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ACQUSTIC DISTURBANCES PRODUCED BY AN
UNSTEADY SPHERICAL DIFFUSION FLAME

Maurice I,. Rasmussen
University of Oklahoma

SUMMARY

The disturbances produced by a moving spherical diffusion flame are inves-
tigated within the framework of a linearized theory. After the flame position
and species concentrations are determined, the problem of determining the asso-
ciated density, pressure, temperature, and velocity fields is delineated. Ex-
plicit results for certain limiting situations are discussed.

INTRODUCTION

This paper deals with the acoustic disturbances produced by an unsteady
spherical diffusion flame. The basic problem is envisaged as follows. Inside
an initial sphere of radius r,, a mixture of oxidant (or fuel) and product
gases exists, and outside the sphere a mixture of fuel (or oxidant) and product
gases exists, as depicted in Figure 1, At an initial instant the spherical sur-
face that separates the two initial mixtures disappears, and the subsequent com-
bustion and acoustic disturbances are to be determined. We assume that the com-
bustion of the initially unmixed oxidant and fuel species is confined to a spher-
ical Burke-Schumann flame surface.

This problem is associated with the theory of particle and liquid-droplet
combustion at high pressures, such as treated by Spalding (Ref. 1) and Rosner
(Ref., 2). An applicable situation occurs when bubbles of oxidant (or fuel) are
injected into a medium of fuel (or oxidant). The bubbles burst, or are ignited,
and the subsequent disturbance field is to be determined, This investigation
also pertains to the general study of unsteady diffusion flames and to the broad
subject of spherical explosioms.

Most investigations of diffusion flames have dealt with steady flows, start-
ing with the original work of Burke and Schumann (Ref. 3). A number of such
problems are described in texts and review articles (Refs. 4 and 5). In par-
ticular, detailed mathematical expositions for steady linearized flows have been
developed by Clarke (Refs. 6 and 7); the present work is something akin to this
framework of analysis. Unsteady diffusion flames have not been as thoroughly
treated., Clarke and Stegen (Ref. 8) considered unsteady perturbations on a
two-dimensional flame sheet, Rasmussen (Refs. 9 and 10) developed a linearized
theory for the one~dimensional motion induced by a diffusion flame. 1In this
paper the related problem of a spherical diffusion flame is treated.
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Whereas the general form of the problem is nonlinear, the limiting acoustic
approximation is of some interest. The explicit analytic results obtained with-
in the linearized theory contain the embryonic behavior of the more complicated
nonlinear problem., The linearized results, besides having their own intrinsic
value, can be used to estimate the magnitude of convective terms and deviations
from constant-property approximations. The gas dynamic interactions of the
pressure, temperature, and velocity fields can be examined coherently within a
linearized framework.

FORMULATION OF THE PROBLEM
Preliminary Remarks

We consider the basic combustion process that involves a mixture of oxi-
dant (X), fuel (F), and product (P) species governed by the reaction equation
e
XX+ fFre&gp (1)

t
r

where X, £, and g are the stoichiometric coefficients. The corresponding mole-
cular weights for the species are denoted by Wy, Wy, and Wp. The forward and
reverse reaction times are denoted by tf and t,. The essence of combustion is
that t¢ = 0 and t,. — ©, 1In this sense, the reaction associated with (1) moves
only to the right, and this is the limiting situation considered here. This
simple reaction model has been utilized previously (Refs. 5-10). 1In this limit
a uniform oxidant-product mixture exists inside the initial spherical diaphragm,
of radius rg, and a uniform fuel-product mixture outside (or vice versa).

In the framework of a linearized theory, we begin with a basic uniform
medium composed of entirely the product species at pressure, density, and tem-
perature conditions denoted by py, p,, and Ty Inside the initial sphere we
suppose that the pressure and temperature are perturbed such that p = pO(L+Ap)
and T = To(l+At). The corresponding oxidant and fuel mass fractions inside
the initial sphere are denoted by Cy = Ay and Cp = 0. Outside the initial sphere
the pressure and temperature are unperturbed, but the mass fractions are given
by Cx = 0 and Cp = Ap (see Fig. 1). At a given instant, t = 0, the diaphragm
disappears. We assume that the ambient temperature and density, T, and pg,
are sufficient to initiate combustion spontaneously. Combustion of the oxidant
and fuel occurs at an interface, and a diffusion flame is established. 1In the
limit tf = 0, the diffusion flame collapses to a discontinuity surface, and all
the reactions occur entirely on this surface. On either side of the surface
there are no reactions, but binary diffusion takes place,

