
structural-analysis program (ref. 24) and.*with the WIDOWAC structural- 
optimization program (refs. 1 to 3) in order to produce an efficient program 
PARS (Program for Analysis and Resizing of Structures) for generating.min.imum- 
mass s%uctures for complete aircraft that will satisfy a number of static a,nd 
dynamic structural and aeroelastic design requirements such as multiple. ,. -.i 
flutter-speed constraints. FCAP (refs. 20 and 21) may eventually be used-in 
combination with PARS for design of structures for aircraft with active control 
systems. 

*All sections entitled "Plans" in this paper contain statements of cur- 
rent intentions. These, of course, are subject to change as time progresses. 
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Thus, SOUSSA will find application in flutter analyses, in active-controls 
analyses, and in computation of'static and dynamic loads for computer-aided 
structural design. 

Subsonic Kernel-Function Analysis for Wings With Oscillating Controls 

Objective.- The objective of this work is accurate representation of the 
pressure distribution on lifting surfaces with oscillating leading-edge and 
trailing-edge controls. Emphasis is on.applications to flutter analyses and 
active-controls studies. 

Approach.- The well-known kernel-function analysis of reference 25 
provides an integral equation representation of the linear potential equation 
for harmonic oscillations of a thin lifting surface. This equation 

w = /I, ACp(S,~) K(Moo, k, S-x,rl-Y) d5 dr7 (5) 

relates the known downwash velocity w(x,y) at a point on the surface to the 
unknown lifting pressure distribution AC (5,~). The kernel function K is 
defined by a singular integral. The inteiration region S includes only the 
wing surface. This integral equation is solved by the procedure of reference 
26 as follows: The unknown pressure distribution is expanded in a series of 
known functions en with unknown coefficients a as n 

N. 
Acp(S,n) = C a,B,G17) 

n=l 
(6) 

The functions 8 are chosen to satisfy the known edge conditions on the 
lifting surfacen(e.g., the Kutta condition at the trailing edge). Equation (6) 
is substituted into equation (5) and the integration performed for a set of 
N points (x. y.) at which the downwash is known from the boundary condition. 
The result& get of N simultaneous linear equations is then solved for 
the coefficients an. 

Recent research (refs. 27 to 30) has provided an improved kernel-function 
procedure for wings with leading- and/or trailing-edge controls. In linear 
potential flow, the surface slope discontinuity at a control-surface hinge 
line or side edge ieads to a.downwash discontinuity which causes a logarithmic 
singularity in the lifting pressure at the hinge line and a y log y type 
variation in lifting pressure at the control surface edge (y measured from 
the control edge). The present method treats these singularities meticulously 
by using a set of pressure functions 0 containing appropriate logarithmic 
terms. Within the framework of thin-w&g theory, this kernel-function method 
provides the most accurate treatment of control-surface aerodynamics currently 
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available to the aeroelastician. 

Status.- Program refinements and delivery should be completed in 1976. 

Application.- An example of the results obtainable is shown in figure 4 
(taken from ref. 27). The calculated lifting pressure distributions on a swept 
wing with oscillating partial-span control are compared with the experiment of 
reference 31. The agreement is excellent except near the control edges--the 
analysis treats the edge gaps as sealed. 

Plans.- No further development is contemplated. The completed computer 
program will be used in studies of active control systems. 

Unsteady Loads on Lifting Surfaces with Sharp-Edge Separation 

Objective.- The objective of this development (refs. 32 to 38) is accurate 
evaluation of steady and unsteady aerodynamic loads on lifting surfaces of 
general shape at moderate to high angles of attack. Emphasis is on representa- 
tions of structural design loads and flutter aerodynamics for high-load- 
factor conditions that are more realistic than those obtained from linearized 
(small disturbance) aerodynamic theory. 