The limiting situation tf = 0 produces a singular perturbation problem.
The outer problem corresponds to the flame envisaged as the discontinuity sur-
face. The inner problem deals with the structure of the flame and is obtained
by matching with the outer problem. This procedure has been established pre-
viously for steady-flow problems (Refs. 5-7) and for one-dimensional unsteady
flow problems (Refs. 9 and 10). Here we restrict outselves to the lowest-order
outer problem, with the flame treated as a discontinuity surface,
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Basic Equations

When the mass fractions Cx and Cyr are small, the pressure and thermal diffu-
sion coefficients are small and are represented by nonlinear contributions,
Consequently, since binary diffusion prevails on either side of the flame sheet,
the diffusion-flux vectors are represented by Fick's law. As is usual in these
problems, we assume the binary-diffusion coefficients are equal: Dygp = Dyp = D.
We also assume that the components of the mixtures behave as thermally perfect
gases. We now introduce dimensionless pressure, density, and temperature per—
turbations p', p', T' defined by

p=rp,(4p") , p=p (') , T=T (I+T") (2)

We have correspondingly for the mass fractions and velocity:
= = 1 = - | . 1 ’
CX CX- s CF CF s CP 1 CX CF 3)
- - 2
v = V/afo , afo =Y P, /P, (4)

where af_ is the frozen speed of sound of the ambient medium and v is the ratio
of speci%ic heats of the product species in the ambient medium. We represent
the dimensionless space and time variables by

— -~ 2
= T =
r afo r/\)o , = afo tﬁ;o (5)
where v = (2p‘0 + X )/p , and w_ and A are the first and second coefficients

of viscosity. Since the p;gble% of inferest is spherically symmetric we intro-
duce a velocity potential, v = V9, where v = 8/0r (the barred space variables
are dimensional). The characteristic Prandtl and Schmidt numbers are defined
as Pt ~
EpV ¢ k 2V 6

LS DA po/ o ? Se o/Do (6)
where Cpg is the constant-pressure specific heat of the product species and
ko, is the thermal conductivity, the subscript naught denoting the ambient state.
With the above definitions, the linearized equations for mass, momentum, species,

energy, and therwmal equation of state become

3 2 2 9
£+ =0 ; P=Y [v - 52 (7a,b)
DCy = =S X WyR , DCp = -S_fW.R (8a,b)
~Y-1, 9 _
D,T v Prar t P.Q R , P =0+ T+ aly + o.Cp (9a,b)

The primes denoting the perturbation variables have been omitted. 1In the above
we have the operators D, and Dg, the parameters of Oy and oy, and the dimen-
sionless heat of reaction Q defined as

_ 2 2 . D2
D, = P 5= -V , D= S 5= -V (10)
R Rp
o =X _ 1 , o =L _1 (11)
X R, PR,
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Q=[x We(hy - hy )+ W (hy -h, )] /cp T, (12)
o o o "o o
where Ry, Rp and Rp are the specific gas constants. The symbol R denotes the
dimensionless reaction rate. For the flame discontinuity sheet, R is given by

R = S(T) 3(z ) (13)

where S(T) is the flame strength and 6(Zn) is the Dirac delta function with Z
the coordinate measured normal from the flame sheet. Derivations of these
equations can be found in references 6, 9 and 10, and also in references 11
and 12 when there are no chemical reactions.

Continuity Conditions

All the physical flow variables are continuous at the flame sheet. Inte-
gration of equations (8a,b) and (92) across the flame sheet shows that the fol-
lowing normal derivatives are discontinuous across the flame sheet:

C C
E N M N WS

where the bracket rotation denotes the jump in value across the discontinuity,
These jump conditions suggest that the following new variables be defined that
do have continuous normal derivatives across the flame:

A P.Q
*o_ F *o_ T
c =c¢_.-Y¥Y—¢ , T =T+ C (15a,b)
F AX X Séwa
where fW A
Y—
xw C (16)

XF
% *
is the stoichiometric fuel-oxidant ratlo. With the new variables C and T ,
the reaction rate can be eliminated from the set of equations. Equations (8a,b)

can be combined and equation (9a) can be recast to read
P_Q(P_-S ) ocC
r't'r “c X

* *  y-1 92
i DSC =0 , DPT =y Pr 5t + Sc X wk 3T (17a,b)
The linearized state equation (9b) becomes _
* % P Q AF
=p+T o, C -EC,  where EF= -o, -~a_ ¥ — (18a,b)