Approach.- Sharp edges are assumed in order to fix the location of flow 
separation. Kutta condition is imposed along all edges on which separation 
occurs. No assumptions of small perturbations are involved. A vortex model 
is established in which a mean-camber surface (or alternatively, wing upper and 
lower surfaces) of arbitrary shape is overlaid with a vortex grid from which 
discrete free vortices extend into the fluid across all edges on which separa- 
tion occurs. The vortices are constrained to cross perpend,icular to wing 
edges in order to satisfy the Kutta condition. The shape of each free vortex 
is approximated by a sequence of contiguous straight-line segments. The 
requirement that the free vortex system be force-free is satisfied approxi- 
mately by alining each free vortex segment with the local flow velocity at 
one point along its length. Solution is by Biot-Savart law which is imposed in 
conjunction with an assumed position of the free vortices and exact normalwash 
boundary conditions on the mean-camber (or wing) surface in order to calculate 
the strengths of the bound vortices. After these strengths have been determined, 
Biot-Savart law is employed iteratively to find a new force-free location of the 
free vortices, The process is repeated until convergence. tests are satisfied. 

Status.- Current computer programs calculate steady load distributions 
and flow field for nonplanar and interfering lifting surfaces with flow 
separation from sharp leading edges, tips, and trailing edges, and also for 
general unsteady motion of lifting surfaces with separation from tips and 
trailing edges. Unsteady capability is currently being extended to include 
leading-edge separation. In figure 5, the present models are compared with 
the previously used flat-wake model of Belotserkovskii (ref; 39) and the 
incompressible-flow model of Djojodihardjo and Widnall (ref. 40) which accounts 
only for vorticity issuing from the trailing edge. 
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As presently formulated, compressibility is accounted for approximately 
by a Prandtl-Glauert type transformation which is based on the linearized 
potential-flow equation. The present problem becomes approximately linear, and 
hence this type of transformation becomes reasonable only when either Mach number 
or flow perturbation (e.g., angle of attack) is small. Comparisons of steady- 
state calculated lift and pitching moment with experimental values for several 
wings at several Mach numbers (e.g., ref. 35) have indicated that the present 
procedure gives good results for angles of attack (in degrees) up to at least 
20m. Use of local Mach number instead of free-stream Mach number in the 
transfogation may extend the usefulness of the method to higher angles of 
attack in the middle-to-upper subsonic range. 

Current activity is concerned with the effect of several internal 
parameters (e.g., vortex grid spacing, length of free vortex segments, etc.) 
on convergence of the calculations. In addition, artificial viscosity is 
being incorporated as a means of avoiding erratic behavior when vortices 
come close together, although this has not been a problem up to this time. 
Also, vorticity distribution functions are being investigated as a possible 
means for improving the efficiency of the calculations. 

Applications.- Figure 6 (taken from ref. 36) shows a typical calculated 
vortex flow pattern around the tip of a rectangular wing. Only a coarse grid 
pattern is shown here for clarity. Figure 7 (also from ref. 36) shows the 
vorticity pattern for the same wing at the end of a ramp-type increase in 
angle of attack from 11' to 15'. Figure 8 (taken from ref. 38) illustrates. 
lift lag as angle of attack is increased from 11' to 15' and conversely 
decreased from 15O to 11'. Figure 9 (from ref. 35) presents calculated span- 
wise load distributions for a rectangular wing in comparison with values 
calculated by linear theory and with experimental values. The large increase 
in load intensity, particularly near the tip, has significant implications for 
the structural designer since aircraft design loads occur at large angle-of- 
attack (limit load factor) conditions. Finally, figure 10 (from ref. 35) 
shows calculated normal force and pitching moment for a swept wing and 
includes comparisons with linear-theory results and with experiment. 

Plans.- Pertinent results from the previously described current study 
will be incorporated into the computer program to improve its efficiency and 
generality. The program will be used to calculate aerodynamic characteristics, 
stability derivatives, and structural loads for several wing and wing-tail 
configurations, including deflected and deflecting control surfaces, and for 
the arrow-wing SCAR configuration. Generalized aerodynamic forces will be 
generated for flutter calculations to determine the effect of sharp-edge flow 
separation on flutter boundaries at moderate to high angles of attack, The 
changes in steady-state load distribution caused by edge separation indicate 
that the effect on flutter is probably detrimental. Note that linearized 
theory predicts no effect on flutter of angle of attack, twist, camber, or 
thickness. 
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Finite-Difference Method for Oscillating Transonic Flow 

Objective.- The objective of this work is accurate solution of the tran- 
sonic small-perturbation potential equation for harmonic oscillation. Current 
emphasis is on accurate "benchmark" type calculations that can serve as a 
standard for assessing the accuracy of approximate methods that are computa- 
tionally more economical. 

Approach.- Many aeroelastic problems, flutter in particular, are most 
severe in the transonic speed regime. In contrast with the steady transonic 
potential-flow problem which is inherently nonlinear, 'it is possible to linesr- 
ize the unsteady problem and decouple it from the steady problem if oscillation 
frequencies are sufficiently high. Reference 41 presents many such linear- 
theory solutions in detail. Unfortunately, this linearization is not generally 
possible for accurate aeroelastic calculations at the low to moderate frequen- 
cies that are of usual interest and in the presence of varying local flow 
velocity and shock waves which characterize transonic flow. 

The simplest equation which can properly describe the essential features 
of the flow is the transonic small-disturbance potential equation 

c 11 - M($ 

M2 M2 
(7) 

Subscripts x, y, z, and t indicate derivatives of the potential with 
respect to the subscript variable. The nonlinear terms involving ax and at 
are retained because they are of the same order as 1 - M,$. It is possible to 
effect a linearization for the unsteady flow by expressing the perturbation 
potential Cp as a sum of steady and unsteady parts 

. 
Q(x,y,z,t) = Q(x,Y,F) + T(x,y,z)elwt (8) 

where harmonic motion has been assumed. It is further assumed that the 
unsteady motion is a small perturbation of the mean, steady flow so that 
cp << 9. Substitution of equation (8) into equation (7) leads to a partial 
separation of the steady and unsteady flow effects. The usual small- 
perturbation equation results for the mean steady flow 

C 1 -4 - (Y + l>&+, & + 9,, + @zz = 0 1 
and the equation for unsteady flow is 
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C 1 - M; - (Y + l)&, 'pxx + (Pyy 
1 

+ (y + 1)9, 'p, 
3 

+ ‘pzz 

+ M2 k2 - i(y - l)k@, Cp = 0 co 
c 3 

00) 

This is a linear equation for the unsteady potential cp. However, the equation 
has nonconstant coefficients which depend on the mean, steady flow potential 
+* Equation (10) is of the same type as equation (9); that is, the unsteady- 
flow problem is elliptic (subsonic) or hyperbolic (supersonic) at any point in 
accordance with the character of the mean, steady flow at that point. 

There is current interest in a variety of attacks on the unsteady 
transonic flow problem. The significant successes of finite-difference methods 
for steady flow led to the application of these methods to the unsteady flow 
problem. Some of this research is reported in references 42 to 45. In the 
present procedure, the steady flow equation (9) is first solved on a rectangu- 
lar finite-difference mesh. The unsteady equation (10) is then solved on the 
same mesh using values from the steady solution to provide the values of the 
nonconstant coefficients required at the mesh points. The large system of 
algebraic equations (one for each mesh point) is solved by a relaxation 
procedure. Central differences are used in subsonic portions of the flow, 
and backward differences are used in supersonic portions. 

Status.- Initial calculations have been made for several airfoils and 
for a pitching rectangular wing. However, numerical difficulties have 
imposed an upper limit on frequency that becomes more severe as free-stream 
Mach number approaches 1.0. Work is still in progress. 

Application.- The results of the first application of this method to a 
three-dimensional flow problem (ref. 44) are given in figure 11. The real 
part of the lifting pressure for a rectangular wing oscillating in pitch is 
presented. There were 18 304 mesh points used. In general, the finite- 
difference calculation agrees well with the linear theory (uniform flow). 
However, the flow is supercritical, and a shock wave is evident over inboard 
portions of the wing in the finite-difference result (nonuniform flow). 