F X S XWy X F o by
Equation (17a) is uncoupled from the other equations and can be solved
separately, yielding Cy and Cp as well as the flame position. A single equation
for the velocity potential can then be found by eliminating T* in equation (17b)
by means of equation (18) and then utilizing equations (7a,b) to eliminate p
and p. We obtain

L@) = (S,-P) [ + P C ] +ED,C (19)
F TT SéXWX XTT P XT
where
_ 4 2 2 2
L@y =y v+ v2[v% - ey o |+ 2 [o, 7% (20)
T
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MASS FRACTIONS AND FLAME POSITION

Equation (17a) for C* can be solved separately, The initial conditions
are C*(r > ry,0) = Ay and C*(r < rg) = -YAp. Further, C* is finite at the
origin and infinity, and both C* and Cj are continuous at r=r,. The result
is (Ref., 2):

* 1-r 14-r
g— = - Y 5 X%l-[erfc ( x ) + erfc ( *)
F Vbt VaT,
) JF; { -(1-r,)2/47, -(1+r*)2/4¢{}]
+ ;; — e - e (21)
= _ 2
where r, = r/ro and T, = T/(roSc). (22), (23)

%
The flame position r = rg(T) is determined from the condition C (r_,T) = 0
but rg(T) cannot be obtained explicitly. For small Ty, however, we obtain

— E 3/2 8 2. 2 5/2
r(Ty) =1+ 2 AT, - 27, + 2AT.°° - 4+ 3 A )T+ 0(T ) (24)

where erf(A) = (¥-1)/{¥+1). (25)

The position of the flame with time is a function of the initial conditions
through the parameter ¥, defined by (16). When ¥=1, the initial conditions are
stoichiometric, and the flame travels inward toward the origin, linearly with
T when T is small. When ¥ > 1 the initial conditions are oxidant-rich and the
flame initially moves outward from the origin and then subsequently toward the
origin. The case of fuel-rich initial conditions corresponds to ¥ < 1, and the
flame moves only toward the origin, the position varying like % when T is small.
This behavior is contrary to the one-dimensional (Refs. 9 and 10) problem in
which the flame remailns stationary under stoichiometric initial conditiomns and
moves either to the right or left depending on whether Y is greater than or less
than unity. TFigure 2 shows the position of the flame as a function of Tx for
Y =1/2, 1, and 2. When Y=1, for instance, the flame reaches the origin and
becomes extinguished when T, = 0.21.

The spherical diffusion flame travels ultimately inward. Because the
species outside the sphere is of infinite extent and the species inside the
sphere is of finite extent, the species inside the sphere tends to be consumed.
Consequently, the flame e’entually will move inward in order to add.a relative
diffusion rate for the vanishing inside species and thus maintain stoichiometric
combustion at the flame. When the flame reaches the origin, the species ori-
ginally inside the sphere has been completely consumed and the flame becomes
extinguished.

The mass fractions are determined from the function C*. For r < rg, we
have CX/Ax = -C*/(YAF) and Cp=0. For r > rg, we have Cyx=0 and CF=C*. These
profiles are plotted in Figure 3 for ¥=1 and T+ < 0.21. When the flame becomes
extinguished at the origin, the species inside the original sphere has been
completely consumed, in this case the oxidant, For times greater than the ex-
tinguish-time, the species outside the original sphere proceeds to establish a
uniform state. The return to a uniform state is shown in Figure 4.
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SOLUTION FOR Pr = Sc and E = 0

Laplace-Transform Analysis

With C* and C_, known, equation (19) constitutes a fifth order non-homo-
geneous equation for ¢, Because the position of the flame varies with time,
the problem is difficult to solve. A great simplification occurs when we set
Py=S. and E=0. For most gases setting P.=S, is a good approximation. The
approximation E=0 is valid when ratios of specific heats of all the species are
the same, These approximations correspond to the Shvab-Zeldovich approximation
(Ref, 4), With these approximations, the problem is very similar to the binary
diffusion problem of Reference 12, without pressure diffusion, and we proceed

in similar fashion.