Plans.- Development of this method will continue and should lead to 
a documented computer program for isolated lifting surfaces. 

Although finite-difference methods have promise for providing accurate 
solutions to transonic-flow problems, the computational task is enormous in 
comparison with conventional lifting-surface or surface-paneling methods. Two 
approximate, but perhaps more widely useable methods are described in the 
following two sections. A discussion of several proposed methods is given in 
reference 46. 
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Transonic Aerodynamics for Oscillating Wings with Thickness 

Objecfive.- The objective of this development (refs. 47 to 49) is an 
approximate method for calculating unsteady transonic aerodynamic forces 
that is more accurate than linear theory, especially in the range of reduced 
frequency that is of usual interest in lifting-surface flutter problems. 
Emphasis is on a method that accounts for the dominant effects of nonuniform 
mean flow and is at the same time theoretically and computationally suitable 
for use in flutter analyses. 

'Approach_.- If local Mach number does not vary much from 1.0, the tran- 
sonic equation for small-perturbation velocity potential can be written in 
terms of local Mach number 

cp 
YY 

+(Pzz - g(2ik cPx - k2@ = 0 (11) 

As in the previous section, the unsteady perturbation is assumed to be small 
relative to the steady state so that local Mach number can be taken to be 
that for the mean steady flow. If the nonuniform coordinate transformation 

i=x 7 = M.p’Y)Y 2 = M&Y)2 (12) 

is imposed, equation (11) becomes 

(13) 

where @(%?,z) = T(x,y) cp (x,y,z>. 

Equation (13) is a linear equation with constant coefficients and has 
exactly the same form as the conventional linearized unsteady transonic-flow 
equation. (See, e.g., ref. 41.) Solutions of the latter involve propagation of 
pressure disturbances along straight ray paths. The coordinate transformation 
(eq. (12)) therefore is equivalent to distorting the space so that ray paths that 
are curved in the physical space x,y,z are straightened out in the transformed 
space Z,?,';. Consequently, the problem can be solved in the transformed space 
by any method that is suitable for the conventional linearized equation-- 
e.g., sonic kernel function (refs. 25 and 50) or sonic box (refs. 51 to 53). 
The latter method has been used for current implementation. 

Figure 12 illustrates the distortion of wing planform caused by the 
coordinate transformation. If the transformation is to be single valued, 
equations (12) imply limitations on how rapidly Mach number can vary in a 
direction lateral to the free stream. Thus, shock waves must not.impinge upon 
the wing. Another limitation on usefulness of this method 
is the requirement that a steady-state solution be available to provide local 
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Mach number values for the coordinate transformation. 

status. - The coordinate-transformation method has been demonstrated 
(refs. 47 to 49) by modification of the sonic box computer program (refs. 51 
to 53). The accuracy, efficiency, and generality of the demonstration 
program is currently being improved. The final documented program should be 
available early in 1977. 

Applications.- The method has been used to calculate aerodynamic param- 
eters for several wings with finite thickness, and the results have been 
compared with calculations for zero thickness (conventional linear transonic 
theory) in references 47 and 48. The calculated detrimental effect of finite 
thickness on transonic flutter speed is illustrated in figure 13 (taken from 
ref. 47) for a 45' delta wing with elliptical cross section. For a 0.04 
thickness-chord ratio, flutter speed is 15 percent below the zero-thickness 
value. 

Plans. - The improved computer program will be documented and further 
evaluated by comparison of results with measured unsteady air forces and by 
application to transonic flutter analyses. Use of the coordinate transforma- 
tion in conjunction with other linear-theory methods is contemplated. 

Mixed Subsonic-Supersonic Kernel-Function Analysis for Oscillating Wings 

Objective.- The objective of this effort (refs. 54 to 56) is an approxi- 
mate method for calculating unsteady transonic aerodynamic forces that accounts 
for the presence of shock waves and the mixed subsonic-supersonic character of 
the flow. Emphasis is on a method that includes variations in local Mach 
n-umber and is suitable for use in flutter analyses. 

Approach.- The present method was synthesized by patching together linear 
subsonic and supersonic kernel-function analyses to simulate the mixed 
subsonic-supersonic character of transonic flow. The wing is divided into 
a few subsurfaces on which the flow is either subsonic or supersonic. Either 
subsonic or supersonic kernel-function aerodynamics, as appropriate, is used 
on each subsurface. In addition, the local Mach number is used at each 
collocation point. This method requires this mean (steady-flow) local Mach 
number as input from another source. A doublet singularity is included to 
represent the unsteady shock condition. 

The mixed-flow method should be attractive to the aeroelastician since 
it is composed of methods which are generally familiar and which are relatively 
efficient computationally. However, extensive testing will be required to 
assess its limitations and reliability. 

status.- The computer program is being debugged and documented. 

Application.- Measured 'and calculated pressure distributions for a wing 
oscillating in bending are shown in figure 14. The calculations are from 
reference 56; the measurements are from reference 57. The local Mach number 
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distribution, shown for a section near midsemispan, was used as input. The 
uniform-flow calculation (dash line) was carried out with the subsonic kernel 
function at M, = 0.997. The mixed-flow calculation, which includes the shock 
condition, provides somewhat better agreement with experiment than the uniform- 
flow calculation. 

Plans.- The method will be applied in transonic flutter calculations 
as time permits. 

Oscillatory Supersonic Lifting-Surface Panel Method 

Objective.- The objective of this effort is a general, linear-theory 
method for'calculating supersonic aerodynamic forces on thin oscillating 
lifting surfaces with a panelling scheme that fits planform boundaries exactly 
and is independent of Mach number. Emphasis is on developing a method that 
is suitable for routine use in flutter analyses. 

Approach.- This method is a reformulation of the work reported in 
references 58 to 61. The method is applicable to configurations of the type 
illustrated in figure 15. Each lifting surface (e.g., wing segment, vertical 
tail, control surface) is represented as a plane defined by the locations of 
its four corners. Each of these zero-thickness surfaces, is panelled with 
parallelograms which have two edges parallel to the surface leading edge and 
two edges parallel to the free stream. As can be seen in the figure, this 
geometry must be adjusted at the surface trailing edge. 

The analytical method is based on an integral equation solution of the 
linear potential equation for harmonic motion. The unknowns are the stream- 
wise gradients of the jump in velocity potential across each panel. Within 
each panel, the velocity potential varies linearly in the streamwise direction 
and is constant in the spanwise direction. Specification of the downwash in 
each panel leads to a collocation solution for the unknown potential-gradient 
values. 

This method should lead to an efficient procedure for applying linearized 
supersonic flow theory to thin lifting surfaces. It should be useful for 
flutter analyses and active-control analyses. It represents a significant 
advance over the earlier Mach box lifting-surface procedures. 

Status.- A documented computer program should be available by the end of 
1976. 

Plans.-No additional development effort is contemplated. 

CONCLUDING REMARKS 

High-performance, low-load-factor airplanes, such as supersonic cruise 
aircraft, are usually stiffness-critical to a sig&ficant degree. Consequently, 
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to satisfy stiffness and aeroelastic stability requirements without undue 
mass penalty, it is essential that the static and dynamic aeroelastic charac- 
teristics and stiffness requirements of such aircraft be accurately and 
reliably assessable by efficient analytical means. Since the aerodynamic 
methods available for such purposes are in a much less satisfactory state than 
are the structures and dynamics techniques, considerable importance is placed 
upon improving the generality, accuracy, and computational efficiency of 
steady and unsteady aerodynamics. 