If $(r,s) denotes the Laplace transform with respect to time of ¢ (r,7),
the solution of the transform of L(p) = 0 is

rA
ro(r<r_,s) = - — + Ay sivh A + A, sinh A,r (26a)
Ys
ro(r > r »s) = By exp(-\ 1) + B, exp(-\,r) (26b)
where A,, A,, B. and B, are arbitrary constants of integration, and
1 2 1 2 2 —
(y+P )s2 + P_sts J[(Y-P )s + P] + 4(P_-1)P_s E
N = [ T r = T T r T ] (27)
1,2 2(1+Ys)

where the plus sign holds for Ay and the negative sign for Ay. The Laplace
transforms of the pressure and density are found from (7a,b):

p(r,s) =v L) - s rol/r (28)
P(r < ,8) = -(8,/s) - (r9)_ /(rs) (29a)
p(r>r ,8) = -(@b)/s - (x9) /(rs) (29b)

The reduced temperature, T*, is determined by means of equation (18). The
velocity is determined by v = ¢r.

zhe constants A., A,, Bl’ and B, are determined by requiring that 5, E, ;,
and T; be continuous at Tr=r,. We find that

_hlro -xzro
A, = (1+h1ro)e Al/x1 > A, = -1+ ,r e A2/>\2 (30a,b)
By = (sinh Xlro - Xlro cosh Xlro)Al/Xl (31a)
= -(si - A
B, (sinh ero ero cosh Klro) 2/h2 (31b)
T = [(A + @b Y(\2-s)/s + B x2/<ysz)]/(x2-x2) (32a)
1 p T YFF V2 P2 27"
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tirely diffusive:

A
2

A
P

The inversion of the transformed variables now remains,

[, + apapaZoyss + 832/ qsh ]/ 0243 (32b)

Ap + AT + ozxAX (33)

Constant-Pressure Solution

When P = S, = 1 we have the simplified results Ay =/s and A9=s//1+yS.
Further when Ap = 0, the factor Aj vanishes (hence A7=B9=0), and the pressure
perturbation is identically zero, p(r,T) = 0. The remaining solution is en-

) 2 2
A 4+ a A -(r-r )“/4T C=(r+r )" /4T
P FF o o
v(r,T) = ——2| (rr -27)e + (rT +27)e (34)
Zrz‘/ﬁ; . [ 0 o] :]
p(r,T) = Ap - (Ap + ozFAF) Ly + (C*/AF)]/(l + ¥) (35)
T*(r,7) = A, L1 - (C*/B)1/ (1+¥) (36)

where C*/Ap is given by equation (21), and Bry = AT + (QAX/XWX)' Wave behav-
ior does not occur in this special case.

The temperature at the flame sheet is determined from expression (36) by
setting C* = Cx = 0. We obtain
= 7% =
Arg = Tx(r,7) = [A + QA AW/ (L + ¥) (37)
The increment AT¢ is the adiabatic flame temperature. It does not vary with
time., The temperature is found from equation (15b) to be

T(r = r_,7) = AT + (BT, - AT) C*/(MF) (38a)
T(r 2 rs,T) = ATf (1 - (C*/AF)] (38b)

This temperature distribution is shown in Figure 5 for Y=1 and AT = 0.
Large-Time Behavior

An asymptotic approximation can be obtained for large times, and the re-
sults for density, pressure, velocity and T* are similar to those obtained in
References 11 and 12, The major difference from these results occurs in the
temperature distribution (as contrasted with the reduced temperature T*). _When
A_#0, a gasdynamic expansion wave travels inward from the initial sphere, Ty
cooling the gas. This wave reflects from the origin and travels outward. The
result after this reflected wave passes the position of the initial sphere is a
reduction in temperature by an amount (Y-1)A_/y. This temperature regidual is
subsequently eliminated by thermal diffusion (Ref., 11). Thus for times long
after the reflected wave passes the initial sphere, the net effect is to’ change
the initial temperature increment such that '

AT-' AT - (Y-l)AP/Y (39)

For large Reynolds numbers (ro >> 1), the wave processes are much faster than
the diffusion processes, and under these circumstances formulas (36-38) hold
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for the temperature long after the reflected wave passes the initial sphere,
with the modification (39) noted. When P, # 1, the time is also modified such
that T = T/P, in the function C*,

When A, = 0, but P, # 1, there is a weak pressure wave generated that is
proportial to (Py-1) (Refs. 10 and 13)., This wave does not affect the temper-
ature distribution near the flame since Ay is left unaltered.

CONCLUDING REMARKS

The present analysis demonstrates the main features associated with un-.
steady spherical diffusion flames. It would be useful to continue the analysis
without the approximations P, = Sc and E = 0, For the one-dimensional problem
(Ref. 10) there are weak waves generated by the combustion at a stationary
diffusion flame that are proportional to E. It would be interesting to inves-
tigate these waves for a moving spherical diffusion flame. The inner problem
associated with the structure of the flame is also worthy of further attention.
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Figure 1.~ Initial conditions and spherical configuration.
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Figure 2.~ Flame position as a function of time.
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Figure 4.~ Fuel concentration after flame extinguishment.
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Figure 5.~ Temperature distribution for constant-pressure solution.
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