This paper has reviewed seven research projects which indicate three 
major thrusts of current research efforts: (1) more realistic representation 
of steady and unsteady subsonic and supersonic loads on aircraft configurations 
of general shape with emphasis on structural-design applications, (2) unsteady 
aerodynamics for application in active-controls analyses, and (3) unsteady 
aerodynamics for the frequently critical transonic speed range. The projects 
reviewed herein should help to broaden significantly the aerodynamic capa- 
bilities available for aeroelastic analysis and design. . 
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TABLE l.- SUMMARY OF ANALYTICAL METHODS 

Analysis method 

General unsteady compressible potential 
aerodynamics (SOUSSA) 

Subsonic kernel-function analysis for 
wings with oscillating controls 

Unsteady loads on lifting surfaces with 
sharp-edge separation 

Finite-difference method for oscillating 
transonic flow 

Transonic aerodynamics for oscillating 
wings with thickness 

Mixed subsonic-supersonic kernel-function 
analysis for oscillating wings 

Oscillatory supersonic lifting-surface 
panel method 

Design 
loads 

Present 

Present 

Present 

Active 
controls 

Present 

Present 

Future 

Present 

Transonic 
range 

Future 

Present 

Present 

Present 
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GENERAL SURFACE-PANEL METHOD: 

l ARBITRARY COMPLETE A/C CONFI 

. STEADY AND GENERAL UNSTEADY 

. SUBSONIC AND SUPERSONIC 

. COMPUTATIONAL EFFICIENCY 

CURRENT DEVELOPMENTS: 

l NONLINEAR EFFECTS (TRANSON IC 
WAKE DEFORMATION) 

. IMPROVED SURFACE ELEMENTS (HIGHER ORDER, 
SPECIAL PURPOSE) 

l ROTATIONAL FLOW (TURBULENCE, VISCOSITY) 

Figure l.- Status of design-oriented potential-flow aerodynamics (SOUSSA). 
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Figure 2.- Lift coefficient for aspect-ratio-2 rectangular 
wing oscillating in pitch. 
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Figure 3.- Pressure distribution at wing spanwise station 0.78 
on wing-body-tail in diverging pitch oscillation about wing 
midchord. 
T = 0.09. 

s = 0.1 + i1.5, wing and tail aspect ratio = 6.0, 

730 



LE 

-THEORY 
0 a 17 0 EXPERIMENT 

TIP 

(a) Real part. 

FLOW 

lmlAC 1 
I PI 

LE 
TIP 
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Figure 4.- Lifting pressure distribution on swept wing with 
oscillating control surface. M, = 0; k = 0.372;. 6 = 0.66O. 

731 



, 
/ I 
I / , 

A& 
I 

/ 
I 

/ I , .w 
BELOTSERKOVSKII (1966) DJOJODIHARDJO (1969) 

PRESENT MODEL 
/ 

PRESENT MODEL 
(UNSTEADY) (STEADY) 

Figure 5.- Comparison of present models and previous models. 
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Figure 6.- Wake shape for aspect-ratio-l.0 rectangular wing 
in steady flow. cx = 11'. 
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Figure 7.- Wake shape for aspect-ratio-l.0 rectangular w&g in unsteady flow. 
a(t) = a, + tit; a0 = 110; d = 1.0; t = 4. 
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Figure 8.- Normal-force coefficient for aspect-ratio-l.0 rectangular 
wing in unsteady flow. &=: 1. 
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Figure 9.- Spanwise distribution of normal-force coefficient for 
aspect-ratio-l.0 rectangular wing. 
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Figure lO.- Normal-force and pitching-moment coefficients for 
aspect-ratio-l.0 swept wing. 
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Figure ll;- Real part of pressure distribution on aspect-ratio 5. 
rectangular wing with NACA 648006 airfoil oscillating in pitch. 
MC3 = 0.875, k = 0.06. 
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Figure 12.- Coordinate transformation for transonic. flow. 
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Figure 13;- Effect of thickness on transonic flutter speed. 

THEORY 
- MIXED FLOW 
--- UNIFORM FLOW 

0 EXPERIMENT 

0.8 - 

Figure 14.- Pressure distribution at spanwise station 0.556 on 
wing oscillating in bending. M, = 0.997, k = 0.207. 
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